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We would like to thank you all for pointing out the merit of our work and for recommending the
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List of the main modifications made during the revision work

A section is added to Chapter 5 in order to provide some details of the implementation of von
Mises constitutive model for elastoplastic material.

Chapter 9 including the summary, conclusions, and future perspectives is added to the end of
thesis.

The tables of DOF for the comparison of ABQ and CUF models are provided for Chapters 3-
6.

For the sake of clarification, some explanations have been added to the results.

The typos and mistakes have been corrected.



Doctoral Examination Committee 1, Professor Cinefra:

These thesis presents refined nonlinear structural theories for the free vibration and post-buckling
response of thin-walled beam and flexible plate structures. In this regard, the Unified Formulation is
employed to obtain nonlinear governing equations of the finite beam and plate elements. Then,
various assessments are conducted related to the thin-walled beam and flexible plate structures. The
free vibration response of thin-walled isotropic and composite beams is accurately evaluated, and
the Vibration Correlation Technique is used in order to investigate the variations of natural
frequencies in thin-walled laminated isotropic and composite beam structures under compression.
The physically and geometrically nonlinear analysis of thin-walled beams is also investigated using
Newton—Raphson linearization scheme with the path-following method based on the arc-length
constraint. The large-deflection and post-buckling of isotropic and composite plates under axial, in-
plane shear and combined loadings are analyzed considering different strain-displacement
assumptions, and the corresponding equilibrium curves and stress distributions are presented.
Furthermore, the effects of load and displacement boundary conditions in the post-buckled laminated
composite plates are investigated, and the effects of stiffeners are assessed. The results show that the
present method based on the Unified Formulation can be efficiently used for accurate structural
analysis, including the free vibration and post-buckling of the thin-walled beam and flexible plate
Structures.

The manuscript is well written and organized. Some typos are highlighted in the attached pdf and
some minor comments are provided in order to improve the clarity of the manuscript. Each part is
clearly introduced and developed and test cases are properly selected and described. Figures and
Tables are carefully generated and discussed. The Bibliography is rather complete and satisfactory.
The general evaluation of the work is positive. Nevertheless, the reviewer asks to clarify the following
point:

Comment 1.1
Chapter 4: how do you include the compressive load in the free-vibration analysis model?
Reply 1.1

The author thank the Reviewer for this concern. The compressive load results in the decrease of
stiffness of the structure. This effect is considered by the calculation of geometric stiffness of the
structure. In the presented method, this geometric stiffness contribution is considered for the applied
loading, and then the free vibration analysis is conducted for the pre-stressed structure. The relevant
explanation has been added in the first section of Chapter4:

In the case of small displacements and linear buckling, the tangent stiffness can
be approximated as the sum of the linear stiffness (K) and the geometric stitffness
(K &) contribution [115]:

Kr ~Ko+Ks (4.1)



Afterwards, by considering harmonic motion around quasi-static equilibrium states,
the eigenvalues problem can be solved as follows:

(—oM +Kr)u =0 (4.2)

where @y are the natural frequencies, and uy is the k th eigenvector.

Comment 1.2

Chapter 5: how does the candidate include the von Mises constitutive model for elasto-plastic
material, as in Chapter 5, in the non-linear models presented in Chapter 2? One of the hypothesis
declared is constant matrix C.

Reply 1.2

The author thank the Reviewer for pointing this out. According to the comment of the Reviewer, a
section is added to Chapter 5 in order to provide some details of the implementation of model. In fact,
for this chapter the C matrix is being updated consistently. The relevant section has been added to
Chapter 5:

5.2 The von Mises model for elastoplasticity

In his section, the von Mises model implemented for the nonlinear framework
of metallic elastoplastic materials is provided [42, 185]. Based on the isotropic

work-hardening von Mises constitutive model, the stress-strain relation is given by:
a=C"¢ (3.1)

where €°¢ is the elastic component of the strain tensor, and the consistent tangent
elastoplastic operator C“”? is a fourth-order tensor that describes the elastoplastic
nature of the material and relates the current values of stress and strain such that:

CL‘E’p — e ity (5'2)

In the current implementation of the model, a piece-wise linear hardening can be

prescribed by providing a set of stress-strain points past the initial yield point.



It the elastic stress exceeds the yield limit o, , the following scalar nonlinear

equation could be solved:

F(&y) = 4 —3GAY— 0, (8] +Ay) (5.3)

trial
n+1
Ay is the unknown, oy is the yield stress, &), is the isotropic hardening parameter at

where ¢ is the trial von Mises stress at the increment 7, |, G is the shear modulus,

the increment 7, and f is the von Mises yield locus, expressed as:

f=a(0)—0y(&) (5.4)

where

4(6) = \/ }1(6e — 01y) + (G — 0ze)? + (022 — O+ 6(03 + 02 +62)] (5.5)

Eq. (5.3) is solved using Newton-Raphson method and, with solution Ay at hand,
the stress and strain are updated:
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where 1”,’,"’A‘“r I is the volumetric stress at increment 7,,, and %ES trial] ig the volumetric
component of the elastic trial strain. Interested readers are referred to [41, 185] for

more details on the method of implementation.

