
26 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Tensor Compression and Reconstruction in Split DNN for Real-time Object Detection at the Edge / Yu, YEN-CHIA;
Levorato, Marco; Chiasserini, Carla Fabiana. - ELETTRONICO. - (2024). (Intervento presentato al  convegno 2024 IEEE
International Mediterranean Conference on Communications and Networking (MeditCom) tenutosi a Madrid (Spain) nel
July 2024).

Original

Tensor Compression and Reconstruction in Split DNN for Real-time Object Detection at the Edge

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988278 since: 2024-05-04T10:28:22Z

IEEE



Tensor Compression and Reconstruction in Split
DNN for Real-time Object Detection at the Edge

Yenchia Yu
Politecnico di Torino

Turin, Italy

Marco Levorato
University of California, Irvine

California, USA

Carla Fabiana Chiasserini
Politecnico di Torino, Italy

Chalmers University of Technology, Sweden

Abstract—Computer vision applications for UAVs often rely
on deep neural networks (DNNs) to increase prediction accu-
racy. As such DNNs crave for computational resources that can
be hardly matched by those available at the UAVs, an emerging
solution is to split the DNN into a low-complexity head model
run at the UAV and a heavier tail run at the edge. This ap-
proach, however, comes at the cost of transmitting a large tensor
data, hence of high bandwidth consumption, on the UAV-edge
radio link. We tackle this problem by proposing the Compressed
Tensor-based DNN split (CoTeD) framework, which executes
tensor compression at the UAV and reconstruction at the edge,
while conveniently trading off tensor compression with quality
of the computer vision task output. When compared with the
no-split case, CoTeD reduces the UAV computational burden
by 50% w.r.t. performing inference at the UAV only, and the
amount of transmitted data by over one order of magnitude
w.r.t. running inference at the edge only. When compared to
compressive sensing, JPEG-100, and the whole DNN run at the
edge, CoTeD decreases the overall latency by (resp.) 95%, 75%,
and 80%.

Index Terms—Edge computing, UAVs, Bandwidth utilization

I. INTRODUCTION

Computer vision applications play a fundamental role in
unmanned aerial vehicles (UAVs), as they enable object
detection and tracking in real-time, thus providing support
for autonomous UAV navigation and monitoring of the UAV
surroundings. Object detection, in particular, emerges as one
of the fundamental, but also most challenging, computing
vision tasks [1]. Indeed, the following issues may heavily
impact the execution and the output of object detection: (1)
UAV image quality varies severely depending on the taken
scene, the weather conditions, and the sensor capability; (2)
the size and scale of the objects captured in the images may
also significantly vary; (3) the deep neural networks (DNNs)
that are required to ensure a high-quality output in spite
of the issues above are often complex; (4) ensuring timely
inference through such DNNs is difficult and costly.

An approach that effectively addresses the last two issues,
while preserving data privacy, is DNN split, which implies
partitioning the DNN into segments, deploying them on
different computing nodes, and connecting these segments
according to the original processing pipeline with an appro-
priate communication protocol [2], [3], [4]. However, the

This work has been supported by Leonardo and by the EU under the
Italian NRRP of NextGenerationEU RESTART program (PE00000001).

UPF

Edge server

MEC
Platform

 

gNB

MEC APP

UAV

Onboard Processor

Autopilot
Controller

Tensor

5G Core
Network

DNN Head

DNN Tail

Tensor Detection ResultFlow of: 

Fig. 1: Application and system scenario: UAV-edge cooperative
video object detection for UAV flight control.

implementation of DNN splitting requires careful consider-
ation of such factors as the partitioning strategy, the radio
bandwidth consumption, and the processing latency at the
different computing nodes.

