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A B S T R A C T

Single-Image Super-Resolution can support robotic tasks in environments where a reliable visual stream is
required to monitor the mission, handle teleoperation or study relevant visual details. In this work, we propose
an efficient Generative Adversarial Network model for real-time Super-Resolution, called EdgeSRGAN1. We
adopt a tailored architecture of the original SRGAN and model quantization to boost the execution on CPU and
Edge TPU devices, achieving up to 200 fps inference. We further optimize our model by distilling its knowledge
to a smaller version of the network and obtain remarkable improvements compared to the standard training
approach. Our experiments show that our fast and lightweight model preserves considerably satisfying image
quality compared to heavier state-of-the-art models. Finally, we conduct experiments on image transmission
with bandwidth degradation to highlight the advantages of the proposed system for mobile robotic applications.
. Introduction

In the last decade, Deep Learning (DL) techniques have pervaded
obotic systems and applications, drastically boosting automation in
oth perception (de Queiroz Mendes et al., 2021; Zhu et al., 2021), nav-
gation and control (Roy and Chowdhury, 2021; Xiao et al., 2022) tasks.
he development of Machine Learning driven algorithms is paving
he way for advanced levels of autonomy for mobile robots, widely
ncreasing the reliability of both unmanned aerial vehicles (UAV) and
nmanned ground vehicles (UGV) (de Queiroz Mendes et al., 2021).
onetheless, the adoption of mobile robots for mapping and explo-

ation (Lluvia et al., 2021), search and rescue (Drew, 2021) or in-
pection (Yuan et al., 2022; Yin, 2021) missions in harsh unseen
nvironments can provide substantial advantages and reduce the risks
or human operators. In this context, the successful transmission of
mages acquired by the robot to the ground station often assumes a
ignificant relevance to the task at hand, allowing the human oper-
tors to get real-time information, monitor the state of the mission,
ake critical planning decisions and analyze the scenario. Moreover,
nknown outdoor environments may present unexpected extreme char-
cteristics which still hinder the release of unmanned mobile robots in
he complete absence of human supervision. Although novel DL-based
utonomous navigation algorithms are currently under investigation in
isparate outdoor contexts such as tunnel exploration (Rouček et al.,

∗ Correspondence to: PIC4SeR, Corso Ferrucci 112, Torino, 10141, Italy.
E-mail addresses: simone.angarano@polito.it (S. Angarano), francesco.salvetti@polito.it (F. Salvetti), mauro.martini@polito.it (M. Martini),

arcello.chiaberge@polito.it (M. Chiaberge).
1 Code available at https://github.com/PIC4SeR/EdgeSRGAN.

2019; Tardioli et al., 2019; Elmokadem and Savkin, 2022), row-crops
navigation (Martini et al., 2022; Aghi et al., 2021) and underwater (Li
et al., 2021; Almanza-Medina et al., 2021), complete or partial remote
teleoperation remains the most reliable control strategy in uncertain
scenarios. Indeed, irregular terrain, lighting conditions, and the loss of
localization signal can lead navigation algorithms to fail. As a direct
consequence of navigation errors, the robotic platform can get stuck in
critical states where human intervention is required or preferred.

However, visual data transmission for robot teleoperation, monitor-
ing, or online data processing requires a stable continuous stream of
images, which may be drastically affected by poor bandwidth condi-
tions due to the long distance of the robot or by constitutive factors of
the specific environment. Besides this, UAVs and high-speed platforms
require the pilot to receive the image stream at a high framerate to
follow the vehicle’s motion in non-line-of-sight situations. A straightfor-
ward but effective solution to mitigate poor bandwidth conditions and
meet high-frequency transmission requirements is reducing the trans-
mitted image’s resolution. On the other hand, heavy image compression
with massive loss of detail can compromise image usability.

To this end, we propose EdgeSRGAN, a novel deep learning model
for Single-Image Super-Resolution (SISR) at the edge to handle the
problem of efficient image transmission. Our intuition relies on a
lightweight neural network allowing us to send low-resolution images
at a high transmission rate with scarce bandwidth and then reconstruct
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Fig. 1. LPIPS (Zhang et al., 2018a) results (lower is better) on Set5 (Bevilacqua et al., 2012) vs. framerate (80 × 60 input) of different visual-oriented SISR methods for ×4
upsampling. Real-time (RT) and over-real-time (ORT) framerates are marked as references. Our models, marked with ⋆, reach real-time performance with a competitive perceptual
similarity index on the CPU. Edge TPU models can further increase inference speed far beyond real-time, still outperforming the bicubic baseline.
the high-resolution image on the pilot’s mobile device. Moreover, the
successful spread of edge-AI in different engineering applications (Chen
and Ran, 2019; Angarano et al., 2021; Liu et al., 2021) has shown
encouraging results in moving the execution of DL models on ultra-low
power embedded devices. Hence, we propose an edge-AI computation-
ally efficient Super Resolution neural network to provide fast inference
on CPUs and Edge TPU devices. To this aim, we adopt several optimiza-
tion steps to boost the performance of our model while minimizing the
quality drop. We refine the architecture of the original SRGAN (Ledig
et al., 2017) to speed up inference and perform model quantization.
Nonetheless, we experiment with a teacher–student knowledge distilla-
tion technique for SISR to further enhance the reconstructed image of
our tiny model. We take inspiration from the work of He et al. (2020)
and obtain a remarkable improvement for all the considered metrics.

We perform experiments to validate the proposed methodology
under multiple perspectives: numerical and qualitative analysis of our
model reconstructed images and inference efficiency on both CPU and
Edge TPU devices. As an example, as shown in Fig. 1, EdgeSRGAN
achieves real-time performance with a competitive perceptual similar-
ity index compared with other visual-oriented SISR methods. Moreover,
we test the performance of our system for robotic applications. In
particular, we focus on image transmission for teleoperation in case of
bandwidth degradation, also performing tests with the popular robotic
middleware ROS2.

The rest of the paper is organized as follows. In Section 2, we
introduce the research landscape of Super-Resolution (SR), starting
from the general background and then deepening the discussion to-
wards robotic applications of SR and efficient SR methods presented in
previous works. In Section 3, we describe the Super-Resolution problem
and our methodological steps to obtain an Edge AI implementation
for real-time performances. In Section 4, we propose a wide range
of experiments to validate the proposed methodology, analyzing the
results obtained for inference speed and output image quality and
characterizing the advantages of our approach for robotic applications
in limited-bandwidth conditions. Finally, in Section 5, we summarize
the overall study with conclusive remarks and suggest some potential
future work directions.