Comment 1.3

A final chapter about conclusions and perspectives of this thesis work is missing. For example, is it
possible to consider plates with stiffeners as those studied in Chapter 4?

Reply 1.3

The author thank the Reviewer for the useful comment. According to this comment, the Chapter 9 is
added to the end of thesis:



Chapter 9

Conclusions and perspectives

9.1 Summary

The dissertation has been focused on the refined structural and nonlinear theories in
order to investigate the free vibration and post-buckling response of thin-walled beam
and flexible plate structures. In this regard, the CUF has been employed to obtain
nonlinear governing equations of the finite beam and plate elements. Then, various
assessments have been conducted related to the thin-walled beam and flexible plate
structures. The free vibration response of thin-walled isotropic and composite beams
has been accurately evaluated, and the Vibration Correlation Technique has been
used in order to investigate the variations of natural frequencies in thin-walled lami-
nated isotropic and composite beam structures under compression. The physically
and geometrically nonlinear analysis of thin-walled beams has been investigated
using Newton—Raphson linearization scheme with the path-following method based
on the arc-length constraint. The large-deflection and post-buckling of isotropic and
composite plates under axial, in-plane shear and combined loadings considering
different strain-displacement assumptions has been analyzed, and the corresponding
equilibrium curves and stress distributions have been presented. Furthermore, the
effects of stiffeners and displacement boundary conditions in the post-buckled lami-
nated composite plates have been studied. The results have shown that the present
method based on the CUF can be efficiently used for accurate structural analysis,
including the free vibration and post-buckling of the thin-walled beam and flexible
plate structures.
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9.2 Concluding remarks

In Chapters 1 and 2, the details of implementation of the CUF framework, and
the nonlinear governing equations have been provided. In Chapter 3, higher-order
vibration modes in a series of open-section thin-walled beams have been investigated
as benchmark problems. Detailed comparisons have been made between the clas-
sical beam theories, refined ones based on the CUF, shell models obtained using
commercial FE software, and data from the literature. It has been shown that the
natural frequencies and mode shapes found using the suggested efficient framework
correlate well with those obtained using shell models, which require significantly
more computational efforts. The importance of developing models capable of de-
tecting cross-sectional deformations has been demonstrated. The MAC has been
successfully used to compare the free vibration modes obtained by various structural
theories, and it has been suggested that additional refinement is required for the TE
when applied to the complicated cross-section geometries. It has been shown that

the selected structural theory has a greater influence in higher-order modes.

In Chapter 4, the vibrations and buckling of thin-walled isotropic and composite
beams under compression with different open cross-sections has been evaluated. The
effects of axial loads on the variations of the beam structure’s natural frequencies
have been assessed. The MAC analysis has revealed that the number of related modes
for classical models such as Taylor order 1 is much less than that for other Lagrange
models. Indeed, classical beam theories eliminate a large number of modes in favor
of never-existing rigid cross-section modes. As long as the initial buckling and
vibration modes are similar; the VCT may be used to estimate buckling loads based
on the decrease in the natural frequencies of the beam under progressive compressive
loads. The advantages of the CUF 1D method with efficient LE have been shown
for a more complex structural problem involving a channel-shaped composite beam
subjected to compression with different number of transverse stiffeners. It been
demonstrated that adding transverse stiffeners alters the mode shapes and natural
frequencies of the beam structure significantly.

In Chapter 5, the CUF 1D model in combination with a Newton—Raphson lin-
earization scheme based on the path-following method with arc-length constraint
has been used to solve physically and geometrically nonlinear beam problems. Nu-
merical results have been presented for square, channel-shaped, and T-shaped beam
structures with elastic and elastoplastic materials subjected to large deformations and
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rotations. It has been demonstrated that for the beams with different cross-sections,
the equilibrium curves obtained by CUF 1D elastic and elastoplastic LE models
match well with the results of available literature and 3D solid models. The stress
distributions have been investigated based on the different LE models, and the results
have been compared with 3D FE models. For the elastoplastic material, the plastic
zones have been initiated near the top and bottom surfaces of the beam near the
clamped edge, where the values of equivalent plastic strain have been increased due
to the larger load factor values. Although the DOF and the computational costs of
the problems have been reduced significantly using the current method, it can predict
the equilibrium curves and the stress distributions of the structure accurately and
precisely.

