
19 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NXRouting: A GPU-Enhanced CAD Tool for European Radiation-Hardened FPGAs / Portaluri, Andrea; Azimi, Sarah;
Saracino, Andrea; Sterpone, Luca; Kilic, Alp; Dupuis, Damien. - In: ELECTRONICS. - ISSN 2079-9292. -
ELETTRONICO. - 13:14(2024). [10.3390/electronics13142803]

Original

NXRouting: A GPU-Enhanced CAD Tool for European Radiation-Hardened FPGAs

Publisher:

Published
DOI:10.3390/electronics13142803

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991091 since: 2024-07-22T09:59:09Z

MDPI

Citation: Portaluri, A.; Azimi, S.;

Saracino, A.; Sterpone, L.; Kilic, A.;

Dupuis, D. NXRouting: A

GPU-Enhanced CAD Tool for

European Radiation-Hardened

FPGAs. Electronics 2024, 13, 2803.

https://doi.org/10.3390/

electronics13142803

Academic Editor: Alexander

Barkalov

Received: 18 June 2024

Revised: 12 July 2024

Accepted: 15 July 2024

Published: 16 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

NXRouting: A GPU-Enhanced CAD Tool for European
Radiation-Hardened FPGAs
Andrea Portaluri 1,*, Sarah Azimi 1 , Andrea Saracino 1, Luca Sterpone 1, Alp Kilic 2 and Damien Dupuis 2

1 Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, 10129 Turin, Italy;
sarah.azimi@polito.it (S.A.); andrea.saracino@studenti.polito.it (A.S.); luca.sterpone@polito.it (L.S.)

2 NanoXplore SAS, 92310 Sévres, France; akilic@nanoxplore.com (A.K.); ddupuis@nanoxplore.com (D.D.)
* Correspondence: andrea.portaluri@polito.it

Abstract: Field Programmable Gate Arrays (FPGAs) have witnessed an increase in space applications
in the last years, mainly due to their cost-effective high-performances and flexibility. However, the
susceptibility of these devices to radiation-induced effects when working in such an environment is
well known. When common mitigation techniques are not sufficient to ensure the correct completion
of a task, radiation-hardened FPGAs represent one of the most effective solutions. NanoXplore,
in this context, is the first European developer of rad-hard FPGAs, which embed intrinsic high
complexity in their architectures preventing the user from using or developing custom placement
and routing algorithms. In this paper, we overcame these issues by proposing the first tool tailored to
NanoXplore devices which allows the exploration of NanoXplore device architectures and routing of
points through a Python interface. We developed a model that reflects the one used by the vendor,
allowing the user to extract info about routes, nets and additional logic, otherwise unavailable. The
tool also performs routing of points in the programmable logic, computing the optimal path. An
implementation of the router on Graphic Processing Unit (GPU) is proposed to exploit the highly
parallelizable nature of the problem. Finally, routing timing analyses on different benchmarks have
been performed, improving the routing routine time.

Keywords: NanoXplore; radiation-hardened; FPGA; CAD; routing; GPU

1. Introduction

The advent of the so-called New Space era brought a renewal of interest concerning
deep space exploration. In this context, technologies have tried to keep pace to allow
high computational power while limiting costs. Moreover, the increasing mission lifetimes
require low-power consumption devices that can guarantee reliable computations. Among
the several alternatives in the market, SRAM-based Field Programmable Gate Arrays
(FPGAs) have captivated a good slice of the market thanks to their excellent performances
over cost ratio. These devices exploit a matrix of reconfigurable logic resources that can be
(re)programmed to execute virtually any digital circuit task at any moment. While FPGAs’
performances are still not the same as Application Specific Integrated Circuits (ASICs),
the versatility, low costs and time-to-market of these chips made several space industries
choose them for on-board computers, communication and data acquisition in space [1–5].

However, deep space often represents a harsh environment, especially for Silicon-
based technologies, where interactions with high-energy particles such as protons, neutrons
and heavy ions can cause malfunctions in the circuitry. In particular, SRAM-based FPGAs
are very susceptible to the corruption of the volatile memory where the data about the
implemented design are stored and, thus, the correctness of its computational tasks [6].
Several techniques and approaches are available to mitigate these faults (e.g., Triple Mod-
ular Redundancy, Error Scrubbing, Module Isolation), allowing SRAM-based FPGAs to
be safely adopted in these kinds of missions [6–8]. Anyway, when full coverage of these

Electronics 2024, 13, 2803. https://doi.org/10.3390/electronics13142803 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13142803
https://doi.org/10.3390/electronics13142803
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9169-6140
https://doi.org/10.3390/electronics13142803
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142803?type=check_update&version=1

Electronics 2024, 13, 2803 2 of 14

errors is needed or in the case of extremely hard-working conditions, the said approaches
may not be sufficient to guarantee flawless execution.