2. Related works

2.1. Single-image super-resolution

Single-Image Super-Resolution, also referred to as super-sampling

or image restoration, aims at reconstructing a high-resolution (HR)

2

image starting from a single low-resolution (LR) input image, try-
ing to preserve details and the information conceived by the image.
Therefore SISR, together with image denoising, is an ill-posed underde-
termined inverse problem since a multiplicity of possible solutions exist
given an input low-resolution image. Recently, learning-based methods
have rapidly reached state-of-the-art performance and are universally
recognized as the most popular approach for Super-Resolution. Such
approaches rely on learning common patterns from multiple LR-HR
pairs in a supervised fashion. SRCNN (Dong et al., 2015) was the first
example of a CNN applied to single-image super-resolution in literature.
It has been followed by multiple methods applying standard deep learn-
ing methodologies to SISR, such as residual learning (Kim et al., 2016;
Lim et al., 2017), dense connections (Zhang et al., 2018c), residual
feature distillation (Liu et al., 2020), attention (Zhang et al., 2018b;
Dai et al., 2019; Niu et al., 2020), self-attention, and transformers (Cao
et al., 2021; Chen et al., 2021; Liang et al., 2021). All these works focus
on content-based SR, in which the objective is to reconstruct an image
with high pixel fidelity, and the training is based on a content loss, such
as mean square error or mean absolute error.

In parallel, other works proposed Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) for SISR to aim at reconstructing
visually pleasing images. In this case, the focus is not on pixel values
but perceptual indexes that try to reflect how humans perceive image
quality. This is usually implemented using perceptual losses and ad-
versarial training and is referred to as visual-based SR. SRGAN (Ledig
et al., 2017) first proposed adversarial training and was later followed
by other works (Lim et al., 2017; Fu et al., 2020; Wang et al., 2021a).
With robotic image transmission as a target application in mind, in this
work, we particularly focus on visual-based SR, aiming to reconstruct
visually pleasing images to be used by human operators for real-time
teleoperation and monitoring.

2.2. Efficient methods for single-image super-resolution

In recent years, efficient deep neural networks for SR have been
proposed to reduce the number of parameters while keeping high-
quality performances (Li et al., 2022). However, most of the proposed
architectural solutions are designed for content-based training, which
aims to minimize the difference between the high-resolution image and
the network output. Among them, Sajjadi et al. (2017) proposed a
thin, simple model which handles SR as a bilinear upsampling residual
compensation. Despite the high-quality images obtained, this approach
has high inference latency due to the double prediction required.
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Diversely, Michelini et al. (2022) entirely based their study to target
Edge-AI chips, proposing an ultra-tiny model composed of one layer
only.

As already stated, we prefer GAN-based SR to enhance the visual
appearance of produced images for robotic applications. However, suc-
cessful studies of efficient GANs are very rare in the literature. Recently,
knowledge distillation (KD) emerged as a promising option to compress
deep models and GANs too (Aguinaldo et al., 2019; Gou et al., 2021).
KD was originally born in 2015 with the visionary work of Hinton
et al. (2015), where a teacher–student framework was introduced as
a knowledge transfer mechanism. More recent works evolved such
concept in disparate variants: FitNet introduced the idea of involving
also intermediate representations in the distillation process (Romero
et al., 2014), AT proposes an attention-based distillation (Zagoruyko
and Komodakis, 2016), and AB interestingly focuses on the distilled
transfer of activation boundaries formed by hidden neurons (Heo et al.,
2019b), further advanced in Heo et al. (2019a). Specifically considering
KD application in SR, FAKD uses intermediate features affinity distilla-
tion for PSNR-focused SR (He et al., 2020). We found this approach
a good starting point also for GAN-based SR. Diversely, Zhang et al.
(2021) investigates a progressive knowledge distillation method for
data-free training. Besides KD, Fu et al. (2020) recently proposed an
Auto-ML framework to search for optimal neural model structure, and
filter pruning has been used as another optimization technique (Li et al.,
2017).

Differently from previous works, our model optimization for edge-
SR is composed of three main steps: first, an edge-oriented architectural
definition is performed; then, we leverage teacher–student knowledge
distillation to further reduce the dimension of our model; lastly, we per-
form TFLite conversion and quantization to shift the network execution
to CPUs and Edge TPUs with maximum inference speed.

2.3. Super-resolution for robotic applications

SISR has been recently proposed in a few robotic applications where
a high level of detail is beneficial to support the specific task. Research
on the indoor teleoperation of mobile robots mainly focuses on improv-
ing user experience, combining Deep Learning methods with Virtual
Reality (Zein et al., 2021; Hedayati et al., 2018; Stotko et al., 2019), but
neglecting the potential bottleneck caused by connectivity degradation
in harsh conditions. Differently, a great effort has been devoted to
SISR for underwater robotics perception (Ooyama et al., 2021; Islam
et al., 2020), effectively tackling the problem of high-quality image
acquisition under the sea for accurate object and species detection.
Besides autonomous navigation applications, interesting contexts are
robotic surgery (Wang et al., 2021b; Brodie and Vasdev, 2018) and
medical robots research (Martinez et al., 2021), where SISR can provide
substantial advantages improving the visibility and increasing the level
of detail required for delicate high-precision movements of the surgeon.
Similarly, a detailed image acquired by a robot is needed for monitoring
and inspection purposes. For example, Bae et al. (2021) uses a Super-
Resolution model to enhance the online crack detection and in-situ
analysis of bridge weaknesses. Nonetheless, no relevant works proposed
so far have identified Super-Resolution as an efficient solution for
image transmission to support robot teleoperation and exploration of
unknown environments in bandwidth-degraded conditions.

3. Methodology

In this section, we introduce all the components of the proposed
methodology. As explained in Section 1, we choose to use an ad-
versarial approach to obtain an optimal balance between pixel-wise
fidelity and perceptual quality. For this reason, we take inspiration from
three of the most popular GAN-based solutions for SISR: SRGAN (Ledig
et al., 2017), ESRGAN (Wang et al., 2018b), and AGD (Fu et al.,
2020). The proposed method aims to obtain a real-time SISR model
3

(EdgeSRGAN) with minimal performance drop compared to state-of-
the-art solutions. For this reason, we mix successful literature practices
with computationally-efficient elements to obtain a lightweight archi-
tecture. Then, we design the network training procedure to leverage
a combination of pixel-wise loss, perceptual loss, and adversarial loss.
To further optimize the inference time, we apply knowledge distillation
to transfer the performance of EdgeSRGAN to an even smaller model
(EdgeSRGAN-tiny). Furthermore, we study the effect of quantization
on the network’s latency and accuracy. Finally, we propose an addi-
tional inference-time network interpolation feature to allow real-time
balancing between pixel-wise precision and photo-realistic textures.