In Chapter 6, it has been shown that the CUF and layer-wise approaches may be
used to investigate the large-deflection and post-buckling of rectangular isotropic and
composite plates.The well-known von Kdrmén theory for nonlinear deformations of
plates has been evaluated with several modifications. The equilibrium curves and
stress distributions for different isotropic and composite plates have been provided
and analyzed in detail. Different factors influencing the nonlinear response of plates,
including the stacking sequence, number of layers, loading and edge conditions,
have been thoroughly studied. In comparison with the von Kdrmén theory and its
modifications, the full nonlinear model has been proved to be more reliable in order
to investigate the correct equilibrium curves and stress distributions in the very large
displacements and far post-buckling regime. It has been indicated that the buckling
strength of the composite plates with clamped edge conditions is greater than those
of the composite plates with other studied edge conditions, and the presence of a

free edge, considerably reduces the buckling strength of the plate structures.

In Chapter 7, the stiffeners and boundary conditions effects on the geometrically
nonlinear response of laminated composite plates under various strain-displacement
assumptions have been studied. It has been demonstrated that the stiffeners” material
properties have a significant impact on the nonlinear post-buckling behaviors, and
the presence of stiffeners limits the rotations at the loaded edges of the plate structure
by enforcing uniform edge displacement. Lower values of the stiffener’s material
properties have resulted in a post-buckling behavior that is similar to the response
of the plate in the absence of the stiffener. On the other hand, higher values of
material properties for the stiffener have resulted in rotational limitations in the
loaded edges. Lamination angles and stacking sequence have shown to be important
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in the composite plate structure’s buckling and post-buckling behaviors. It has
been shown that the quadratic shear stress distributions can be predicted with high
accuracy using the cubic LD3 CUF plate models. The nonlinear response of the
composite plate above the limit load and snap-through instability has been predicted
using the presented CUF plate model.

In Chapter 8, a modeling technique based on the CUF, layer-wise theory, and
full Green—Lagrange nonlinear relations has been proposed in order to model the
real shear conditions, and investigate the nonlinear response of composite plates
subjected to shear and combined loadings. It has been indicated that for both
Baron Epoxy and Carbon Epoxy composite plates with different lamination angles
and shear loading conditions, the results obtained by the presented CUF-based
method match well with the results reported in the available literature. It has been
demonstrated that the direction of applied shear plays an important role in the
geometrically nonlinear response of angle-ply composite plates. As a result, the
plates under negative shear show higher buckling strength. Biaxial compressive
loading has resulted in the decrease of buckling strength and the rigidity of structure
because of the intensification effects on the induced deflections by the shear loading.
Nonetheless, biaxial tensile loading has resulted higher load-carrying capacity of the
plate structure.

9.3 Future directions

Due to the reliable and accurate results of the CUF in solving geometrically and
physically nonlinear problems of structures, further developments of the proposed
methodology could be focused on a nonlinear local analysis and a localized buckling
with the advantage of coupling the global/local approach with optimization tools to
reduce computation time. Furthermore, the same nonlinear methodology will also be
adopted to perform dynamic analyses. Other important topics that could be further
developed could be the extension of CUF-based nonlinear finite elements for the
analysis of deployable space structures, elastomers and mechanical meta-materials.
Furthermore, Hyperelastic models could be implemented in the CUF 1D or CUF
2D frameworks in order to be used in the complex materials such as biological soft
tissues and organs. For instance, the soft materials are susceptible to the occurrence
of instability and failure that needs to be accurately predicted; therefore, using the
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CUF, the constitutive relations of soft tissues or complex structures using continuum
approaches could be investigated, and in-depth study on the material behavior of
soft matters could be presented. In addition, future extensions could be focused
on high-velocity impact problems and progressive failure of composite structures.
Also, the effects of transverse stiffeners nonlinearities on the dynamic response of
the beam and plate structures under compression deserve special attention.

Also, the author would like to thank the Reviewer for the valuable and detailed comments in the PDF
file. All the comments in the file have been addressed accordingly. and the typos have been corrected.
Some points which needed further clarifications from the PDF file are provided in the following:

Comment 1.4
What is the length of the beam? P 70.
Reply 1.4

The length of the beam is 670 mm. This has been added in the explanations of the figure.