1.1. Motivations

Radiation-hardened FPGA chips are proposed as the main solution to this problem
since they exploit the hardening of the architecture that lies behind the implemented design
(e.g., intrinsic redundancy of resources, increased robustness of the memory cells, increased
number of transistors in a logic cell) to ensure mitigation of radiation faults, in exchange for
a slight increase in costs. Due to this, the majority of rad-hard FPGA vendors can claim the
almost complete tolerance of their devices to radiation-induced effects [9]. In the context
of rad-hard FPGA vendors and developers, NanoXplore has quickly gained popularity
in the European market as the first European company to fully develop rad-hard chips,
including the software toolchain. France-based fab-less company, NanoXplore counts
several rad-hard FPGA technologies, both embedded and not, ranging from 65 nm up to
28 nm SRAM cells. Their NG-MEDIUM chip (65 nm CMOS) has also reached the ESCC QPL
certification for space application issued by the European Space Agency (ESA), becoming
the first space-qualified European FPGA [10].

Due to their rad-hard nature, NanoXplore FPGA architectures are complex and the
routing of the available reconfigurable resources must obey several constraints. With
the term routing, we refer to that phase of the FPGA design flow that usually follows
the Synthesis and Placement, where the logic functions, associated with specific physical
resources within the programmable logic, are connected in order to execute whatever
Boolean function the circuit needs. While additional details and features on placement
and routing are often available in commercial CAD tools, they are not yet supported for
NanoXplore. For instance, at the time being, the possibility to force a fine-grained placement
of the resources is not available as a feature within the Impulse tool as it would also require
to drive far more complex interconnection routes manually (if available), often far from
the designer knowledge or interest, that can fail the whole implementation if not realized
correctly. For these reasons, the development of custom routing algorithms and third-party
research for these architectures is tough and limited to the very little information available.

1.2. Main Contribution

To overcome these issues, in this paper, we propose NXRouting, the first in-house
developed tool for the analysis of NanoXplore devices. It allows the user to fully explore
the programmable logic and the routing of NanoXplore FPGAs using a simple Python
interface. We developed a routing model in order to reflect the proprietary one in detail,
showing internal routes and auxiliary logic, otherwise unavailable. These models were
built using data extracted through NanoXplore’s proprietary APIs, which we accessed
through a collaboration with the vendor. Exploiting these data, the tool can route points
in the programmable logic, computing and returning the optimal path if available and
existing. A General-Purpose Graphic Processing Unit (GPGPU)-based implementation of
the router is presented and timing analyses have been performed on several benchmarks.

The paper is structured as follows: Section 2 briefly overviews the related works, and
Section 3 focuses on the model we developed to mimic the one of NanoXplore. Section 4
presents the tool, the configurations available, and the methodology we followed during
its development. Section 5 presents the GPU implementation of the router and Section 6
shows the results of the experimental analysis we performed on the tool. Finally, Section 7
draws conclusions and discussion on the future extension of this work.

2. Related Works

The development of custom CAD tools has always been a flourishing field of study,
aimed to add features or optimize tasks from the vendors’ tools. In the case of Commercial-
Off-The-Shelf (COTS) FPGAs (i.e., not radiation-hardened ones) and, in particular for
the space application domain, several works have mainly focused on the computation of

Electronics 2024, 13, 2803 3 of 14

routing paths or placement strategies for error mitigation. The authors in [11] propose
a custom library in Python for the analysis of the bitstream, performing targeted fault
injections on hardware for AMD Xilinx devices. Concerning the work in [12], the developed
tool written in C language extracts data about the design reliability based on the place
and route model of AMD Xilinx devices, proposing a hardened solution. The authors
in [13] present a tool for the exploration of the routing architecture of AMD Xilinx Series
7 devices. Other works in literature are focused on bitstream manipulation, facilitating
and automating partial reconfiguration of the device to scrub errors out [14,15]. Tools
such as [16–19] have made attempts to reverse engineering bitstream, obtaining only
partial results and targeting FPGA families that are three generations or more out of
date compared to the current ones. However, the total absence of information about the
NanoXplore proprietary bitstream format in the literature and official documentation made
such an approach unexploitable. Moreover, these works are based on the Xilinx Design
Language (XDL), which is no longer supported for newer devices, or complex interfaces
with the AMD Xilinx CAD tool (i.e., Vivado Design Suite) making them, of course, limited
to such architectures.

State-of-the-art approaches regarding FPGA routing include two phases: the mod-
elization of the architecture as a routing graph, either directed or undirected (i.e., logic
blocks are visualized as nodes while the available connections as edges), and the actual
routing performed employing algorithmic choices. Several algorithms are found in the
literature with the Maze, A* and Pathfinder being among the most prominent [20–22]. The
Maze algorithm ensures the shortest path between two points in a grid. However, it does
not consider how the path found might block subsequent nets. As a result, the algorithm’s
performance depends on the order of the nets. The A* algorithm improves efficiency by
including the Manhattan distance to reduce the number of explored nodes. Finally, the
Pathfinder balances path length and resource usage through an iterative process, where
routing cost is dynamically adjusted based on congestion levels. As described later in the
paper, the NanoXplore routing model differs from common ones and must obey several
additional constraints, drastically reducing the number of usable algorithms and forcing us
to implement less complex but still efficient ones.