3.1. Network architecture

As previously done by Wang et al. (2018b), we take the original
design of SRGAN and propose some changes to both the architecture
and training procedure. However, in our case, the modifications seek
efficiency as well as performance. To obtain a lighter architecture, we
reduce the depth of the model by using only 𝑁 = 8 Residual Blocks
instead of the original 16. In particular, we use simple residuals instead
of the Residual-in-Residual Dense Blocks (RRDB) proposed by Wang
et al. (2018b) as they are less computationally demanding. For the same
reason, we change PReLU activation functions into basic ReLU. We also
remove Batch Normalization to allow the model for better convergence
without generating artifacts (Wang et al., 2018b). Finally, we use
Transpose Convolution for the upsampling head instead of Sub-pixel
Convolution (Shi et al., 2016). Despite its popularity and effectiveness,
Sub-pixel Convolution is computationally demanding due to the Pixel
Shuffling operation, which rearranges feature channels spatially. We
choose instead to trade some performance for efficiency and apply
Transpose Convolutions taking precautions to avoid problems such as
checkerboard artifacts (Odena et al., 2016). The complete EdgeSRGAN
architecture is described in Fig. 2. The adopted discriminator model is
the same used in Ledig et al. (2017) and Wang et al. (2018b), as it
serves only training purposes and is not needed at inference time. Its
architecture is described in Fig. 3.

3.2. Training methodology

The training procedure is divided into two sections, as it is common
practice in generative adversarial SISR. The first part consists of classic
supervised training using pixel-wise loss. In this way, we help the
generator to avoid local minima and generate visually pleasing results
in the subsequent adversarial training. We use the mean absolute error
(MAE) loss for the optimization as it has recently proven to bring better
convergence than mean squared error (MSE) (Zhao et al., 2016; Lim
et al., 2017; Zhang et al., 2018b; Wang et al., 2018b).

𝐿MSE =
𝐵
∑

𝑖=1
‖𝑦HR

𝑖 − 𝑦SR
𝑖 ‖1 (1)

where 𝑦HR is the ground-truth high resolution image, 𝑦SR is the output
of the generator, and 𝐵 is the batch size. We use the Peak Signal-to-
Noise Ratio (PSNR) metric to validate the model.

In the second phase, the resulting model is fine-tuned in an adver-
sarial fashion, optimizing a loss that takes into account adversarial loss
and perceptual loss. As presented in Ledig et al. (2017), the generator
𝐺 training loss can be formulated as

𝐿𝐺 = 𝐿𝑃
𝐺 + 𝜉𝐿𝐴

𝐺 + 𝜂𝐿MSE. (2)

𝐿𝑃
𝐺 is the perceptual VGG54 as the euclidean distance between the

feature representations of a reconstructed image SR and the reference
image HR. The features are extracted using the VGG19 network (Si-
monyan and Zisserman, 2015) pre-trained on ImageNet:

𝐿𝑃
𝐺 =

𝐵
∑

‖𝜙(𝑦HR
𝑖 ) − 𝜙(𝑦SR

𝑖 )‖2 (3)

𝑖=1
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Fig. 2. EdgeSRGAN generator architecture.
Fig. 3. EdgeSRGAN discriminator architecture. The model progressively reduces the spatial dimensions of the image by alternating blocks with strides 1 (B1) and 2 (B2). The first
lock (marked with *) does not apply batch normalization.
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here 𝜙 is the perceptual model VGG. 𝐿𝐴
𝐺 is the adversarial generator

loss, defined as

𝐿𝐴
𝐺 = − log(𝐷(𝑦SR)) (4)

where 𝐷 is the discriminator. Using this loss, the generator tries to fool
the discriminator by generating images that are indistinguishable from
the real HR ones. 𝜉 and 𝜂 are used to balance the weight of different loss
components. The weights of the discriminator 𝐷 are optimized using a
symmetrical adversarial loss, which tends to correctly discriminate HR
and SR images.

𝐿𝐷 = log(𝐷(𝑦SR)) − log(𝐷(𝑦HR)) (5)

We optimize both models simultaneously, without alternating weight
updates like in most seminal works on GANs. The overall training
methodology is summarized in Fig. 4 summarizes the overall training
methodology.

3.3. Knowledge distillation

As mentioned in Section 2, Knowledge Distillation (KD) has gained
increasing interest in deep learning for its ability to transfer knowledge
from bigger models to simpler ones efficiently. In particular, KD has
been applied in some SISR works to compress the texture reconstruc-
tion capability of cumbersome models and obtain efficient real-time
networks. However, to the best of our knowledge, KD has never been
applied to GAN SISR models. For this reason, we adapt an existing
technique developed for SISR called Feature Affinity-based Knowledge
Distillation (FAKD) (He et al., 2020) to the GAN training approach. The
FAKD methodology transfers second-order statistical info to the student
by aligning feature affinity matrices at different layers of the networks.
This constraint helps to tackle the fact that regression problems gener-
ate unbounded solution spaces. Indeed, most of the KD methods so far
 (

4

have only tackled classification tasks. Given a layer 𝑙 of the network, the
feature map 𝐹𝑙 extracted from that layer (after the activation function)
has the following shape:

𝐹𝑙 ∈ R𝐵×𝐶×𝑊 ×𝐻 (6)

here 𝐵 is the batch size, 𝐶 is the number of channels, 𝑊 and 𝐻 are
he width and the height of the tensor. We first flatten the tensor along
he last two components obtaining the three-dimensional feature map

𝑙 ∈ R𝐵×𝐶×𝑊𝐻 (7)

hich now holds all the spatial information along a single axis. We
efine the affinity matrix 𝐴𝑙 as the product

𝑙 = 𝐹𝑙
⊤ ⋅ 𝐹𝑙 (8)

here ⋅ is the matrix multiplication operator and the transposition ⊤
waps the last two dimensions of the tensor. 𝐹𝑙 is the normalized feature
ap, obtained as

̃𝑙 =
𝐹𝑙

‖𝐹𝑙‖2
(9)

Differently from He et al. (2020), the norm is calculated for the whole
tensor and not only along the channel axis. Moreover, we find better
convergence using the euclidean norm instead of its square. In this way,
the affinity matrix has a shape

𝐴𝑙 ∈ R𝐵×𝑊𝐻×𝑊𝐻 (10)

and the total distillation loss 𝐿Dist becomes

𝐿Dist =
1
𝑁𝐿

(𝑁𝐿
∑

𝑙=1
‖𝐴𝑇

𝑙 − 𝐴𝑆
𝑙 ‖1

)

+ 𝜆‖𝑦𝑇SR − 𝑦𝑆SR‖1 (11)

here 𝑁𝐿 is the number of distilled layers. Differently from He et al.
2020), we sum the loss along all the tensor dimensions and average the
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Fig. 4. EdgeSRGAN training methodology.
Fig. 5. EdgeSRGAN distillation process.
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esult obtained for different layers. These modifications experimentally
ead to better training convergence. We also add another loss compo-
ent, weighted by 𝜆, which optimizes the model to generate outputs
lose to the teacher’s ones. In our experimentation, the distillation loss
s added to the overall training loss weighted by the parameter 𝛾. The
verall distillation scheme is summarized in Fig. 5.

