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Abstract—In this paper, we propose a technique based on
integral equations, the periodic Green’s function, and the method
of moments discretization to analyze the dispersion diagram
of non-canonical glide-symmetry unit cells. The technique is
combined with a root finder approach to automatically identify
the values of the wavevector that make the unit cell resonant.
The proposed technique is tested on a glide fully metallic
implementation of a Luneburg lens.

Index Terms—Integral equation, periodic Green’s function,
periodic structures, glide symmetry

I. INTRODUCTION

Higher-symmetric metasurfaces are of great interest due
to their performance beyond the state-of-the-art in terms of
bandwidth, beam-scanning, and losses. An accurate charac-
terization of these structures permits a proper implementation
of different technologies such as planar printed-circuit-board
(PCB), 3-D printable materials for artificial lenses, slotted
substrate-integrated waveguide (SIW), filters and resonators,
open and closed gap waveguides. These structures are obtained
from periodic unit cells, invariant under higher symmetries
(glide or twist). Glide symmetry, for instance, is invariant
under translation and mirroring.

The analysis of higher-symmetric structures needs accurate
and fast methods to predict their behavior and improve the
control in the design stage. A common technique is the mode
matching [1], where the unit cell is decomposed in canonical
sub-domains that are analytically solved, While this approach
can speed up the computation time, it is limited to the study
of canonical-like structures.

Some numerical techniques have been proposed to analyze
general (non-canonical shape) unit cells. The finite-difference
time-domain (FDTD) [2] and the finite integration technique
(FIT) [3] have the advantage of easy implementation from
differential equations. However, they require a volumetric dis-
cretization of the geometry and space, and artificial boundary
conditions are applied where the domain is truncated. A three-
dimensional unit cell with fine sub-wavelength details would
require many unknowns, leading to a high computational cost.

Surface integral equation (SIEs) formulations have the
advantage of being defined over material boundaries only
in both perfect electric conductors and penetrable bodies.

Fig. 1. The structure periodicity is included in the Green’s function; to
enforce the current continuity, RWG basis functions are added at the unit
cell boundaries keeping the mesh conformal.

Discretizing surfaces instead of volumes strongly reduces the
number of unknowns needed to describe the problem. SIEs
are extensively used in radio frequency (RF) and microwave
range through the method of moments (MoM) discretization,
demonstrating a high accuracy and versatility.

In [4], we presented preliminary tests on a technique based
on MoM-SIEs together with the periodic Green’s function to
properly characterize higher-symmetry structures not suitable
for the mode-matching method due to their non-canonical
shape. Here, we combine the MoM-SIE techinque to an
automatic root finder algorithm to get a more accurate and
fast information on the resonant behavior of the considered
glide periodic cell.

II. MOM-SIES TO ANALYZE UNIT CELLS

The proposed technique starts from the unit cell geometry
and arrives to a triangular mesh that discretizes the problem,
as detailed in [4]. On the triangular mesh, Rao-Wilton-Glisson
(RWG) are defined to describe the unknown surface current
density [5]. To assure the continuity of the current on the
boundary of the cell when the periodicity is added, we force
mesh conformity along the unit cell opposite sides, adding
extra triangles and RWG basis functions to the analyzed unit
cell, as shown in Fig. 1.

The above mentioned discretization of the surface current
using RWG, combined with the MoM [6], leads to the matrix
system [Z][I] = [V ], where [I] is the N -size vector collecting



the unknown coefficients that describe the surface current, [Z]
is the system N ×N matrix, and [V ] is the N -size right hand
side vector.

In the case of periodic structures, the periodic Green’s
function (FSPGF) , defined as in [7]

G(r, r′,kt00) =

∞∑
m=−∞

∞∑
n=−∞

Gm,n (1)

has to be used. In (1) the spatial terms Gm,n are equal to

Gm,n = e−jkt00·ρmn
e−jkRmn

4πRmn
(2)

where kt00 = kx0x̂+ ky0ŷ is the transverse vector wavenum-
ber defining the phasing between cells for the 2-D array in
terms of the propagation angles of the first Floquet mode;
ρmn = ms1 + ns2, being s1 and s2 the lattice vectors, and
Rmn =

√
(z − z′)2 + |ρ− ρ′ − ρmn|2, with ρ = xx̂ + yŷ

and ρ′ = x′x̂+ y′ŷ.
Among the fastest methods of calculating the periodic

Green’s function (1) is the the Ewald method. It expresses
G(r, r′,kt00) as the sum of a “modified spectral” and a
“modified spatial” series [8] as