A general trend in parallel routing algorithms is to enhance performance by imple-
menting both fine-grained and coarse-grained parallelism techniques. Usually, fine-grained
parallelism refers to parallel techniques for enhancing performance when building a single
net, while coarse-grained techniques refer to techniques that embrace globally the routing
process, trying to enhance performance when building multiple nets. Coarse-grained
techniques usually employ spatial and architectural information to route different nets
with the intent of minimizing the need for synchronizations. The authors in [23,24] use
coarse-grained techniques that assign to each available CPU core a different set of nets, to
be routed in parallel. This approach limits the parallelism to the number of CPU cores and
parallelism might be exploited further with GPU-based approaches, where it is possible
to massively parallelize the computation. The same limitation holds also to fine-grained
techniques on CPU, as the one presented in [25].

Finally, the total absence of third-party tools for NanoXplore highlights the lack of
data publicly available, limited to front-end info and features of the Impulse tool such as
timing analysis and resource utilization reports. Due to these reasons, no other tool in
the literature can perform placement and routing analysis of NanoXplore devices, making
NXRouting the first to achieve such results.

3. Proposed Model

The following section will be dedicated to the description of the model we developed
to overcome these limitations. The choices have been driven by details we extracted using
NanoXplore APIs. Particular focus will be given to the routing of the core logic such as
Look-Up Tables (LUTs) and Flip-Flops (FFs), since they represent the largest part of the
routing effort in FPGAs.

Electronics 2024, 13, 2803 4 of 14

3.1. Resources Hierarchy

The reconfigurable matrix is loosely based on the island-style FPGA model, where
arrays of logic blocks are interposed with routing channels. Input and Output Buffers
(IOBs), clock generators and, in the case of the newer devices (i.e., NG-ULTRA), interfaces
for the processor are located at the edges of the programmable logic. The logic resources
are spatially organized in a descendent tree manner, with the highest level being Plane
followed by Zone, Network, Device, and Plug, as shown in Figure 1a. The Plane represents
the whole programmable logic matrix and it is associated with the model of the FPGA chip
(namely, Variant). The Zone is the first subset of resources, either logic (e.g., Tile and CGB)
or for global routing purposes (e.g., Mesh), and interfaces (e.g., Fence, JTAG, IOB). The
Networks are further subsets within the Zone while Devices and Plugs represent a physical
resource and its pins. For instance, an input pin (e.g., Plug: I1) of a LUT (e.g., Device:
LUT315) in the NG-MEDIUM variant can be described in Figure 1b. Finally, the Plugs of
a Device can be mutually distinguished into Emitter (i.e., output pin) and Receiver (i.e.,
input pin). Moreover, it is useful to note that Zones names are unique (e.g., TILE [15 × 10]
univocally identifies the Tile located in the 10th row and 15th column of the reconfigurable
matrix), while Networks, Devices and Plugs names can be repeated among zones, although
they will be still unique within the same one (e.g., with respect to the example shown in
Figure 1b, a device named LUT315 appears in both zones TILE [15 × 10] and TILE [2 × 2]
among the others but, within a given one, it is unique). In this way, a list as:

[zone_a, netwk_b, dev_c, plug_d]

Electronics 2024, 13, x FOR PEER REVIEW 4 of 14

3. Proposed Model
The following section will be dedicated to the description of the model we developed

to overcome these limitations. The choices have been driven by details we extracted using
NanoXplore APIs. Particular focus will be given to the routing of the core logic such as
Look-Up Tables (LUTs) and Flip-Flops (FFs), since they represent the largest part of the
routing effort in FPGAs.

3.1. Resources Hierarchy
The reconfigurable matrix is loosely based on the island-style FPGA model, where

arrays of logic blocks are interposed with routing channels. Input and Output Buffers
(IOBs), clock generators and, in the case of the newer devices (i.e., NG-ULTRA), interfaces
for the processor are located at the edges of the programmable logic. The logic resources
are spatially organized in a descendent tree manner, with the highest level being Plane
followed by Zone, Network, Device, and Plug, as shown in Figure 1a. The Plane represents
the whole programmable logic matrix and it is associated with the model of the FPGA
chip (namely, Variant). The Zone is the first subset of resources, either logic (e.g., Tile and
CGB) or for global routing purposes (e.g., Mesh), and interfaces (e.g., Fence, JTAG, IOB).
The Networks are further subsets within the Zone while Devices and Plugs represent a
physical resource and its pins. For instance, an input pin (e.g., Plug: I1) of a LUT (e.g.,
Device: LUT315) in the NG-MEDIUM variant can be described in Figure 1b. Finally, the
Plugs of a Device can be mutually distinguished into Emitter (i.e., output pin) and
Receiver (i.e., input pin). Moreover, it is useful to note that Zones names are unique (e.g.,
TILE [15 × 10] univocally identifies the Tile located in the 10th row and 15th column of the
reconfigurable matrix), while Networks, Devices and Plugs names can be repeated among
zones, although they will be still unique within the same one (e.g., with respect to the
example shown in Figure 1b, a device named LUT315 appears in both zones TILE [15 ×
10] and TILE [2 × 2] among the others but, within a given one, it is unique). In this way, a
list as:

[zone_a, netwk_b, dev_c, plug_d]

Figure 1. (a) Tree representation of the NanoXplore architecture; (b) Example of a point in the
reconfigurable matrix identified through the hierarchy system.