.4. Model interpolation

Following the procedure proposed in Wang et al. (2018b), we adopt
flexible and effective strategy to obtain a tunable trade-off between
content-oriented and GAN-trained model. This feature can be very

seful for real-time applications, as it allows the SISR network to adapt
o the user’s needs promptly. Indeed, some real scenarios may need
etter perceptual quality, for example, when the remote control of a
obot has to be performed by a human pilot. On the other hand, when
mages are used to directly feed perception, autonomous navigation,
nd mapping algorithms, higher pixel fidelity might be beneficial. To
chieve this goal, we linearly interpolate model weights layer-by-layer,
ccording to the following formula:
Int PSNR GAN

𝐺 = 𝛼𝜃𝐺 + (1 − 𝛼)𝜃𝐺 (12)

5

here 𝜃Interp
𝐺 , 𝜃PSNR

𝐺 , and 𝜃GAN
𝐺 are the weights of the interpolated

odel, the PSNR model, and the GAN fine-tuned model, respectively.
∈ [0, 1] is the interpolation weight. We report both qualitative

nd quantitative interpolation results for EdgeSRGAN in Section 4.3.1.
e avoid the alternative technique of directly interpolating network

utputs: applying this method in real time would require running two
odels simultaneously. Moreover, Wang et al. (2018b) report that this

pproach does not guarantee an optimal trade-off between noise and
lur.

.5. Model quantization

To make EdgeSRGAN achieve even lower inference latency, we
pply optimization methods to the model to reduce the computational
ffort at the cost of a loss in performance. Several techniques have been
eveloped to increase model efficiency in the past few years (Jacob
t al., 2018), from which the employed method is chosen. We reduce
he number of bits used to represent network parameters and activation
unctions with TFLite.2 This strategy strongly increases efficiency with

2 https://www.tensorflow.org/lite/.

https://www.tensorflow.org/lite/
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Table 1
Framerate comparison of different methods for ×4 and ×8 upsampling, with two different input resolutions (80 × 60 and 160 × 120). The results are provided as mean and
tandard deviation of 10 independent experiments of 100 predictions each. Current content-oriented SISR state-of-art method SwinIR (Liang et al., 2021) is reported as a reference.
eal-time and over-real-time framerates are in blue and red, respectively. The proposed solution is the only one compatible with EdgeTPU devices and allows reaching real-time
erformance in both conditions.
Method Scale Params Framerate (80 × 60) [fps] Framerate (160 × 120) [fps]

CPU EdgeTPU CPU EdgeTPU

SwinIR (Liang et al., 2021)

×4

11.9M 0.25 ± 0.01 – 0.06 ± 0.01 –
ESRGAN (Wang et al., 2018b) 16.7M 0.40 ± 0.01 – 0.10 ± 0.01 –
Real-ESRGAN (Wang et al., 2021a) 16.7M 0.44 ± 0.01 – 0.11 ± 0.01 –
SRGAN (Ledig et al., 2017) 1.5M 2.70 ± 0.08 – 0.95 ± 0.02 –
AGD (Fu et al., 2020) 0.42M 3.17 ± 0.12 – 0.88 ± 0.01 –
EdgeSRGAN 0.66M 10.26 ± 0.11 140.23 ± 1.50 2.66 ± 0.02 10.63 ± 0.03
EdgeSRGAN-tiny 0.09M 37.99 ± 1.42 203.16 ± 3.03 11.76 ± 0.20 20.57 ± 0.05

SwinIR (Liang et al., 2021)
×8

12.0M 0.23 ± 0.01 – 0.06 ± 0.01 –
EdgeSRGAN 0.71M 7.70 ± 0.31 14.26 ± 0.06 1.81 ± 0.04 –
EdgeSRGAN-tiny 0.11M 24.53 ± 1.28 41.55 ± 0.38 5.81 ± 0.29 –
some impact on performance. We quantize weights, activations, and
math operations through scale and zero-point parameters following the
methodology presented by (Jacob et al., 2018):

𝑟 = 𝑆(𝑞 −𝑍) (13)

where 𝑟 is the original floating-point value, 𝑞 is the quantized integer
value, and 𝑆 and 𝑍 are the quantization parameters (scale and zero
point). A fixed-point multiplication approach is adopted to cope with
the non-integer scale of 𝑆. This strategy drastically reduces memory
and computational demands due to the high efficiency of integer com-
putations on microcontrollers. For our experimentation, we deploy the
quantized model on a Google Coral Edge TPU USB Accelerator.3

4. Experiments

4.1. Experimental setting

In this section, we define our method’s implementation details and
the procedure we followed to train and validate the efficiency of EdgeS-
RGAN optimally. As previously done by most GAN-based SISR works,
we train the network on the high-quality DIV2K dataset (Agustsson and
Timofte, 2017) with a scaling factor of 4. The dataset contains 800
training samples and 100 validation samples. We train our model with
input images of size 24 × 24 pixels, selecting random patches from
the training set. We apply data augmentation by randomly flipping or
rotating the images by multiples of 90◦. We adopt a batch size of 16.

For the standard EdgeSRGAN implementation, we choose 𝑁 = 8,
= 64, 𝐾 = 3, and 𝐷 = 1024, obtaining a generator with around 660k

arameters and a discriminator of over 23M (due to the fully-connected
ead). The discriminator is built with 𝐹 = 64, 𝐾 = 3, 𝐷 = 512, and with
coefficient for LeakyReLU 𝛼 = 0.2. We first train EdgeSRGAN pixel-

wise for 5 × 105 steps with Adam optimizer and a constant learning rate
of 1 × 10−4. Then, the model is fine-tuned in the adversarial setting
described in Section 3 for 1 × 105 steps. Adam optimizer is used for
the generator and the discriminator with a learning rate of 1 × 10−5,
further divided by 10 after 5 × 104 steps. For the loss function, we set
𝜉 = 1 × 10−3 and 𝜂 = 0.