In this work, we face the above challenges focusing on
the network scenario depicted in Fig. 1, where the DNN is
split into a small, low-complexity head segment executed at
the UAV and a larger, more complex tail segment running at
an edge server. Then, to overcome the issue of transferring
the large data tensor produced by the head model to the
tail model running at the edge, we propose CoTeD, a low-
complexity framework for efficient tensor compression and
transmission. The benefit of CoTeD can be summarized as
follows:

• It can be easily adapted so to different pre-trained DNNs
without any model modification;

• It can automatically and dynamically adjust the tensor
compression ratio to the available radio bandwidth, thus
trading off radio resource consumption with application
quality;

• When compared to alternative tensor compression tech-
niques like compressive sensing and JPEG, or edge-only
DNN deployment, it exhibits high efficiency and decreases
the overall latency by over 95%, 75%, and 80% (resp.).

In the rest of the paper, we discuss some relevant related
work and highlight the novelty of our study in Sec. II. We
then detail our reference scenario in Sec. III and introduce
CoTeD in Sec. IV. Further, we show some experimental
results on CoTeD operational efficiency and performance in
Sec. V. Finally, we draw our conclusions in Sec. VI.



UAV Edge server

DNN
Head

Camera

Subtract

Pruning Decomposition Recomposition

DNN
Tail

Autopilot algorithm
(DNN consumer)

Sum

CoTeD - Mobile

CoTeD Manager

CoTeD - Edge

CoTeD Manager

Sum

Detection
Result

Detection Result

Difference Reconstruct

Fig. 2: Scheme of the CoTeD framework: DNN head and tensor difference, pruning, and decomposition at the UAV; tensor recomposition
and reconstruction and DNN tail at the edge server.

II. RELATED WORK

Edge-assisted split DNN inference is a pivotal technol-
ogy that enables the deployment of complex DNNs on
computation-limited devices like UAVs. A survey of the
main split DNN applications is presented in [5], which
also highlights as major challenges the use of early exit
branches in DNN models and the need to reduce bandwidth
consumption due to tensor transfer between DNN head
and tail. For tensor compression, a popular solution is to
introduce ”bottleneck” layers at the end of the DNN head
[6], [7], which is considered to be highly effective but it
requires DNN model modification and retraining. Another
approach leverages picture/video encoding-based algorithms,
e.g., JPEG [8], to encode the DNN head output tensor
directly, which however requires a careful balance between
encoding quality and bandwidth consumption. Other solu-
tions like [9] propose to quantize and compress the features
that are output by the split DNN head, which requires
analyzing the value distribution of each activation tensor and,
thus, may lead to high processing delay.

Novelty. Unlike prior art, CoTeD provides an effective
tensor transmission solution for split DNN by dynamically
adjusting the compression ratio and without requiring any
modification to pre-trained models. In doing so, CoTeD
makes the deployment of split DNN efficient and sustainable,
from both the communication and computation point of view.

III. REFERENCE APPLICATION AND SYSTEM SCENARIO

We consider the scenario depicted in Fig. 1, including an
edge server, a 5G base station (gNB) and Core Network
(CN), and a UAV acting as 5G User Equipment (UE).
The edge platform uses the 5G-CN’s User Plane Function
(UPF) as its virtualized data plane, thereby ensuring minimal
latency and communication distance between the edge appli-
cations and the 5G UE. The UAV is operated by an onboard
autopilot application, which includes a DNN for video object
detection on the frames captured by the UAV’s camera.

Due to the computational limitations of the UAV’s onboard
processor, a split DNN architecture is deployed [10], com-
posed of head and tail segments. Having limited complexity,
the head model is executed at the UAV, while the higher-
complexity tail model is run at the edge. The rationale
behind the choice of splitting the DNN is that, on one
hand, processing video frames at the UAV contributes to

privacy preservation; on the other hand, delegating the heav-
ier application processing to the edge both suits the resource
limitations of the UAV and ensures fast processing times. It is
indeed worth noting that object detection needs to be output
within a strict deadline (namely, 10 s–100 ms) imposed by
the autopilot application.