Figure 1. (a) Tree representation of the NanoXplore architecture; (b) Example of a point in the
reconfigurable matrix identified through the hierarchy system.

Univocally identifies one and only one element. Figure 2 shows an example of Net-
works and Devices distribution inside of a Tile zone. This structure is repeated for each Tile
in the programmable logic.

Electronics 2024, 13, 2803 5 of 14

Electronics 2024, 13, x FOR PEER REVIEW 5 of 14

Univocally identifies one and only one element. Figure 2 shows an example of
Networks and Devices distribution inside of a Tile zone. This structure is repeated for
each Tile in the programmable logic.

Figure 2. Graphical example of Networks (e.g., S10) and Devices (e.g., 289) inside a Zone (e.g., Tile).

3.2. Routing Model
Concerning the interconnection of the core logic, a clear distinction between routing

inside and outside a Tile must be made. These represent the two cases of internal and
general routing, cited in the NanoXplore documentation [26], and they will affect the
timing differently. In the following subsection, we will be presenting how the model has
been developed to cover these two scenarios.

When dealing with routing inside a Tile, we first need to identify and explain the
Functional Element (FE), a hardwired coupling of a LUT and an FF, physically close to
each other [26]. All common LUTs and FFs in the programmable logic are coupled in this
way so that the output of the LUT must be connected with the input of the FF. Concerning
the NG-MEDIUM architecture, Figure 3 presents a simplified view of the core logic inside
a Tile and the FE architecture. The output of the FE (i.e., the output of the FF) can be then
routed to further routing structures. This structural choice assumes then that the FF can
be used as a proper memory element (i.e., D-type FF) or as a simple routing element (i.e.,
Bypass FF). In the same way, also LUTs can serve their scope as logic resources or behave
as bypass elements, with an identity as a truth table. This scenario represents the vast
majority of FE routing in the programmable logic, although the output of some LUTs can
be also directly routed to CY blocks for high-speed chain computations or to other LUTs
(only for NG-ULTRA and NG-ULTRA 300) to fulfill timing constraints. The last scenario
has been neglected from the study for simplicity and will be further ignored.

Observations of timing analysis of intra-tile routing showed that the signal delay is
almost independent of the coordinate of the FE within the Tile, meaning that the delay
due to the routing of two consecutive blocks is the same as routing two opposite corners
in the Tile. The latter excludes the possibility of having one of the most common routing
scenarios where routing matrices are interposed between each logic block and directly
connect different resources [26]; instead, this suggests a routing entity that is common for
all the resources in the Tile. In order to ensure the routing reaches all of the four inputs of
the LUTs and does not create conflicts by excluding any of these pins as the target of a
route, four routing matrices have been added to each Tile, each of which is associated with
one input of the LUTs. Within each one of these, the routing matrix has been modeled by
two Devices, allowing the routing to be correctly shuffled in any desired way and to reach
each FE of the Tile without creating conflicting routes. Figure 4 presents the adopted

Figure 2. Graphical example of Networks (e.g., S10) and Devices (e.g., 289) inside a Zone (e.g., Tile).

3.2. Routing Model

Concerning the interconnection of the core logic, a clear distinction between routing
inside and outside a Tile must be made. These represent the two cases of internal and
general routing, cited in the NanoXplore documentation [26], and they will affect the timing
differently. In the following subsection, we will be presenting how the model has been
developed to cover these two scenarios.

When dealing with routing inside a Tile, we first need to identify and explain the
Functional Element (FE), a hardwired coupling of a LUT and an FF, physically close to each
other [26]. All common LUTs and FFs in the programmable logic are coupled in this way
so that the output of the LUT must be connected with the input of the FF. Concerning the
NG-MEDIUM architecture, Figure 3 presents a simplified view of the core logic inside a
Tile and the FE architecture. The output of the FE (i.e., the output of the FF) can be then
routed to further routing structures. This structural choice assumes then that the FF can
be used as a proper memory element (i.e., D-type FF) or as a simple routing element (i.e.,
Bypass FF). In the same way, also LUTs can serve their scope as logic resources or behave as
bypass elements, with an identity as a truth table. This scenario represents the vast majority
of FE routing in the programmable logic, although the output of some LUTs can be also
directly routed to CY blocks for high-speed chain computations or to other LUTs (only for
NG-ULTRA and NG-ULTRA 300) to fulfill timing constraints. The last scenario has been
neglected from the study for simplicity and will be further ignored.

Observations of timing analysis of intra-tile routing showed that the signal delay is
almost independent of the coordinate of the FE within the Tile, meaning that the delay
due to the routing of two consecutive blocks is the same as routing two opposite corners
in the Tile. The latter excludes the possibility of having one of the most common routing
scenarios where routing matrices are interposed between each logic block and directly
connect different resources [26]; instead, this suggests a routing entity that is common for
all the resources in the Tile. In order to ensure the routing reaches all of the four inputs
of the LUTs and does not create conflicts by excluding any of these pins as the target of a
route, four routing matrices have been added to each Tile, each of which is associated with
one input of the LUTs. Within each one of these, the routing matrix has been modeled by
two Devices, allowing the routing to be correctly shuffled in any desired way and to reach
each FE of the Tile without creating conflicting routes. Figure 4 presents the adopted model
(Figure 4b) while comparing it to a common routing model (i.e., the one adopted by most
AMD Xilinx architectures, Figure 4a).