To obtain an even smaller model for our distillation experiments,
we build EdgeSRGAN-tiny by choosing 𝑁 = 4, 𝐹 = 32, and 𝐷 =
256. We further shrink the size of the discriminator by eliminating
the first compression stage (𝐵1) from each block (see Fig. 3). In this
onfiguration, we also remove the batch normalization layer from the
irst B2 block to be coherent with the larger version. The obtained
enerator and discriminator contain around 90k and 2.75M parameters.
he pre-training procedure is the one described for EdgeSRGAN, while
he adversarial training is performed with the additional distillation
oss (𝛾 = 1 × 10−2, 𝜆 = 1 × 10−1) of Eq. (11). EdgeSRGAN is used as

3 https://coral.ai/.
6

a teacher model, distilling its layers 2, 5, and 8 into EdgeSRGAN-tiny’s
layers 1, 2, and 4. The model is trained with a learning rate of 1 × 10−4,
which is further divided by 10 after 5 × 104 steps. For the loss function,
we set 𝜉 = 1 × 10−3 and 𝜂 = 0.

Finally, we create a third version of our model to upscale images
with a factor of 8. To do so, we change the first transpose convolution
layer of EdgeSRGAN and EdgeSRGAN-tiny to have a stride of 4 instead
of 2 and leave the rest of the architecture unchanged. The training
procedure for these models is analogous to the ones used for the x4
models, with the main difference of adding a pixel-based component
to the adversarial loss by posing 𝜂 = 1 × 102.

The optimal training hyperparameters are found by running a ran-
dom search and choosing the best-performing models on DIV2K valida-
tion. During GAN training, we use PSNR to validate the models during
content-based loss optimization and LPIPS (Zhang et al., 2018a) (with
AlexNet backbone).

We employ TensorFlow 2 and a workstation with 64 GB of RAM, an
Intel i9-12900K CPU, and an Nvidia 3090 RTX GPU to perform all the
training experiments.

4.2. Real-time performance

Since the main focus of the proposed methodology is to train
an optimized SISR model to be efficiently run at the edge in real
time, we first report an inference speed comparison between the pro-
posed method and other literature methodologies. All the results are
shown in Table 1 as the mean and standard deviation of 10 indepen-
dent experiments of 100 predictions each. We compare the proposed
methodology with other GAN-based methods (Ledig et al., 2017; Wang
et al., 2018b, 2021a; Fu et al., 2020) and with the current state-of-
the-art in content-oriented SISR SwinIR (Liang et al., 2021). Since
the original implementations of the GAN-based solutions consider ×4
upsampling only, for the ×8 comparison, we only report SwinIR. We
select two different input resolutions for the experimentation, (80 × 60)
and (160×120), in order to target (320×240) and (640×480) resolutions
for ×4 upsampling and (640 × 480) and (1280 × 960) for ×8 upsampling,
respectively. This choice is justified because (640 × 480) is a standard
resolution provided by most cameras’ native video stream. We also
report the number of parameters for all the models.

For all the considered methods, we measure the CPU timings with
the model format of the original implementation (PyTorch or Tensor-
Flow) on a MacBook Pro with an Intel i5-8257U processor. The concept
of real-time performance strongly depends on the downstream task.
For robotic monitoring and teleoperation, we consider 10 fps as the
minimum real-time framerate, considering over-real-time everything
above 30 fps, which is the standard framerate for most commercial
cameras. The proposed methodology outperforms all the other methods
in inference speed and achieves real-time performance on the CPU

in almost all the testing conditions. It is worth noting that AGD is

https://coral.ai/
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Table 2
Quantitative comparison of different methods for content-oriented ×4 upsampling. Current SISR state-of-art method SwinIR (Liang et al., 2021) and bicubic baseline are reported
as reference.

Method Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2010) BSD100 (Martin et al., 2001) Manga109 (Matsui et al., 2017) Urban100 (Huang et al., 2015)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 28.632 0.814 0.340 26.212 0.709 0.441 26.043 0.672 0.529 25.071 0.790 0.318 23.236 0.661 0.473
SwinIR (Liang et al., 2021) 32.719 0.902 0.168 28.939 0.791 0.268 27.834 0.746 0.358 31.678 0.923 0.094 27.072 0.816 0.193

SRGAN (Ledig et al., 2017) 32.013 0.893 0.191 28.534 0.781 0.294 27.534 0.735 0.396 30.292 0.906 0.111 25.959 0.782 0.244
ESRGAN (Wang et al., 2018b)a 32.730 0.901 0.181 28.997 0.792 0.275 27.838 0.745 0.371 31.644 0.920 0.097 27.028 0.815 0.201
AGD (Fu et al., 2020) 31.708 0.889 0.178 28.311 0.775 0.291 27.374 0.729 0.385 29.413 0.897 0.118 25.506 0.767 0.250

EdgeSRGAN 31.729 0.889 0.191 28.303 0.774 0.301 27.359 0.728 0.405 29.611 0.897 0.120 25.469 0.764 0.266
EdgeSRGAN-tiny 30.875 0.873 0.204 27.796 0.761 0.320 26.999 0.717 0.418 28.233 0.871 0.163 24.695 0.733 0.325

↑: higher is better, ↓: lower is better.
aTrained on DIV2K (Agustsson and Timofte, 2017) + Flickr2K (Timofte et al., 2017) + OST (Wang et al., 2018a).
Table 3
Quantitative comparison of different methods for visual-oriented ×4 upsampling. Current SISR state-of-art method SwinIR (Liang et al., 2021) and bicubic baseline are reported as
eference.
Model Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2010) BSD100 (Martin et al., 2001) Manga109 (Matsui et al., 2017) Urban100 (Huang et al., 2015)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 28.632 0.814 0.340 26.212 0.709 0.441 26.043 0.672 0.529 25.071 0.790 0.318 23.236 0.661 0.473
SwinIR (Liang et al.,
2021)

32.719 0.902 0.168 28.939 0.791 0.268 27.834 0.746 0.358 31.678 0.923 0.094 27.072 0.816 0.193

SRGAN (Ledig et al.,
2017)

29.182 0.842 0.094 26.171 0.701 0.172 25.447 0.648 0.206 27.346 0.860 0.076 24.393 0.728 0.158

ESRGAN (Wang
et al., 2018b)a

30.459 0.852 0.083 26.283 0.698 0.139 25.288 0.649 0.168 28.478 0.860 0.065 24.350 0.733 0.125

Real-ESRGAN (Wang
et al., 2021a)a

26.617 0.807 0.169 25.421 0.696 0.234 25.089 0.653 0.282 25.985 0.836 0.149 22.671 0.686 0.214