G(r, r′,kt00) =

∞∑
m=−∞

∞∑
n=−∞

GE
m,n +

∞∑
p=−∞

∞∑
q=−∞

G̃E
p,q (3)

Both series have a very rapid convergence rate. The splitting
parameter E (the weight of the two sums) can be tuned
to minimize the computation time of the periodic Green’s
function, balancing the asymptotic rate of convergence of both
series, and minimizing the total number of terms needed. The
“optimum” value of the Ewald splitting parameter is equal to√
π/A, where A is the area of the unit cell [9].
The system matrix [Z] depends on the wavevector kt00. To

generate the unit cell dispersion diagram, we need to find,
for each frequency, the value of kt00 that makes the matrix
[Z(kt00)] singular. A singular matrix means the presence of a
current solution in the structure with no excitation, i.e. a mode
of the structure. So, for each frequency we variate kt00 in the
region of interest until the determinant of the matrix [Z(kt00)]
is zero.

III. ROOT FINDER IMPLEMENTATION

To explain the application of the root finder algorithm, we
consider the glide structure described in [10] and shown in
Fig. 1. The considered frequency is 5 GHz, and we assume a
propagation along kt00 = kxx̂ only.

The [Z(kx)] matrix is obtained numerically after the dis-
cretization of the continuous problem as described in Sect. II.
It leads to a matrix with a determinant that is not exactly zero
but a small number close to zero. This feature, together with
the difficulties of calculating the determinant of a singular ma-
trix leads to the use of alternative ways to check the singularity
of the matrix, as the logarithm of the determinant (det-log),
the reciprocal of the condition number of the matrix (Rcond),
or the ratio of first and last singular values in the singular

value decomposition (SVD). These different approaches are
compared in Figs. 2 and 3, where, as expected, all of them
depict a similar trend and minimum.

Fig. 2. System matrix singularity behaviour at 5 GHz for the unit cell defined
in [10]. Comparison between det-log and reciprocal of the condition number
versus the equivalent refractive index n.

Fig. 3. System matrix singularity behaviour at 5 GHz for the unit cell defined
in [10]; comparison between det-log and singular values ratio versus the
equivalent refractive index n.

A uniform sampling in the equivalent refractive index n =
kx/k0 could give an under-representation of what is happening
close to the minimum region, possibly completly missing the
minimum value completely. Moreover, although the technique
requires only the generation of the unit cell [Z(kx)] matrix
for each sampling point in n, it could be a heavy task if
the sampling step is small (as it seems to be necessary from
the stepped behavior around the minimum region). To deal
with this issue, we propose to apply an automatic root finder
technique applied in [11] to find the leaky-wave poles for
grounded in-homogeneous dielectric slabs. The root finder
algorithm starts from three initial guess points, and then look
iteratively for the minimum point of the det-log (or rcond, svd)
values. Hence we can run a first uniform coarse sampling in
the region of interest and use then the three lowest values as
initial guesses of the root-finding algorithm. Figure 4 shows
the det-log behaviour versus n with a uniform sampling and



a subsequent application of the root-finding algorithm. The
points selected by the root-finding are highlighted in Fig. 4 by
dots with a color that becomes darker iteration by iteration.
The darkest dot corresponds to the det-log minumum and
identifies the equivalent refractive index after 13 iterations.

Fig. 4. Det-log of the system matrix at 5 GHz for the unit cell defined in
[10]. Continuous line for uniform sampling, scattered points for root-finding
approach (darker the point, higher the iteration).

IV. CONCLUSION AND PERSPECTIVES

In this paper, we presented an alternative scheme to generate
the dispersion diagram of higher-symmetry periodic struc-
tures. MoM-SIEs and periodic Green’s function to analyze
and design glide structures with non-canonical unit cells
could substitute techniques based on mode-matching, which
require decomposing each cell in canonical pieces, widening
the application spectrum to non-canonical geometries. The
proposed method is complemented by a root-finding algorithm
that automatically finds the resonant situation, starting from
the unit cell MoM matrix. The tests here presented were
performed on a fully metallic implementation of a Luneburg
lens.

The following research activities will involve and the ef-
ficient interpolation of Ewald-accelerated Periodic Green’s
function [8], and the parallelization and acceleration of the
MoM matrix filling [12]. Furthermore, we expect to deal with
unit cells containing finite dielectrics.
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