Electronics 2024, 13, 2803 6 of 14

Electronics 2024, 13, x FOR PEER REVIEW 6 of 14

model (Figure 4b) while comparing it to a common routing model (i.e., the one adopted
by most AMD Xilinx architectures, Figure 4a).

Figure 3. Detail of a Tile in the NG-MEDIUM architecture with focus on the FE and its components.
The Tile includes also additional logic such as Carry logic (CY), High-performance LUT (X-LUT),
Register File and others.

Figure 4. The figure explains the difference between the two routing models inside a Tile. (a)
Routing by means of switch matrices, where the delay is dependent on the physical distances among
the routed logic blocks; (b) Routing by means of shuffling matrix, where the delay only roughly
depends on how many times the route enters the matrix.

As designs become more complex and require more logic to be routed, a single Tile
may not contain enough resources to fulfill the scope. Therefore, NanoXplore refers to
general routing when dealing with Tile-to-Tile signals [26]. In order to manage the access
to these external routing channels from the Tile, two blocks have been modeled and added
to it. Moreover, observing the displacement of Tiles and the zones that manage the general
routing (namely, Meshes) in the configuration memory of NanoXplore devices, it is safe
to assume that a Tile can be reached both from a Mesh located at the bottom and the one
located at the top. This assumption is also validated by the Impulse tool Graphic User

Figure 3. Detail of a Tile in the NG-MEDIUM architecture with focus on the FE and its components.
The Tile includes also additional logic such as Carry logic (CY), High-performance LUT (X-LUT),
Register File and others.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 14

model (Figure 4b) while comparing it to a common routing model (i.e., the one adopted
by most AMD Xilinx architectures, Figure 4a).

Figure 3. Detail of a Tile in the NG-MEDIUM architecture with focus on the FE and its components.
The Tile includes also additional logic such as Carry logic (CY), High-performance LUT (X-LUT),
Register File and others.

Figure 4. The figure explains the difference between the two routing models inside a Tile. (a)
Routing by means of switch matrices, where the delay is dependent on the physical distances among
the routed logic blocks; (b) Routing by means of shuffling matrix, where the delay only roughly
depends on how many times the route enters the matrix.

As designs become more complex and require more logic to be routed, a single Tile
may not contain enough resources to fulfill the scope. Therefore, NanoXplore refers to
general routing when dealing with Tile-to-Tile signals [26]. In order to manage the access
to these external routing channels from the Tile, two blocks have been modeled and added
to it. Moreover, observing the displacement of Tiles and the zones that manage the general
routing (namely, Meshes) in the configuration memory of NanoXplore devices, it is safe
to assume that a Tile can be reached both from a Mesh located at the bottom and the one
located at the top. This assumption is also validated by the Impulse tool Graphic User

Figure 4. The figure explains the difference between the two routing models inside a Tile. (a) Routing
by means of switch matrices, where the delay is dependent on the physical distances among the
routed logic blocks; (b) Routing by means of shuffling matrix, where the delay only roughly depends
on how many times the route enters the matrix.

As designs become more complex and require more logic to be routed, a single Tile
may not contain enough resources to fulfill the scope. Therefore, NanoXplore refers to
general routing when dealing with Tile-to-Tile signals [26]. In order to manage the access
to these external routing channels from the Tile, two blocks have been modeled and added
to it. Moreover, observing the displacement of Tiles and the zones that manage the general
routing (namely, Meshes) in the configuration memory of NanoXplore devices, it is safe
to assume that a Tile can be reached both from a Mesh located at the bottom and the one

Electronics 2024, 13, 2803 7 of 14

located at the top. This assumption is also validated by the Impulse tool Graphic User
Interface (GUI), where the Tile shows two sets of access points as well as two exiting points,
both coupled in the upper and lower side of the Tile, as shown in Figure 5. When in the
Mesh, the signal can now be routed globally crossing other Meshes with a span of several
ones in the horizontal direction (depending on the Variant) and ±1 in the vertical one.
This solution allows the signal to reach any Mesh in the configurable plane starting from
any point.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 14

Interface (GUI), where the Tile shows two sets of access points as well as two exiting
points, both coupled in the upper and lower side of the Tile, as shown in Figure 5. When
in the Mesh, the signal can now be routed globally crossing other Meshes with a span of
several ones in the horizontal direction (depending on the Variant) and ±1 in the vertical
one. This solution allows the signal to reach any Mesh in the configurable plane starting
from any point.

Figure 5. Floorplanning view from the Impulse tool. Access points at the top (TI and TO) and bottom
(BI and BO) of two Zones allow the routes to enter the general routing channels through the Mesh.

4. NXRouting Tool
In this section, the NXRouting tool will be presented. In particular, the following

paragraphs will explain how the model discussed before has been implemented and
exploited to allow the tool to emulate the NanoXplore routing architecture. The final
subsection also discusses the implemented routing feature among points in the
configuration memory.