AGD (Fu et al.,
2020)

30.432 0.861 0.097 27.276 0.739 0.160 26.219 0.688 0.214 28.163 0.870 0.076 24.732 0.743 0.170

EdgeSRGAN 29.487 0.837 0.095 26.814 0.715 0.176 25.543 0.644 0.210 27.679 0.855 0.081 24.268 0.716 0.170
EdgeSRGAN-tiny 28.074 0.803 0.146 26.001 0.702 0.242 25.526 0.658 0.292 25.655 0.804 0.140 23.332 0.672 0.269
EdgeSRGAN-tiny 29.513 0.841 0.132 26.950 0.727 0.220 26.174 0.673 0.282 27.106 0.845 0.130 24.117 0.704 0.249

↑: higher is better, ↓: lower is better.
aTrained on DIV2K (Agustsson and Timofte, 2017) + Flickr2K (Timofte et al., 2017) + OST (Wang et al., 2018a).
Table 4
Quantitative performance of the proposed method for ×8 upsampling. Current SISR state-of-art method SwinIR (Liang et al., 2021), and bicubic are reported as references. ↑: higher
is better, ↓: lower is better.

Model Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2010) BSD100 (Martin et al., 2001) Manga109 (Matsui et al., 2017) Urban100 (Huang et al., 2015)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 24.526 0.659 0.533 23.279 0.568 0.628 23.727 0.546 0.713 21.550 0.646 0.535 20.804 0.515 0.686
SwinIR (Liang et al., 2021) 27.363 0.787 0.284 25.265 0.652 0.428 24.984 0.606 0.537 25.246 0.800 0.229 23.023 0.646 0.375

EdgeSRGAN Content 26.462 0.755 0.321 24.507 0.626 0.460 24.590 0.587 0.567 23.840 0.753 0.294 22.001 0.592 0.463
EdgeSRGAN-tiny 26.025 0.732 0.359 24.286 0.615 0.488 24.383 0.577 0.591 23.154 0.723 0.353 21.680 0.570 0.520

EdgeSRGAN Visual 25.307 0.680 0.228 23.585 0.558 0.348 23.547 0.514 0.386 22.719 0.680 0.257 21.102 0.522 0.374
EdgeSRGAN-tiny 25.523 0.693 0.280 23.976 0.589 0.399 24.163 0.557 0.475 22.874 0.695 0.317 21.477 0.546 0.459
specifically designed to reduce latency for GAN-based SR and has fewer
parameters than EdgeSRGAN, but it still fails at achieving real-time
without a GPU.

In addition, we report the framerate of the EdgeSRGAN int8-quant-
ized models on an EdgeTPU Coral USB Accelerator. The proposed
solution is the only one compatible with such devices and allows
reaching over-real-time performance for (80 × 60) input resolution. It
must be underlined how the ×8 models with (160×120) input resolution
cannot target the EdgeTPU device due to memory limitations.

4.3. Super-resolution results

To present quantitative results on image super-resolution, we refer
to content-oriented SR for models trained with content-based loss only
and visual-oriented SR for models trained with adversarial and percep-
tual losses. Content-based loss (mean absolute error or mean squared
error) aims to maximize PSNR and SSIM, while adversarial and percep-
tual losses aim to maximize visual quality. We test EdgeSRGAN models
on five benchmark datasets (Set5 Bevilacqua et al., 2012, Set14 Zeyde
et al., 2010, BSD100 Martin et al., 2001, Manga109 Matsui et al., 2017,
and Urban100 Huang et al., 2015) measuring PSNR, SSIM, and LPIPS.
We follow the standard procedure for SISR adopted in Liang et al.
(2021), where the metrics are computed on the luminance channel Y
of the YCbCr converted images. Also, 𝑆 pixels are cropped from each
image border, where 𝑆 is the model scale factor.

Tables 2 and 3 show the comparison with other methods for

content-oriented and visual-oriented ×4 SR, respectively. We report t

7

results of other GAN-based methodologies (Ledig et al., 2017; Wang
et al., 2018b, 2021a; Fu et al., 2020) as well as the current content-
oriented SOTA SwinIR (Liang et al., 2021) and bicubic baseline, as
reference. Unlike what is usually found in literature, we refer to the
OpenCV4 bicubic resize implementation instead of the one present in
MATLAB. For visual-oriented SR, we also report the results of the
distilled tiny model EdgeSRGAN-tiny . The proposed method reaches
competitive results in all the metrics, even with some degradation for
tiny models due to the considerable weight reduction. The distillation
method helps EdgeSRGAN-tiny training by transferring knowledge
from the standard model and decreasing the degradation due to the
reduced number of parameters. Note that ESRGAN and RealESRGAN
are trained on Flickr2K (Timofte et al., 2017), and OST (Wang et al.,
2018a) datasets in addition to DIV2K. Table 4 reports results of the
×8 models, together with SwinIR and bicubic. Also, in this case, the
proposed models reach competitive results, and knowledge distillation
helps to reduce performance degradation in the tiny model. As a
final qualitative evaluation, Fig. 6 compares the super-resolved images
obtained by EdgeSRGAN with the considered state-of-the-art solutions.
Our model shows comparable results, highlighting more texture and
details than networks trained with pixel loss (𝐿MSE) while remaining
true to the ground truth image.

4 https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_
ransformations.html#resize.

https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#resize
https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#resize
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Fig. 6. Visual comparison of bicubic image SR (×4) methods on random samples from the considered datasets. EdgeSRGAN achieves results that are comparable to state-of-the-art
solutions with ∼ 10% of the weights (see Ledig et al., 2017; Wang et al., 2018b; Chen et al., 2022; Fu et al., 2020; Liang et al., 2021).
4.3.1. Model interpolation
We report the results of network interpolation on the benchmark

datasets in Fig. 8. We consider 𝛼 values between 0 and 1 with a
step of 0.1, with 0 implying a full visual-oriented model and 1 a
full content-oriented one. All results refer to the standard EdgeSRGAN
model for ×4 upsampling. This procedure effectively shows how it is
possible to choose the desired trade-off between content-oriented and
visual-oriented SR simply by changing the interpolation weight 𝛼. An
ncrease in the weight value causes an improvement of the content-
elated metrics PSNR and SSIM and a worsening of the perceptual
ndex LPIPS. This behavior holds for all the test datasets, validating
he proposed approach. This procedure can be easily carried out in

real-time application and only requires computing the interpolated
8

weights once. Thus, it does not affect any way the inference speed. For
an additional visual evaluation, Fig. 7 reports the outputs obtained for
increasing values of 𝛼 on a random dataset sample.