DNN splitting, however, necessitates the transfer through
the 5G radio interface of the tensor generated by the head
model, which is natively large in size, easily reaching tens
of Mbits. Thus, the tensor transmission requires large
bandwidth and, given the application deadline, a 5G-
connection at least one order of magnitude faster than
the one available today. To address this issue, we intro-
duce CoTeD (Compressed Tensor-based DNN split), which
operates as described below.

IV. COTED: COMPRESSED TENSOR-BASED DNN SPLIT

We consider a video object detection process that is
collaboratively executed by a UAV and an edge server. As
illustrated in Fig. 2, an onboard camera captures a sequence
of video frames, denoted by [Ft,Ft+1, . . .], which serve as
input to the DNN head model hosted on the UAV. Upon
processing frame Ft, the head model generates an activation
tensor, Vt∈RI×J×K , that must be transmitted to the edge
server and processed by the DNN tail model.

To reduce bandwidth consumption in the tensor transfer
from the UAV to the edge, we introduce the Compressed
Tensor-based DNN split (CoTeD) framework. CoTeD is
composed of two main modules: CoTeD-Mobile and CoTeD-
Edge, deployed on the UAV and the edge server (resp.). Each
module encompasses a framework manager responsible for
configuring the framework settings, facilitating inter-module
communication, and interacting with the split-DNN and the
DNN consumers. Prior to transmission from the UAV to the
edge server, Vt is processed by a sequence of low-complexity
operators in CoTeD-Mobile: (i) Difference, yielding ∆t, (ii)
Pruning, generating Pt, and (iii) Decomposition, producing
Ct. The outcome of the operators’ sequence, Ct, is a list
of tensor decomposition factors, i.e., a highly compressed
representation of Vt that can be efficiently transmitted to
CoTeD-Edge.

Upon reception, CoTeD-Edge processes Ct using the
following operators: (i) Recomposition, yielding P̂t, and
(2) Reconstruction, V̂t. The output of the Reconstruction
operator is an estimated activation tensor, which is then input



to the DNN tail model running at the edge server to produce
the object detection outcome for frame Ft. The result is
relayed back to the UAV via the CoTeD framework, and
ultimately consumed by the UAV’s autopilot application.

A. Tensor difference and reconstruction
We first detail the tensor Difference and Reconstruction

operators, which are pivotal to the activation tensor compres-
sion process. Upon receiving the activation tensor, Vt, from
the DNN head, the Difference operator in CoTeD-Mobile
(1) subtracts V̂t−1 from Vt, generating the diff-tensor ∆t,
and (2) sums the pruned tensor Pt with V̂t−1, and stores
the summation result, V̂t, in the internal memory for the
subtract operation in the next time instance. Specifically,
V̂t−1 represents the reconstructed pruned activation tensor
in the previous time instance (set to zeros at the start time).

Notice that our proposed architecture makes CoTeD able
to perform the differential operation on the activation tensors
without the need to cache the original video frame streams.
Also, leveraging V̂t−1 as reference for the Difference oper-
ation reduces the pruning and decomposition loss effect on
the overall detection quality, thus increasing CoTeD’s level
of robustness. Indeed, whenever some values in the activation
tensor Vt have a small variation rate, they can significantly
affect the final detection result, using the previous activa-
tion tensor (Vt−1) as a reference would make such values
become small in the diff-tensor and eventually be pruned
by the pruning operator. Instead, in CoTeD, the small value
variations in the activation tensor accumulate over time and,
hence, they will eventually be transferred to the DNN tail
model.

In CoTeD-Edge, the Reconstruction operator sums the
reconstructed pruned tensor P̂t with V̂t−1 and generates
the reconstructed activation tensor V̂t. Specifically, V̂t−1

represents the reconstructed activation tensor in CoTeD-Edge
in the previous time instance, which is initialized to a zero
tensor. V̂t is then processed by the DNN tail model at the
edge server.