4.1. Database Management
According to the routing directives described before, a database of resources and

available connections has been built for each variant. Each row of the database gives the
coordinates of a source point and a target point in the naming convention described in
Section 3.1. Therefore, the database includes eight columns (i.e., two pairs of four
coordinates). These data have been extracted through C++ NanoXplore APIs and their size
is dependent on the variant and the amount of resources within (e.g., ranging from 76.8
MB for NG-MEDIUM up to 1.32 GB for NG-ULTRA). To efficiently deal with the database
exploration, two different loading configurations have been realized for the user to choose
from. The first one, named Full Loading, performs the load of the entire contents of the
database into cache memory, allowing the best performances in terms of computational
speed. The drawbacks of this solution are an initial time overhead to load the full database
(in the order of tens of seconds for the NG-MEDIUM up to tens of minutes for NG-
ULTRA) and the limited size of cache memory available (some systems may have
difficulties loading GBs of data). The second solution we have adopted is to load data only
when requested (Request Loading); the system calls a load method that retrieves specific
data from the database at runtime. This approach does not require any time overhead at
start-up but it may involve several performance decreases during the routing exploration.

Figure 5. Floorplanning view from the Impulse tool. Access points at the top (TI and TO) and bottom
(BI and BO) of two Zones allow the routes to enter the general routing channels through the Mesh.

4. NXRouting Tool

In this section, the NXRouting tool will be presented. In particular, the following para-
graphs will explain how the model discussed before has been implemented and exploited
to allow the tool to emulate the NanoXplore routing architecture. The final subsection also
discusses the implemented routing feature among points in the configuration memory.

4.1. Database Management

According to the routing directives described before, a database of resources and
available connections has been built for each variant. Each row of the database gives
the coordinates of a source point and a target point in the naming convention described
in Section 3.1. Therefore, the database includes eight columns (i.e., two pairs of four
coordinates). These data have been extracted through C++ NanoXplore APIs and their size
is dependent on the variant and the amount of resources within (e.g., ranging from 76.8 MB
for NG-MEDIUM up to 1.32 GB for NG-ULTRA). To efficiently deal with the database
exploration, two different loading configurations have been realized for the user to choose
from. The first one, named Full Loading, performs the load of the entire contents of the
database into cache memory, allowing the best performances in terms of computational
speed. The drawbacks of this solution are an initial time overhead to load the full database
(in the order of tens of seconds for the NG-MEDIUM up to tens of minutes for NG-ULTRA)
and the limited size of cache memory available (some systems may have difficulties loading
GBs of data). The second solution we have adopted is to load data only when requested
(Request Loading); the system calls a load method that retrieves specific data from the
database at runtime. This approach does not require any time overhead at start-up but it
may involve several performance decreases during the routing exploration. Both solutions

Electronics 2024, 13, 2803 8 of 14

are available, and the user must decide which one to use at launch time depending on
the needs.

4.2. Data Organization and Structures

Once the database loading routine has been chosen, the system starts to fetch data
accordingly. A top structure is created and associated with the Plane, given the variant as
input argument. The Variant class couples the Plane with the respective database unless
the latter is manually overwritten by the user. The plane contains a Python dictionary that
has the first level of hierarchy as keys (i.e., Zones) and the objects themselves as values, as
well as other useful getter methods (e.g., getName(), getID(), getZone(name), and so on).
This approach is necessary in order to avoid any duplication of a class object referred to the
same element, so it will be unique as well as its attributes. This structure is repeated for
each level of the hierarchy, allowing an agile exploration of the whole programmable logic.
Each object also contains the reference to its parent, so that it is possible to retrieve it at
any moment. This interface fully integrates with the Python object-oriented programming
paradigm, for instance, exploiting iterators that allow the user to use cycles and indexing
on the returned objects. Figure 6 gives an example of the flexibility of the exploration from
the Python command line using NXRouting.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 14

Both solutions are available, and the user must decide which one to use at launch time
depending on the needs.

4.2. Data Organization and Structures
Once the database loading routine has been chosen, the system starts to fetch data

accordingly. A top structure is created and associated with the Plane, given the variant as
input argument. The Variant class couples the Plane with the respective database unless
the latter is manually overwritten by the user. The plane contains a Python dictionary that
has the first level of hierarchy as keys (i.e., Zones) and the objects themselves as values, as
well as other useful getter methods (e.g., getName(), getID(), getZone(name), and so on).
This approach is necessary in order to avoid any duplication of a class object referred to
the same element, so it will be unique as well as its attributes. This structure is repeated
for each level of the hierarchy, allowing an agile exploration of the whole programmable
logic. Each object also contains the reference to its parent, so that it is possible to retrieve
it at any moment. This interface fully integrates with the Python object-oriented
programming paradigm, for instance, exploiting iterators that allow the user to use cycles
and indexing on the returned objects. Figure 6 gives an example of the flexibility of the
exploration from the Python command line using NXRouting.

Figure 6. Example of architectural exploration through pseudo-Python of the NXRouting tool. This
feature mainly focuses on the user experience, presenting a well-known objected-oriented interface.