4.3.2. Model quantization
To target Edge TPU devices and reach over-real-time inference

results, we follow the quantization scheme of Eq. (13) for both weights
and activations to obtain a full-integer model. Since quantized models
must have a fixed input shape, we generate a full-integer network
for each input shape of the testing samples. We use the 100 images
from the DIV2K validation set as a representative dataset to calibrate
the quantization algorithm. We refer to the int8-quantized standard
model as EdgeSRGANi8. As for the tiny model, we optimize the distilled
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Fig. 7. Visual comparison of interpolated EdgeSRGAN for different values of 𝛼. Values closer to 1 generate outputs focused on content fidelity, while small values go towards
isually pleasing results.
Fig. 8. EdgeSRGAN network interpolation results on the benchmark datasets for ×4 upsampling. Changing the network interpolation weight 𝛼, it is possible to select the desired
rade-off between content-oriented and visual-oriented SR. ↑: higher is better, ↓: lower is better.
Table 5
Quantitative performance of the full-integer quantized models for ×4 and ×8 visual-based SR. ↑: higher is better, ↓: lower is better.

Model Scale Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2010) BSD100 (Martin et al., 2001) Manga109 (Matsui et al., 2017) Urban100 (Huang et al., 2015)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

EdgeSRGANi8 ×4 27.186 0.721 0.209 24.714 0.475 0.342 23.675 0.484 0.438 25.601 0.712 0.221 22.802 0.580 0.341
EdgeSRGANi8-tiny 27.330 0.710 0.257 24.807 0.562 0.390 23.837 0.485 0.481 25.299 0.696 0.286 22.580 0.538 0.454

EdgeSRGANi8 ×8 24.433 0.602 0.312 22.846 0.477 0.440 22.609 0.422 0.492 22.227 0.603 0.342 20.525 0.433 0.499
EdgeSRGANi8-tiny 24.956 0.642 0.333 23.487 0.532 0.461 23.591 0.494 0.544 22.445 0.632 0.386 21.125 0.489 0.548
network EdgeSRGANi8-tiny . Results for the visual-oriented optimized
odels are shown in Table 5. Due to the full-integer models’ reduced

ctivation and weight, we experience a great increase in inference
peed up to over-real-time at the cost of degradation in SR performance.
ll the proposed quantized models still outperform the bicubic baseline
n the perceptual index LPIPS and therefore represent a good option
or applications in which really fast inference is needed. A comparison
f different models for visual-oriented ×4 upsampling is shown in
ig. 1. We consider LPIPS performance on the Set5 dataset compared
o framerate.

.4. Ablation study

To further verify the effectiveness of our model for real-time super-
esolution, we conduct an ablation study to analyze the effect of our
rchitectural design choices. In particular, we benchmark EdgeSRGAN
t four progressive steps, reporting fidelity, perceptual performance,
nd inference speed. The steps we consider are the following:

1. Reducing the number of residual blocks 𝑁 ;
2. Replacing the Pixel Shuffle upsampling stage with Transpose

Convolutions;
3. Removing Batch Normalization;
9

4. Replacing PReLU activations with ReLU.

The last step corresponds to the final version of EdgeSRGAN. For
each step of the model, we use the same training procedure described
in 3.2 and measure the inference speed on the CPU at (80 × 60) and
(160 × 120) input resolutions. All the results are reported in Table 6.
The experimentation confirms that each compression step gains sub-
stantial inference speed by trading minimal perceptual quality. Overall,
we observe −3.7% LPIPS perceptual quality and +280% inference
speed.

4.5. Application: Image transmission for mobile robotics

Our real-time SISR can provide competitive advantages in a wide
variety of practical engineering applications. In this section, we target
a specific use case of mobile robotics, proposing our EdgeSRGAN
system as an efficient deep learning-based solution for real-time image
transmission. Indeed, robot remote control in unknown terrains needs a
reliable transmission of visual data at a satisfying framerate, preserving
robustness even in bandwidth-degraded conditions. This requirement
is particularly relevant for high-speed platforms and UAVs. Dangerous
or delicate tasks such as tunnel exploration, inspection, or open space
missions all require an available visual stream for human supervision,
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Table 6
Results of the ablation study conducted on EdgeSRGAN for four different steps. The last step corresponds to the final model. Overall, we observe −3.7% LPIPS perceptual quality
and +280% inference speed. ↑: higher is better, ↓: lower is better.

Model Params Set5 Set14 BSD100 Manga100 Urban100 Inference Speed (fps)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ 80 × 60 160 × 120

SRGAN 1.5M 29,18 0,842 0,094 26,17 0,701 0,172 25,45 0,648 0,206 27,35 0,860 0,076 24,39 0,728 0,158 2.00 ± 0.03 0.48 ± 0.01
𝑁 = 8 956k 29,38 0,839 0,088 26,55 0,703 0,170 25,08 0,628 0,207 27,49 0,852 0,085 24,21 0,718 0,168 2.47 ± 0.01 0.62 ± 0.01
TransposeConv 663k 28,98 0,829 0,113 26,46 0,706 0,204 25,25 0,641 0,243 26,72 0,833 0,116 23,66 0,689 0,214 9.16 ± 0.31 2.52 ± 0.03
No BatchNorm 661k 29,40 0,838 0,105 26,65 0,709 0,194 25,09 0,630 0,236 27,54 0,851 0,091 24,01 0,707 0,191 9.91 ± 0.16 2.56 ± 0.06
ReLU 661k 29,49 0,837 0,095 26,81 0,715 0,176 25,54 0,644 0,210 27,68 0,855 0,081 24,27 0,716 0,170 10.26 ± 0.11 2.66 ± 0.02
Fig. 9. Efficient image transmission system with EdgeSRGAN for mobile robotic applications in outdoor environments.
regardless of the autonomy level of the platform. In the last few years,
the robotics community has focused on developing globally shared
solutions for robot software and architectures and handling data com-
munications between multiple platforms and devices. ROS2 (Macenski
et al., 2022) is the standard operative system for robotic platforms. It
is a middleware based on a Data Distribution System (DDS) protocol
where application nodes communicate with each other through a topic
with a publisher/subscriber mechanism. However, despite the most
recent attempts to improve the reliability and efficiency of message
and data packet communications between different nodes and plat-
forms, heavier data transmission, such as image streaming, is not yet
optimized and reliable.