Comment 1.5
Could you provide a DOF comparison with ABQ? P 101.
Reply 1.5

Table 4.35 with the DOF comparison of box, I-shaped, and channel-shaped beams has been added to
the revised version:

Table 4.35 The comparison of ABQ shell and CUF 1D models employed for the investigated
beam structures

Model DOT Flumber Element
of elements type
ABQ shell-box beam 32832 1800 Quadratic S8R
ABQ shell-I-shaped bam 26748 1400 Quadratic S8R
ABQ shell-Channel-shaped beam 28572 1500 Quadratic S8R
CUF 1D-LE-box beam 18117 20B4 4-node beam
CUF 1D-LE-I-shaped bam 17019 20B4 4-node beam

CUF 1D-LE-Channel-shaped beam 15921 20B4 4-node beam

10



Comment 1.6
Could you provide a figure of the geometry in this case? P 105.
Reply 1.6

The author is grateful for the suggestion. The relevant figure has been added:

O. 03 Convert a PDF to Microsoft !
more

a=i{.6

Fig. 4.22 Geometry of thin-walled channel-shaped composite beam (dimensions in mm)

Comment 1.7
Please, provide the von Mises constitutive model. P 129.
Reply 1.7

Some details of von Mises constitutive model is added to the revised version, and are also provided
in Reply 1.2.

Comment 1.8

Which model do you identify with the prefix 1? P 136.
What does it mean the prefix 2? P 143

Reply 1.8

The author thank the Reviewer for pointing this out. The prefix 1 before the acronym LD is excessive,
and is removed in the updated version. Some prefixes before LD are used in Fig. 6.5, which refer to
the number of elements in the thickness direction of plate structure. In fact, the aim is to assess the
effects of elements in the thickness direction of plate on the distribution of transverse shear stress.
The relevant explanation is also added to the text of updated version.

can accurately describe the quadratic shear stress distribution. Note that the prefixes
before LD in this figure refer to the number of elements in the thickness direction of

plate structure.

11



Comment 1.9

According to which convention is it negative? Please, explain. P 193.

Reply 1.9

The author is grateful for this comment. A schematic figure of negative shear loading along with the

relevant literature is shown in the Fig. 6.27:
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Fig. 6.27 Combined loading of a laminated composite plate: negative in-plane shear. in-plane
compression, and the uniform transverse pressure [240]
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Doctoral Examination Committee 2, Professor Bagassi:

This thesis presents refined nonlinear structural theories for the free vibration and post-buckling
response of thin-walled beam and flexible plate structures. In this regard, the Unified Formulation is
employed to obtain nonlinear governing equations of the finite beam and plate elements. Then,
various assessments are conducted related to the thin-walled beam and flexible plate structures. The
free vibration response of thin-walled isotropic and composite beams is accurately evaluated, and
the Vibration Correlation Technique is used in order to investigate the variations of natural
frequencies in thin-walled laminated isotropic and composite beam structures under compression.
The physically and geometrically nonlinear analysis of thin-walled beams is also investigated using
Newton—Raphson linearization scheme with the path-following method based on the arc-length
constraint. The large-deflection and post-buckling of isotropic and composite plates under axial, in-
plane shear and combined loadings are analyzed considering different strain-displacement
assumptions, and the corresponding equilibrium curves and stress distributions are presented.
Furthermore, the effects of load and displacement boundary conditions in the post-buckled laminated
composite plates are investigated, and the effects of stiffeners are assessed. The results show that the
present method based on the Unified Formulation can be efficiently used for accurate structural
analysis, including the free vibration and post-buckling of the thin-walled beam and flexible plate
Structures.

The manuscript is well written and its structure is satisfactory. Each section is well organized and
properly introduced and developed. Figures, Tables and related captions are well finished and the
bibliography is complete.

The general view about the thesis is very positive, however minor revisions are needed in order to
clarify the following points and to fix a few typos.

Comment 2.1

In sections 3, 4, 5, and 6 conclusions the author claims the reduction of DoF caused by the use of the
CUF approach. A table with the DoF comparison between the CUF, the ABQ and the literature model
could be very useful for the reader (there is one in section 5 for example).

Reply 2.1

The author thank the Reviewer for the useful comment. According to the comment of Reviewer, some
tables have been added to the previous tables. In the revised version, the tables in Chapters 3-6
including the DOF comparison of ABQ and CUF models are as follows:

13



Table 3.11 The details of ABQ shell and CUF 1D models employed for the cruciform beam

Number Element Section Time

Model DOF . _—
of elements type discretization (Sec)
ABQ shell-coarse 6342 320 Quadratic S8R 8 25.16
ABQ shell-medium 24198 1280 Quadratic S8R 16 31.47
ABQ shell-fine 94470 5120 Quadratic S8R 32 53.80
CUF 1D-LE 2736 SB4 4-node beam 9L9 4.33
CUF 1D-LE 9765 10B4 4-node beam 1719 11.48
CUF 1D-LE 27999 20B4 4-node beam 2519 35.35