4.3. Routing Points
Among the architectural exploration, as stated before, a routing feature has been

added to the tool in order to retrieve all the connection branches between two points in
the programmable logic. When integrating the detailed model explained in Section 3.2 to
this possibility, the tool allows the user to analyze a specific net; for instance, the
observation of a route may suggest that a high delay is due to too many global jumps
among meshes and so it might be solved by constraining the placement within closer tiles.

The problem of routing this specific architecture can be seen as a directed graph
where each node has one or more directed edges (i.e., the direction of the edge is defined
as apriori, and it does not allow the signal to travel arbitrarily) linked to other nodes. In
our solution, Plugs represent the nodes and the connections listed in the databases identify
the edges and their direction. However, each Plug cannot allow incoming and outgoing
branches since it is classified either as an emitter or receiver. To overcome this issue, the
data structures defined in Section 4.2 may come in handy, returning the emitters

Figure 6. Example of architectural exploration through pseudo-Python of the NXRouting tool. This
feature mainly focuses on the user experience, presenting a well-known objected-oriented interface.

4.3. Routing Points

Among the architectural exploration, as stated before, a routing feature has been
added to the tool in order to retrieve all the connection branches between two points in the
programmable logic. When integrating the detailed model explained in Section 3.2 to this
possibility, the tool allows the user to analyze a specific net; for instance, the observation of
a route may suggest that a high delay is due to too many global jumps among meshes and
so it might be solved by constraining the placement within closer tiles.

The problem of routing this specific architecture can be seen as a directed graph where
each node has one or more directed edges (i.e., the direction of the edge is defined as
apriori, and it does not allow the signal to travel arbitrarily) linked to other nodes. In our
solution, Plugs represent the nodes and the connections listed in the databases identify
the edges and their direction. However, each Plug cannot allow incoming and outgoing

Electronics 2024, 13, 2803 9 of 14

branches since it is classified either as an emitter or receiver. To overcome this issue, the
data structures defined in Section 4.2 may come in handy, returning the emitters associated
with a Device and its receivers. This approach extends the concept of the node to an object
that includes a Device, Emitters, and Receivers, although still allowing the user to route
specific Plugs. For the routing algorithm, the Breadth-First Search (BFS) has been chosen
due to its well-known structure and performance [27]. In particular, the BFS algorithm
allows to search for a target by exploring all the nodes at the present depth of the graph
before moving to the next depth level, in contrast to the Depth-First Search (DFS) that
analyses a single node branch in its full depth before expanding to the next one. The
implementation of the algorithm is described below in Algorithm 1. The implementation
loosely follows the standard BFS, although it contains substantial differences. Each emitter
will be searched through by popping it out from the queue list. A for loop iterates over
every possible receiver that can be reached from the analyzed node and each emitter of
the same device of that receiver will be added to the queue as well. The algorithm stops
searching when the target receiver has been found. However, the standard algorithm faces
some limitations. In particular, plain BFS is not able to manage graphs with loops as they
may arise infinite cycles of search for such branches. To overcome this problem, three flags
have been added to the Plugs: visited, queued, and routed. The visited one keeps track of
which plug has already been completely searched while the queued flag identifies a plug
already in the queue waiting to be searched. The routed flag, instead, has been added to
allow multiple consequent routings and to know which node has already been taken by a
net or is still vacant. At the end of the routing routine, the first two flags will be reset. The
results are saved in a Net object that contains each branch the algorithm followed to reach
the target (i.e., parent nodes in Algorithm 1). In Figure 7, a scheme presents the whole flow
of the NXRouting described so far.

Algorithm 1. Algorithm for BFS of NanoXplore Architectural Graph

Electronics 2024, 13, x FOR PEER REVIEW 10 of 14

Algorithm 1. Algorithm for BFS of NanoXplore Architectural Graph

Input: source_emitter, target_receiver

queue = [source_emitter]

 1: while len(queue) > 0 do

 2: node = queue.pop(0)

 3: if not node is routed then

 4: if not node is visited then

 5: for receiver in node.receivers do

 6: lif not receiver = target_receiver then

 7: if not receiver is visited then

 8: for emitter in receiver.getDevice().getEmitters() do

 9: lif not emitter is queued then

10: update emitter parent nodes

11: queue.append(emitter)

12: emitter is queued

13: else:

14: update node parent nodes

15: lbreak from while

16: node is visited

5. GPU Implementation
This section describes the implementation of the routing algorithm and the data

structures within the Cuda-C environment by NVIDIA. In particular, two levels of
parallelization have been exploited, namely fine and coarse-grained. The first one deals
with the concurrent search among the nodes in the queue regarding Algorithm 1 while
routing a single net. The coarse-grained, instead, manages the routing of more nets at
once. The following subsections will present the two in depth.

5.1. Fine-Grained Parallelization
Some new data structures have to be introduced to support parallelization on GPU.

These must be allocated in memory N times, where N is the number of nodes to explore
in parallel, differently from the ones introduced in Section 4.2. The data structures are:
• Local labeling array: it marks nodes when they are discovered for the first time and

keeps track of which nodes were already found in previous iterations.
• Previous and next buffers: a double buffer that at each iteration contains the indexes of

new nodes discovered at the previous iteration, and the indexes of nodes discovered
in the current iteration. At each new iteration, their role reverses.