The typical practical setting used for robot teleoperation and explo-
ration in unknown environments is composed of a ground station and
a rover connected to the same wireless network. As shown in Fig. 9,
we adopted this ground station configuration to test the transmission
of images through a ROS2 topic, as should be done in any robotic
application to stream what the robot sees or to receive visual data
and feed perception and control algorithms for autonomous navigation
and mapping. For this experiment, we use both an Intel RealSense
D435i camera5 and a Logitech C920 webcam6 mounted on a Clearpath
Jackal robot,7 together with a Microhard BulletPlus8 router for image
ransmission. The available image resolutions with RealSense cameras,
he standard RGBD sensors for visual perception in robotics, are (320 ×
40) and (640×480), whereas the framerate typically varies between 15
nd 30 fps.

Despite the absence of strong bandwidth limitations, transmission
elays, or partial loss of packets, the maximum resolution and framer-
te allowed by ROS2 communication are extremely low: we find that
t 30 fps, the maximum transmissible resolution for RGB is (120 ×
20) with a bandwidth of 20 Mb/s while reducing the framerate to
fps the limit is (320 × 240). This strict trade-off between framerate

5 https://www.intelrealsense.com/depth-camera-d435i/.
6 https://www.logitech.com/it-it/products/webcams/c920-pro-hd-
ebcam.960-001055.html.
7 https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/.
8 https://www.microhardcorp.com/BulletPlus-NA2.php.
10
and resolution hinders the high-speed motion of a robotic platform
in a mission, increasing the risk of collision due to reduced scene
supervision. Even selecting best effort in the Quality of Service (QoS)
settings, which manage the reception of packages through topics, the
detected performances are always scarce.

Adopting our real-time Super-Resolution system ensures the timely
arrival of RGB and depth images via ROS2. Thanks to the fast-inference
performance of EdgeSRGAN, we can stream low-resolution images
(80 × 60) at a high framerate (30 fps) and receive a high-resolution
output: (320 × 240) with a x4 image upsampling and (640 × 480) with a
x8 upsampling, showing a clear improvement on standard performance.
Our system allows the ground station to access the streaming data
through a simple ROS topic. Hence, it provides multiple competitive
advantages in robotic teleoperation and autonomous navigation: high-
resolution images can be directly exploited by the human operator for
remote control. Moreover, they can be used to feed computationally
hungry algorithms like sensorimotor agents, visual-odometry, or visual-
SLAM, which we may prefer to run on the ground station to save
the constrained power resources of the robot and significantly boost
the autonomy level of the mission. In Fig. 10, we report a qualitative
comparison to highlight the effectiveness of EdgeSRGAN for real-world
robotic scenarios. In particular, we consider apple monitoring, naviga-
tion in vineyards, drone surveillance for autonomous rovers, and tunnel
inspection.

We also test video transmission performance in a more general
framework to reproduce all the potential bandwidth conditions. We use
the well-known video streaming library GStreamer9 to transmit video
samples changing the available bandwidth. We progressively reduce
the bandwidth from 10 Mbps to 10 kbps using the Wondershaper
library10 and measure the framerate at the receiver side. We use 10 s
of the standard video sample smtpe natively provided by GStreamer
videotestsrc video source at 30 fps, and we encode it for transmission
using MJPEG and H264 video compression standards. The encoding is
performed offline to ensure that all the available resources are reserved
for transmission only. Indeed, most cameras provide hardware-encoded

9 https://gstreamer.freedesktop.org/.
10 https://github.com/magnific0/wondershaper.

https://www.intelrealsense.com/depth-camera-d435i/
https://www.logitech.com/it-it/products/webcams/c920-pro-hd-webcam.960-001055.html
https://www.logitech.com/it-it/products/webcams/c920-pro-hd-webcam.960-001055.html
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://www.microhardcorp.com/BulletPlus-NA2.php
https://gstreamer.freedesktop.org/
https://github.com/magnific0/wondershaper
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Fig. 10. Qualitative demonstration of applying EdgeSRGAN (×4) on real scenarios (zoom for more detail). From top to bottom: apple monitoring, navigation in vineyards, drone
urveillance for autonomous rovers, and tunnel inspection.
Fig. 11. Framerate results vs. bandwidth for video transmission at different input resolutions with MJPEG and H264 compression. Bandwidth is in log scale.
ideo sources without requiring software compression. To be consistent
ith the other experiments, we keep using (640 × 480) and (320 × 240)
s high resolutions and (160 × 120) and (80 × 60) as low resolutions.
ach experiment is performed 10 times to check the consistency in
esults. Fig. 11 presents the average framerate achieved with different
andwidths. Streaming video directly without any middleware, such
11
as ROS2, ensures a higher transmission performance. However, as
expected, streaming high-resolution images is impossible in the case
of low bandwidth and the framerate quickly drops to very low values,
resulting unsuitable for real-time applications. On the other hand, lower
resolutions can be streamed with minimal frame drop, even with lower
available bandwidths. H264 compression shows the same behavior as
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MJPEG but shifts to lower bandwidths. Indeed, H264 is more sophisti-
cated and efficient, as it uses temporal frame correlation in addition to
spatial compression. In a practical application with a certain bandwidth
constraint, a proper combination of a low-resolution video source and
an SR model can be selected to meet the desired framerate requirements
on the available platform (CPU or Edge TPU). This mechanism can also
be dynamically and automatically activated and deactivated depending
on the current connectivity to avoid framerate drops and ensure a
smooth image transmission.

5. Conclusions and future works

In this paper, we proposed a novel Edge AI model for SISR exploiting
the Generative Adversarial approach. Inspired by popular state-of-
the-art solutions, we design EdgeSRGAN, which obtains comparable
results, being an order of magnitude smaller in terms of the number
of parameters. Our model is 3 times faster than SRGAN, 30 times faster
than ESRGAN, and 50 times faster than SwinIR while retaining similar
or even better LPIPS performance. To gain additional inference speed,
we applied knowledge distillation to EdgeSRGAN and obtained an even
smaller network (EdgeSRGAN-tiny) which gains an additional 4x speed
with limited performance loss. Moreover, model quantization is used
to optimize the model for execution on an Edge TPU. At the same
time, network interpolation was implemented to allow potential users
to balance the model output between pixel-wise fidelity and perceptual
quality. Extensive experimentation on several datasets confirms the
effectiveness of our model regarding both performance and latency.
Finally, we considered the application of our solution for robot tele-
operation, highlighting the validity and robustness of EdgeSRGAN in
many practical scenarios in which the transmission bandwidth is lim-
ited. Future work may investigate the effect of additional optimization
techniques, such as pruning (Li et al., 2017) and neural architecture
search (Pham et al., 2018). Moreover, developing optimized Edge AI
versions of more recent architectures like transformers (Liang et al.,
2021) might bring advantages in tackling real-time SISR.
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