B. Pruning
According to our experimental analysis on real-world

DNNs (detailed in Sec. V), we noticed that when the
consecutive frames input to the DNN head model have high
similarity to each other, the corresponding output activation
tensors will have high similarity as well. As a result, the diff-
tensor ∆t is mainly composed of small normalized values,
which are considered to have negligible impact on the further
processing in the DNN tail model, but introduce significant
difficulties in the tensor compression and transmission. To
solve this issue, CoTeD processes ∆t with a pruning operator
[11], [12], which generates the pruned tensor Pt∈RI×J×K

by setting to zero the elements of ∆t with normalized value
smaller than a threshold µ. To do so, Pruning (i) creates a
binary mask M of values larger than µ, and (ii) calculates
the element-wise product between mask M and diff-tensor
∆t.

It is worth noting that Pruning not only increases the spar-
sity of tensor Pt, but, more importantly, it reduces the rank

of tensor Pt, which has a critical impact on the following
Decomposition procedure (Sec. IV-C) and is required to be
adjustable. In particular, let us consider Pt to be composed
of I slices, each denoted by Pi

t∈RJ×K . We observe that the
relationship between the pruning threshold µ and averaged
tensor slice rank Avg[rank(Pi

t)] is nonlinear and strongly
depends on the DNN head as well as the input video frames.
To produce a Pt with a specific slice rank, Pruning operator
implements a dynamic pruning algorithm as reported in
Algorithm 1. The algorithm takes as input a target averaged
tensor slice rank θr∈[0.4·K, 0.9·K] (the range is set so that
over-pruning or under-pruning are avoided), and it uses a
binary search method to find the proper pruning threshold
µ. In so doing, the operator generates Pt with an average
rank (computed over all Pt’s slices) that fits the target. When
the absolute error, η, of Pt’s averaged slice rank or the
search resolution drops below thresholds ϵη and ϵr (resp.),
the search algorithm stops and returns the pruned tensor Pt.

Algorithm 1 Dynamic pruning

Require: θr, ∆t return Pt

1: A← 1; B ← 0; η ← 1; µ← (A−B)/2
2: K ← FullRank(Pt)
3: while η>ϵη && (A−B)>ϵr do
4: Get pruned tensor Pt

5: ρ← Avg[rank(Pi
t)]

6: η ← |θr − ρ|/K
7: if ρ ≤ θr then
8: A← (A−B)/2
9: else

10: B ← (A−B)/2
11: end if
12: µ← (A−B)/2
13: end while

C. Tensor decomposition and reconstruction

The last operator in CoTeD-Mobile is the Decomposition,
which leverages CANDECOMP/PARAFAC (CP) decompo-
sition [13] to realize efficient tensor compression. The main
goal of CP decomposition is to factorize a higher-order tensor
as a sum of component rank-one tensors, simplifying the
complex, multi-dimensional data structure into more man-
ageable ones. For example, a third-order tensor X∈RI×J×K

can be expressed as sum of the outer product of three rank-
one tensors, ar∈RI ,br∈RJ , cr∈RK , i.e.,

X̂ =

R∑
r=1

ar ◦ br ◦ cr, (1)

where R is the decomposition rank and symbol ”◦” denotes
the vector outer product, according to which each element of
X is given by the product of the corresponding elements of
the three rank-one tensors, i.e., xijk=

∑R
r=1 airbjrckr. Im-

portantly, if R is equal to the rank of tensor X̂ , then X̂=X .
The rank-one tensors can be obtained by solving the follow-
ing problem:

min
X

∥∥∥X − X̂
∥∥∥
F
, (2)



where ∥X∥F =
√∑I

i=1

∑J
j=1

∑K
k=1 |Xijk|2. The above op-

timization can be conveniently solved using the alternating
least squares algorithm. In this work, we adopted TensorLy
library (https://tensorly.org/stable/index.html) to implement
the decomposition procedure, which can be accelerated using
[14].