Table 3.29 The comparison of ABQ shell and CUF 1D models employed for the investigated

beam structures

Model DOE Number Element . SecTionl
of elements type discretization
ABQ shell-beam1 27102 1440 Quadratic SRR 18
ABQ shell-beam2 28554 1520 Quadratic S8R 19
ABQ shell-beam3 64854 3520 Quadratic S8R 42
ABQ shell-beam4 60498 3280 Quadratic S8R 41
CUF ID-LE-beaml 15921 20B4 4-node beam 1419
CUF 1D-LE-beam2 17019 20B4 4-node beam 1519
CUF 1D-LE-beam3 18117 20B4 4-node beam 161.9
CUF 1D-LE-beam4 19215 20B4 4-node beam 1709

Table 4.10 The first nine natural frequencies of the unloaded thin cruciform beam based on

the CUF 1D Lagrange model and the thin ABQ shell model

Natural Frequency (Hz)

Number of Lag.

Model - DOF Model Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8 Mode9
elements Points

CUF 1D (Lag.) 20B4 105 19215 32.17 64.46 96.98 129.84 163.17 197.06 231.64

Thin ABQ shell 1680 S8R - 52396 30.82 61.76 92.93 12447 15647 18905 22232

Table 4.35 The comparison of ABQ shell and CUF 1D models employed for the investigated

beam structures

ST DOE Number Element
of elements type

ABQ shell-box beam 32832 1800 Quadratic S8R
ABQ shell-I-shaped bam 26748 1400 Quadratic S8R
ABQ shell-Channel-shaped beam 28572 1500 Quadratic S8R

CUF 1D-LE-box beam 18117 20B4 4-node beam

CUF 1D-LE-I-shaped bam 17019 20B4 4-node beam

CUF 1D-LE-Channel-shaped beam 15921 20B4 4-node beam

14



Table 5.2 Computational size of the investigated models for the square beam

Model

DOF  Computational time (s)

ABQ-3D Coarse
ABQ-3D Medium
ABQ-3D Refined
CUF 1D (LE-4L9)
CUF 1D (LE-9L9)
CUF 1D (LE-16L9)
CUF 1D (TE: N=1)
CUF 1D (TE: N=2)
CUF 1D (TE: N=3)

1869 83
11001 194
44085 546
4575 56
8967 101
14823 171
549 138
1098 4383
1830 2125

Table 5.5 Computational size of the investigated models for the C-shaped beam

Model

DOF  Computational time (s)

ABQ-3D Coarse
ABQ-3D Medium
ABQ-3D Refined
CUF 1D (LE-5L.9)
CUF 1D (LE-8L9)
CUF 1D (LE-13L9)

9867 419
125814 1193
245049 2911
6039 322
G333 421
14823 730

Table 5.8 Computational size of the investigated models for the T-shaped beam

Model DOF  Computational time (s)
ABQ-3D Coarse 9393 241

ABQ-3D Medium 18453 477
ABQ-3D Refined 60549 1459

CUF 1D (LE-5L9) 6039 142

CUF 1D (LE-7L9) 8235 364

CUF 1D (LE-9L9) 10431 484

Table 6.11 The comparison of displacement values at the fixed load of %‘f = 300 and the
normalized linear buckling loads for a cross-ply [0/90]> laminate )

Model

DOF u;(mm) Linear Buckling Load (N/m)

CUF 2D Full NL 20x5Q9-LD1
ABQ 2D NL 60x15 S8R
ABQ 3D NL 60x 15x4 C3D20R

6765 1.422 503360
17106  1.134 497658
24993  1.428 498976
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Comment 2.2
p. 4-5 please define the tau index. Is it the cross-section index?
Reply 2.2

The author thank the Reviewer for pointing this out. In the CUF framework, theories of beam
structures are defined through the definition of cross-section expansion function F; (x,z), where T is
expansion function index, and varies from 1 to N. Also, it should be noted that N refers to the number
of polynomial terms in the cross-section expansion function. The relevant explanation has been also
added to the revised version.

Comment 2.3
p. 5  clarify if the Ni functions depend on tau
Reply 2.3

The author is thankful to the Reviewer. Ni(y) refers to 1D shape functions related to the i node along
the beam axis in y direction. The choice of the axial shape functions A; is independent of the choice
of the cross-sectional expansion functions F; , leading to significant flexibility in the structural
modelling. The relevant explanation has been also added to the revised version.

Comment 2.4
p- 13 Ithink after eq. 2.6, “lambda” has to be symbolic char (probably in latex the \ is missing)
Reply 2.4

The Reviewer is right on that. The mentioned typo is corrected in the revised version.

Comment 2.5

p- 36 the author shall clarify why he chooses two arbitrary cross sections. The author considers all
beam clamped, did the author analyse or take in account the effects of different BCs on the
convergence and validation study?

Reply 2.5

The author thank the Reviewer for pointing this out. The thin-walled open cross-section beams and
the mentioned arbitrary cross-section are selected based on the benchmark beam problems introduced

16



by Chen [88], which has been introduced in Section 3.2. The aim has been providing standard beam
examples and providing benchmark reference solution for them. Regarding the point about boundary
conditions effect on the convergence analysis, the author agree with the Reviewer that the
convergence study could be very problem dependent. This effect has been considered, and for the
sake of brevity, in Chapter 3, the convergence study for the clamped-free edge conditions has been
provided in Section 3.3 of the thesis due to the fact that the main assessments of the chapter have
been focused on this boundary conditions.

Comment 2.6

p. 47  deviations between the experiments and the CUF are low, but still around the 4-5%, the

author shall elaborate about the reasons behind those deviations (same comment applies to
differences between ABQ and the CUF).

Reply 2.6

The author thank the Reviewer for this concern. In fact, many factors could result in such deviation.
For example, there are different environmental, human, and equipment parameters that could play
role during the extraction of data in different steps of the experimental approach, as in Ref [97], the
natural frequencies of the beam have been obtained exciting the specimen by means of several
impulses provided by a non-instrumented hammer and detecting the frequencies using the Peak
Picking technique using the PZT pickups or Laser sensors. Furthermore, in the computational method,
the approximation introduced by the kinematics of the problem or FEM analysis could lead to such
low deviations. Accordingly, the ABQ and CUF models employ different FEM formulations, and are
based on different structural theories of shells and beam structures. The relevant explanation has been
also added to the revised version.

match well with experimental results. Note that small deviations of less than 6.5%
could be due to many factors influencing different steps of experimental approach
during the frequency extraction process, or the approximations introduced by the
kinematics assumption or FEM method. Accordingly, the ABQ and CUF models
employ different FEM formulations, and are based on different structural theories of

shells and beam structures.

Comment 2.7

p-79  “As can be seen in Table” the number of the table is missing.
Reply 2.7

The Reviewer is right on that, the mentioned point is corrected in the revised version.

17



Comment 2.8

p- 96 The author states that the differences between the theories are more significant for the higher
order. Further elaboration would be appreciated.

Reply 2.8

The author is grateful for the suggestion. In Fig. 4.17, the three modes of CUF 1D model match well
with ABQ shell models. Although for results of Ref. [155], the same agreement is seen for the first
two modes, the third mode shows a small deviation with CUF and ABQ models. Different factors
could result in such deviation, and one possibility could be due to the fact that, when dealing with
higher modes, the effects of employing different beam structural theories become more visible (as
highlighted in Chapter 3). In fact, many structural models could miss some of the cross-sectional
deformations that results in the stiffer structure and higher approximation of natural frequency. The
relevant explanation has been also added to the revised version.

shell and the literature. In these graphs, for the third mode of Ref. [155], which
employs higher-order beam theories, some discrepancies with the CUF and ABQ
shell results can be seen. This could be explained by the fact that the difference
between different structural theories becomes more important in higher modes. In
fact, many structural models could miss some of the cross-sectional deformations
that results in the stiffer structure and higher approximation of natural frequency.
The suggested CUF 1D approach, on the other hand, is efficient in higher-order

modes and corresponds well with the ABQ shell findings.

Comment 2.9

P.98  fix the typo “thinOwalled”
Reply 2.9

The mentioned typo is corrected in the revised version.

Comment 2.10
p. 108 Further elaboration about the physical explanation of these results would be appreciated.
Reply 2.10

The author thank the Reviewer for pointing this out. A relevant explanation has been added to the
revised version:

18



Additionally, Table 4.38 illustrates the beam’s first three mode shapes. As can be
seen in the mode shapes of this figure, the localized deformation along the length
of the beam are decreased as the number of stiffeners are increased. In fact, the
presence of stiffeners imposes some limitations for the localized deformations along
the beam that leads to the increase of buckling strength and natural frequency. For
instance, as will be further discussed in the following, the second and third modes

of the case with five stiffeners show highest buckling loads and natural frequencies.

Furthermore, some explanations on the mentioned mode shapes have been provided for Fig. 4.23
and 4.24.

Fig. 4.24 compares beams with three and five stiffeners. These figures illustrate
how the number of transverse stiffeners atfects the buckling behavior and natural
frequencies of this beam structure. The third mode of the case with five stiffeners has
the highest natural frequency. It is worth mentioning that adding stiffeners alters the
mode shapes and natural frequencies of the beam structure remarkably. As a result,
a mode-by-mode comparison may not be possible for the models with different
number of stiffeners. As seen in Fig. 4.23, the third mode of the model with one
stiffener has the highest natural frequency in the unloaded condition. However, it has
a substantially lower buckling strength than the second mode of the beam without
stiffener. Also, other examples from Fig. 4.24 could be the second and third modes
of the beam with five stiffeners, with the former exhibiting the highest buckling

strength and the latter exhibiting the highest natural frequency in the unloaded state.