As mentioned above, upon applying CP decomposition on
a tensor with R equal to the tensor rank, the tensor can
be reconstructed exactly. However, computing the rank of a
3D tensor is NP-complete and NP-hard for higher-dimension
tensors. To reduce the computation load introduced by the CP
decomposition, the CoTeD-Mobile decomposition operator
works with tensor slices, i.e., 2D tensors, whose rank can be
easily obtained through low-complexity matrix operations.
Specifically, when a pruned tensor Pt∈RI×J×K is input to
Decomposition, it is processed slice by slice (a slice being
denoted with Pi

t∈RJ×K).
Notably, even though Pt is a pruned tensor with high

sparsity, most tensor slices still have very high rank close to
K; thus, the decomposition rank needs to be properly set for
each slice separately. Further, to balance between compres-
sion ratio and tensor reconstruction quality, we introduce a
scaling factor λR∈[1/K, 1] to manipulate the decomposition
rank for the I slices of the pruned tensor R=[R1, R2, ..., RI ],
with Ri being the decomposition rank for slice Pi

t, i.e.,

Ri=

 0, if rank(P i
t )=0

max(1,
round[λR · rank(P i

t )]), else.
(3)

After the CP decomposition, we get a list of I decompo-
sition factors, denoted by Ct, with each factor given by two
pairs: (J,Ri) and (K,Ri). The compression ratio associated
with tensor Pt can then be computed as,

rc=
I · J ·K∑I

i=1(J +K) ·Ri

≈ J ·K
(J +K) · λR ·Avg[rank(P i

t )]
.

(4)

Notice that, since Pt is generated by the Pruning operator,
which prunes ∆t to reach a target averaged slice rank θr us-
ing Alg. 1, we have Avg[rank(P i

t )]≈θr. After obtaining Ct,
CoTeD Decomposition continue to perform two additional
operations: (i) generates P̂t from Ct, which will be consumed
by the Difference operator as described in Sec. IV-A, and (ii)
transmits Ct to CoTeD-Edge via CoTeD Manager.

On the CoTeD-Edge, upon receiving Ct, the Recomposi-
tion operator reconstructs the tensor slice by slice using (1)
and generates the reconstructed pruned tensor P̂t. We remark
that, since we leveraged the scaling factor λR to best tune the
decomposition rank, the compression process is no longer
lossless, i.e., P̂t ̸= Pt. However, our experimental results
(Sec. V), show that P̂t preserves the pattern of Pt’s values,
thus having a negligible impact on the object detection
quality.

D. CoTeD manager
The CoTeD manager plays a pivotal role in the orches-

tration of the overall framework. When CoTeD is initiated,

Algorithm 2 CoTeD real-time framework setting update

Require: Lt, Ttr, σ, return θr, λR

1: λR ← Lt/Lmax
2: while True do
3: θr ← Ttr·Lt

σ·λR
· J·K
J+K

4: if θr > 0.9 ·K then
5: λR ← λR + 1/K
6: else if θr < 0.4 ·K then
7: λR ← λR − 1/K
8: else
9: Break

10: end if
11: if λR < 1/K then
12: λR ← 1/K; θr ← 0.9 ·K; Break
13: else if λR > 1 then
14: λR ← 1 θr ← 0.4 ·K; Break
15: end if
16: end while

the basic configurations, including the size, σ (in bits), of
the activation tensor Vt to be transferred, and the maximum
bandwidth Lmax over the radio link (in Mbps), are stored by
the CoTeD manager for further use. Also, in CoTeD-Mobile,
the manager monitors the real-time bandwidth availability,
denoted as Lt, and adjusts the pruning and decomposition
settings in real time to fulfill the DNN application’s require-
ment.

Considering that the DNN application requires that a
video frame is processed through the sequence of CoTeD
operators (at UAV and edge) within a deadline TD

(measured in seconds), the activation tensor transmission
time on the radio link should not exceed Ttr, given by:
Ttr=TD−THead−TTail−TCoTeD, where THead, TTail, and TCoTeD
represent (resp.) the processing time in the DNN head and
tail models and through the whole sequence of CoTeD
operators – quite relatively stable values that can be measured
in advance. To meet the transmission deadline Ttr, CoTeD-
Manager has to properly configure the framework in order to
reach a specific compression ratio on the activation tensor,
which depends on the original size of the tensor, σ, and
the real-time available bandwidth Lt. Thus, the CoTeD-
Mobile manager computes the target tensor compression
ratio as r′c = σ