Comment 2.11

P.136 please clarify what 1LD2 refers to (prefix 1 is not clear).
P.143  please clarify what 2LD3 refers to (prefix 2 is not clear).

Reply 2.11

The author agree with the Reviewer. The prefix 1 before the acronym LD is excessive, and is removed
in the updated version. Some prefixes before LD are used in Fig. 6.5, which refer to the number of
elements in the thickness direction of plate structure. In fact, the aim is to assess the effects of
elements in the thickness direction of plate on the distribution of transverse shear stress. The relevant
explanation is also added to the text of updated version.

can accurately describe the quadratic shear stress distribution. Note that the prefixes
before LD in this figure refer to the number of elements in the thickness direction of
plate structure.
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Comment 2.12

P.167 fix the typo “K’arm’a’n” (Latex)

Reply 2.12

The mentioned typo is corrected in the revised version.

Comment 2.13

A final “conclusions and future work” chapter shall be added at the end of the manuscript.

Reply 2.13

The author thank the Reviewer for the useful comment. According to this comment, the Chapter 9 is
added to the end of thesis:
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Chapter 9

Conclusions and perspectives

9.1 Summary

The dissertation has been focused on the refined structural and nonlinear theories in
order to investigate the free vibration and post-buckling response of thin-walled beam
and flexible plate structures. In this regard, the CUF has been employed to obtain
nonlinear governing equations of the finite beam and plate elements. Then, various
assessments have been conducted related to the thin-walled beam and flexible plate
structures. The free vibration response of thin-walled isotropic and composite beams
has been accurately evaluated, and the Vibration Correlation Technique has been
used in order to investigate the variations of natural frequencies in thin-walled lami-
nated isotropic and composite beam structures under compression. The physically
and geometrically nonlinear analysis of thin-walled beams has been investigated
using Newton—Raphson linearization scheme with the path-following method based
on the arc-length constraint. The large-deflection and post-buckling of isotropic and
composite plates under axial, in-plane shear and combined loadings considering
different strain-displacement assumptions has been analyzed, and the corresponding
equilibrium curves and stress distributions have been presented. Furthermore, the
effects of stiffeners and displacement boundary conditions in the post-buckled lami-
nated composite plates have been studied. The results have shown that the present
method based on the CUF can be efficiently used for accurate structural analysis,
including the free vibration and post-buckling of the thin-walled beam and flexible
plate structures.
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9.2 Concluding remarks 213

9.2 Concluding remarks

In Chapters 1 and 2, the details of implementation of the CUF framework, and
the nonlinear governing equations have been provided. In Chapter 3, higher-order
vibration modes in a series of open-section thin-walled beams have been investigated
as benchmark problems. Detailed comparisons have been made between the clas-
sical beam theories, refined ones based on the CUF, shell models obtained using
commercial FE software, and data from the literature. It has been shown that the
natural frequencies and mode shapes found using the suggested efficient framework
correlate well with those obtained using shell models, which require significantly
more computational efforts. The importance of developing models capable of de-
tecting cross-sectional deformations has been demonstrated. The MAC has been
successfully used to compare the free vibration modes obtained by various structural
theories, and it has been suggested that additional refinement is required for the TE
when applied to the complicated cross-section geometries. It has been shown that

the selected structural theory has a greater influence in higher-order modes.

In Chapter 4, the vibrations and buckling of thin-walled isotropic and composite
beams under compression with different open cross-sections has been evaluated. The
effects of axial loads on the variations of the beam structure’s natural frequencies
have been assessed. The MAC analysis has revealed that the number of related modes
for classical models such as Taylor order 1 is much less than that for other Lagrange
models. Indeed, classical beam theories eliminate a large number of modes in favor
of never-existing rigid cross-section modes. As long as the initial buckling and
vibration modes are similar; the VCT may be used to estimate buckling loads based
on the decrease in the natural frequencies of the beam under progressive compressive
loads. The advantages of the CUF 1D method with efficient LE have been shown
for a more complex structural problem involving a channel-shaped composite beam
subjected to compression with different number of transverse stiffeners. It been
demonstrated that adding transverse stiffeners alters the mode shapes and natural
frequencies of the beam structure significantly.