Ttr·Lt
. By using this expression in the ap-

proximated one provided above for rc and considering that
Avg[rank(P i

t )]≈θr, we get:

θr · λR ≈
Ttr · Lt

σ
· J ·K
J +K

, (5)

where we recall that θr and λR are, respectively, the op-
eration settings in Pruning and Decomposition, which are
controlled by CoTeD-Mobile manager based on Alg. 2. To
set λR, the algorithm first initiates λR to the relative network
quality, i.e., Lt/Lmax, and then iteratively adjusts its value
within range [1/K, 1] to find a value for θr (calculated using
(5)) that is within in its functional range [0.4·K, 0.9·K]. If
no values that meet their respective range can be found for



both parameters, the algorithm sets them to to their extreme
values (as detailed in Alg. 2), resulting in a best-effort tensor
compression.

V. EXPERIMENTAL RESULTS

Testbed setup. We use a server with AMD EPYC 7601
CPU and NVIDIA Quadro GV100 GPU acting as the edge
server and a mini-PC featuring AMD Ryzen 7 5700G CPU
(no GPU) as the companion computer on the UAV. The server
is connected with the mini-PC via a 100-Mbps Ethernet
interface integrated with tc, a tool used to configure the
Linux Kernel traffic scheduler, which can simulate the radio
channel.

We selected a popular pre-trained real-time video object
detection DNNs - YOLOv3-tiny [15] to test our CoTeD
framework. It is designed as a smaller and more compu-
tationally efficient version of YOLOv3, allowing it to be
deployed on resource-critical devices like UAVs. The pre-
trained model is composed of 24 layers with 8.9M param-
eters in float32 format. We then split the model at the
8-th layer, which outputs the activation tensor Vt of size
[128×26×26].

Since there is no ready-to-use dataset providing object
bounding box labels for a sufficient length of continuous
video frames, we create the test dataset by labeling the
objects in the video frames using the extra-large YOLOv8
model from Ultralytics(https://docs.ultralytics.com/models/
yolov8/), which is considered to have the cutting-edge accu-
racy performance. For simplicity, we selected a video with a
single object in the frame (a car driving through mountains)
and a duration of about 30 s, producing about 30 fps.

Framework operational analysis. We now present the
analysis on the output tensor of YOLOv3’s head model and
the effect of CoTeD operations. Since the foundation of
the CoTeD framework is the similarity between continuous
video frames, we first characterize the similarity between
consecutive video frames/activation tensors (Vt) using the
cosine similarity metric Vt·Vt−1

∥Vt∥∥Vt−1∥ (Fig. 3(left)). One can
observe that, when consecutive video frames Ft have a
high similarity, the corresponding activation tensors (Vt)
generated by the head model exhibit a high similarity as
well. In this case, the CoTeD-Difference operator effectively
removes the common values in the tensors and retains only
the changes in ∆t. Then minor changes that still appear in
the diff-tensor will be removed by pruning.

To assess the pruning effect on the diff-tensor and on the
overall object detection quality, we perform an experiment
by pruning the diff-tensor to generate Pt, reassembling the
pruned version activation tensor Ṽt=Ṽt−1+Pt, and feeding
Ṽt to the DNN tail to get the object detection output.
Fig. 3(center) shows the obtained sparsity and the averaged
tensor rank Avg[rank(P i

t )] of Pt, and the corresponding
object detection sensitivity and accuracy as functions of the
pruning threshold µ. Note that, for µ=0, the pruning operator
is deactivated, thus the corresponding object detection sen-
sitivity and accuracy reflect the original performance of the
YOLOv3-tiny model, and the diff-tensor ∆t has full rank

(i.e., 26). As µ increases, the tensor sparsity significantly
grows, till µ=0.18 (the upper limit in this test). At that
point, the detection sensitivity of the split DNN signifi-
cantly decreases, i.e., CoTeD is operating in over-pruning.
Importantly, the detection accuracy of the split DNN remains
constant for any value of µ, which shows that the Pruning
operation in CoTeD only affects the detection sensitivity of
the DNN.