In Chapter 5, the CUF 1D model in combination with a Newton—Raphson lin-
earization scheme based on the path-following method with arc-length constraint
has been used to solve physically and geometrically nonlinear beam problems. Nu-
merical results have been presented for square, channel-shaped, and T-shaped beam
structures with elastic and elastoplastic materials subjected to large deformations and
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rotations. It has been demonstrated that for the beams with different cross-sections,
the equilibrium curves obtained by CUF 1D elastic and elastoplastic LE models
match well with the results of available literature and 3D solid models. The stress
distributions have been investigated based on the different LE models, and the results
have been compared with 3D FE models. For the elastoplastic material, the plastic
zones have been initiated near the top and bottom surfaces of the beam near the
clamped edge, where the values of equivalent plastic strain have been increased due
to the larger load factor values. Although the DOF and the computational costs of
the problems have been reduced significantly using the current method, it can predict
the equilibrium curves and the stress distributions of the structure accurately and
precisely.

In Chapter 6, it has been shown that the CUF and layer-wise approaches may be
used to investigate the large-deflection and post-buckling of rectangular isotropic and
composite plates.The well-known von Kdrmén theory for nonlinear deformations of
plates has been evaluated with several modifications. The equilibrium curves and
stress distributions for different isotropic and composite plates have been provided
and analyzed in detail. Different factors influencing the nonlinear response of plates,
including the stacking sequence, number of layers, loading and edge conditions,
have been thoroughly studied. In comparison with the von Kdrmén theory and its
modifications, the full nonlinear model has been proved to be more reliable in order
to investigate the correct equilibrium curves and stress distributions in the very large
displacements and far post-buckling regime. It has been indicated that the buckling
strength of the composite plates with clamped edge conditions is greater than those
of the composite plates with other studied edge conditions, and the presence of a

free edge, considerably reduces the buckling strength of the plate structures.

In Chapter 7, the stiffeners and boundary conditions effects on the geometrically
nonlinear response of laminated composite plates under various strain-displacement
assumptions have been studied. It has been demonstrated that the stiffeners” material
properties have a significant impact on the nonlinear post-buckling behaviors, and
the presence of stiffeners limits the rotations at the loaded edges of the plate structure
by enforcing uniform edge displacement. Lower values of the stiffener’s material
properties have resulted in a post-buckling behavior that is similar to the response
of the plate in the absence of the stiffener. On the other hand, higher values of
material properties for the stiffener have resulted in rotational limitations in the
loaded edges. Lamination angles and stacking sequence have shown to be important
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in the composite plate structure’s buckling and post-buckling behaviors. It has
been shown that the quadratic shear stress distributions can be predicted with high
accuracy using the cubic LD3 CUF plate models. The nonlinear response of the
composite plate above the limit load and snap-through instability has been predicted
using the presented CUF plate model.

In Chapter 8, a modeling technique based on the CUF, layer-wise theory, and
full Green—Lagrange nonlinear relations has been proposed in order to model the
real shear conditions, and investigate the nonlinear response of composite plates
subjected to shear and combined loadings. It has been indicated that for both
Baron Epoxy and Carbon Epoxy composite plates with different lamination angles
and shear loading conditions, the results obtained by the presented CUF-based
method match well with the results reported in the available literature. It has been
demonstrated that the direction of applied shear plays an important role in the
geometrically nonlinear response of angle-ply composite plates. As a result, the
plates under negative shear show higher buckling strength. Biaxial compressive

loading has resulted in the decrease of buckling strength and the rigidity of structure

because of the intensification effects on the induced deflections by the shear loading.

Nonetheless, biaxial tensile loading has resulted higher load-carrying capacity of the
plate structure.

9.3 Future directions

Due to the reliable and accurate results of the CUF in solving geometrically and
physically nonlinear problems of structures, further developments of the proposed
methodology could be focused on a nonlinear local analysis and a localized buckling
with the advantage of coupling the global/local approach with optimization tools to
reduce computation time. Furthermore, the same nonlinear methodology will also be
adopted to perform dynamic analyses. Other important topics that could be further
developed could be the extension of CUF-based nonlinear finite elements for the

analysis of deployable space structures, elastomers and mechanical meta-materials.

Furthermore, Hyperelastic models could be implemented in the CUF 1D or CUF
2D frameworks in order to be used in the complex materials such as biological soft
tissues and organs. For instance, the soft materials are susceptible to the occurrence
of instability and failure that needs to be accurately predicted; therefore, using the
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CUF, the constitutive relations of soft tissues or complex structures using continuum
approaches could be investigated, and in-depth study on the material behavior of
soft matters could be presented. In addition, future extensions could be focused

on high-velocity impact problems and progressive failure of composite structures.

Also, the effects of transverse stiffeners nonlinearities on the dynamic response of
the beam and plate structures under compression deserve special attention.
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