After the Pruning operation, the pruned tensor is com-
pressed for transmission by the Decomposition operator
(which is lossy) and decompressed by the Recomposition
operator. To investigate the effect of decomposition, we first
fix the pruning threshold to 0.1, resulting in the pruned
tensor having 80% sparsity and an averaged tensor rank of
22. After Decomposition and Recomposition, we input the
reconstructed activation tensor V̂t=V̂t−1+P̂t to the DNN
tail. Fig. 3(right) depicts the Mean Square Error (MSE) of
P̂t and the compression ratio rc of Decomposition operator,
along with the object detection sensitivity and accuracy when
V̂t is input to the DNN tail, as functions of the decomposition
rank scaling factor λR. As λR increases, the MSE of P̂t w.r.t.
λR decreases, but clearly the tensor compression ratio rc de-
creases as well. Importantly, the effect of the reconstruction
errors on the object detection sensitivity and accuracy of the
DNN is negligible, demonstrating that CoTeD can highly
compress the activation tensor for transmission over the
radio channel with minimum impact on the overall detection
quality.

Performance tests. Next, we look at the performance of
CoTeD by first investigating the behavior of CoTeD Manager.
We deploy YOLOv3-tiny model (split at the 8-th layer) on
our testbed and set the transmission deadline of the activation
tensor to TD=30ms. We also set the maximum bandwidth to
Lmax=50Mbps and we let the available bandwidth Lt vary
between 0.1 Mpbs and 50 Mbps.

Fig. 4(left) shows the target and actual values of the
compression ratio, r′c and rc, and the corresponding tensor
transmission time Ttr as functions of the real-time available
bandwidth Lt. For Lt≤8Mbps, r′c is larger than the native
compression limit of the tensor (i.e., the limit of θr and λR

in Sec. IV-D). Thus, CoTeD manager configures the corre-
sponding operators so as to apply a best-effort compression
and the system may be unable to honor the deadline TD.
On the contrary, for Lt>8Mbps, the transmission deadline
is always met; hence, CoTeD Manager reduces the target
compression ratio so that, on the edge side, a higher quality
of the reconstructed activation tensor V̂t can be achieved.

Next, we measure the per-frame execution time (not
including the communication delay) of the YOLOv3-tiny
model when it is deployed: (1) completely on the UAV (on
the mini PC in our testbed), (2) split at the 8-th layer, with the
head model running at the UAV and the tail model at the edge
server, and (3) completely on the edge server. Fig. 4(center)
highlights that the split and edge deployments outperform the
one at the UAV, respectively, with 5 ms and 10 ms average
reduction in the model execution time for each video frame.

Fig. 4(right), instead, shows the overall delay (including



ICC24_WS17/Images/experiment/similairty.pdf
ICC24_WS17/Images/experiment/pruning.pdfICC24_WS17/Images/experiment/decomposition.pdf

Fig. 3: Analysis on YOLOv3’s head model output tensor and CoTeD operations: (left) Video frame/activation tensor similarity; (center)
CoTeD-Pruning effects; (right) CoTeD-Decomposition effects. Black bars denote standard deviation.

ICC24_WS17/Images/experiment/manager.pdfICC24_WS17/Images/experiment/splitDNN.pdfICC24_WS17/Images/experiment/timeOverhead.pdf

Fig. 4: (left) Activation tensor compression managed by CoTeD-Manager; (center) Averaged per-frame processing time (with standard
deviation plotted in black bars) under different deployment scenarios; (right) Overall delay introduced by different techniques.

the transmission delay from the UAV to the edge) and the
corresponding data size to be transferred for each video
frame, when the communication bandwidth on the radio link
is fixed at 50 Mbps. The plot compares the performance
achieved by the edge deployment, the CoTeD split. When
the whole DNN is deployed at the edge, the large raw video
frames have to be transferred on the radio link, which always
gives the largest transmission delay. For the split deployment,
our CoTeD framework greatly outperforms its alternatives,
in which the tensor reconstruction at the edge for CS and
the tensor transmission for JPEG-100 take the longest time.
Also, notice that the delay introduced by CS and JPEG-
100 are at seconds or sub-seconds level, i.e., much higher
than the video frame deadline requirement. To summarize,
CoTeD provides a controllable activation tensor compression
and transmission, which allows the split DNN’s head and tail
to meet the video frame deadline while effectively reducing
the amount of data transferred over the radio link.

VI. CONCLUSIONS

We dealt with the execution of DNN-based computer
vision tasks in scenarios where resource-limited UAVs can
leverage the help of edge servers. We exploited a split
computing approach to run the low-complexity head DNN
at the UAV and the computationally heavier DNN tail at the
edge, and addressed the problem of efficiently transmitting

over the radio link the tensor from the head to the tail
model. Our solution, called CoTeD, consists of a sequence
of computational-light and dynamically configurable differ-
ential, pruning, and decomposition operators at the UAV, and
a similar chain of operations for tensor reconstruction at
the edge. The advantages of CoTeD in terms of processing
latency and bandwidth consumption are very evident, with
a reduction in latency by over 95%, 75%, and 80% when
compared to (resp.) compressive sensing, JPEG-100, and all-
at-the-edge deployment.

REFERENCES

[1] X. Wu, W. Li, D. Hong, R. Tao, and Q. Du, “Deep learning for un-
manned aerial vehicle-based object detection and tracking: A survey,”
IEEE Geosc. and Rem. Sens. Mag., vol. 10, no. 1, pp. 91–124, 2022.

[2] Y. Kang and et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” ACM SIGARCH Comp. Arch. News, 2017.

[3] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and
early exiting for deep learning applications: Survey and research
challenges,” ACM Computing Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[4] F. Malandrino, C. F. Chiasserini, and G. di Giacomo, “Efficient
distributed DNNs in the mobile-edge-cloud continuum,” IEEE/ACM
ToN, vol. 31, no. 4, 2023.

[5] Y. Matsubara, M. Levorato, and S. Banerjee, “Split computing for
complex object detectors,” arXiv:1905.09712, 2019.

[6] Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh,
“Head network distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems,” IEEE Access, 2020.

[7] P. Datta, N. Ahuja, V. S. Somayazulu, and O. Tickoo, “A low-
complexity approach to rate-distortion optimized variable bit-rate
compression for split dnn computing,” in IEEE ICPR, 2022.



[8] J. Emmons and et al., “Cracking open the DNN black-box: Video
analytics with DNNs across the camera-cloud boundary,” in ACM
HotEdgeVideo, 2019.

[9] R. A. Cohen, H. Choi, and I. V. Bajić, “Lightweight compression of
intermediate neural network features for collaborative intelligence,”
IEEE Open J. of Circ. and Syst., vol. 2, pp. 350–362, 2021.

[10] P. Zhang, H. Tian, H. Luo, X. Li, and G. Nie, “A hybrid fast inference
approach with distributed neural networks for edge computing enabled
UAV swarm,” Physical Comm., vol. 60, 2023.

[11] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Adv. in Neur. Inf. Proc. Syst., 2016.

[12] F. Malandrino, G. di Giacomo, A. Karamzade, M. Levorato, and C. F.
Chiasserini, “Tuning DNN model compression to resource and data
availability in cooperative training,” IEEE/ACM ToN, 2023.

[13] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, 2009.

[14] X.-Y. Liu and et al., “High-performance tensor learning primitives
using gpu tensor cores,” IEEE Trans. on Comp., vol. 72, no. 6, 2023.

[15] S. Ding and et al., “A novel YOLOv3-tiny network for unmanned
airship obstacle detection,” in IEEE DDCLS, 2019.