• Backtracking array: when in the GPU kernel new reachable nodes are discovered, the
history of previous nodes has to be saved. The backtracking array saves, for each
discovered node, which node discovered it. When the sink is eventually found, the
shortest path from source to target can be reconstructed, thanks to the information
stored here (i.e., parent nodes in Algorithm 1).
Before starting the next iteration, the BFS swaps the pointers of the two buffers, next

and previous, and clears the content of the next buffer preparing it for the next iteration.
The clear is implemented without coping or removing data, but with an index telling the
length of the valid content is zero. Avoiding any copy between the buffers and avoiding
any deletion allows the algorithm to reach better performances according to the ping-pong
buffering technique. When starting the second iteration, thanks to pointer swapping, the

Electronics 2024, 13, 2803 10 of 14

Electronics 2024, 13, x FOR PEER REVIEW 9 of 14

associated with a Device and its receivers. This approach extends the concept of the node
to an object that includes a Device, Emitters, and Receivers, although still allowing the
user to route specific Plugs. For the routing algorithm, the Breadth-First Search (BFS) has
been chosen due to its well-known structure and performance [27]. In particular, the BFS
algorithm allows to search for a target by exploring all the nodes at the present depth of
the graph before moving to the next depth level, in contrast to the Depth-First Search
(DFS) that analyses a single node branch in its full depth before expanding to the next one.
The implementation of the algorithm is described below in Algorithm 1. The
implementation loosely follows the standard BFS, although it contains substantial
differences. Each emitter will be searched through by popping it out from the queue list.
A for loop iterates over every possible receiver that can be reached from the analyzed node
and each emitter of the same device of that receiver will be added to the queue as well.
The algorithm stops searching when the target receiver has been found. However, the
standard algorithm faces some limitations. In particular, plain BFS is not able to manage
graphs with loops as they may arise infinite cycles of search for such branches. To
overcome this problem, three flags have been added to the Plugs: visited, queued, and
routed. The visited one keeps track of which plug has already been completely searched
while the queued flag identifies a plug already in the queue waiting to be searched. The
routed flag, instead, has been added to allow multiple consequent routings and to know
which node has already been taken by a net or is still vacant. At the end of the routing
routine, the first two flags will be reset. The results are saved in a Net object that contains
each branch the algorithm followed to reach the target (i.e., parent nodes in Algorithm 1).
In Figure 7, a scheme presents the whole flow of the NXRouting described so far.

Figure 7. Scheme of NXRouting showing the features and the databases associated. Figure 7. Scheme of NXRouting showing the features and the databases associated.

5. GPU Implementation

This section describes the implementation of the routing algorithm and the data
structures within the Cuda-C environment by NVIDIA. In particular, two levels of paral-
lelization have been exploited, namely fine and coarse-grained. The first one deals with
the concurrent search among the nodes in the queue regarding Algorithm 1 while routing
a single net. The coarse-grained, instead, manages the routing of more nets at once. The
following subsections will present the two in depth.

5.1. Fine-Grained Parallelization

Some new data structures have to be introduced to support parallelization on GPU.
These must be allocated in memory N times, where N is the number of nodes to explore in
parallel, differently from the ones introduced in Section 4.2. The data structures are:

• Local labeling array: it marks nodes when they are discovered for the first time and
keeps track of which nodes were already found in previous iterations.

• Previous and next buffers: a double buffer that at each iteration contains the indexes of
new nodes discovered at the previous iteration, and the indexes of nodes discovered
in the current iteration. At each new iteration, their role reverses.

• Backtracking array: when in the GPU kernel new reachable nodes are discovered, the
history of previous nodes has to be saved. The backtracking array saves, for each
discovered node, which node discovered it. When the sink is eventually found, the
shortest path from source to target can be reconstructed, thanks to the information
stored here (i.e., parent nodes in Algorithm 1).

Before starting the next iteration, the BFS swaps the pointers of the two buffers, next
and previous, and clears the content of the next buffer preparing it for the next iteration.
The clear is implemented without coping or removing data, but with an index telling the
length of the valid content is zero. Avoiding any copy between the buffers and avoiding
any deletion allows the algorithm to reach better performances according to the ping-pong
buffering technique. When starting the second iteration, thanks to pointer swapping, the
previous buffer will contain the set of nodes just discovered for the first time in the previous
iteration, and the GPU kernel will launch as many threads as the number of new nodes
previously discovered.

If a valid path is found, the iterations stop and the shortest path is reconstructed by
checking the backtracking array traversing it backward and target to source. Local data
structures can be either reinitialized for other nets or deallocated.

Electronics 2024, 13, 2803 11 of 14

5.2. Coarse-Grained Parallelization

The last section explained the steps to build a GPU-based BFS algorithm to find a route
from source to sink. It is possible to maximize the percentage of GPU usage even further
by modifying the previous algorithm to support the computation of BFS of multiple nets
concurrently.

When routing multiple nets in parallel, one of the main issues is that when one of
the nets finds its shortest path, it needs to remove those resources from the available pool.
After marking those resources as no longer available, the other nets that are computing
their own route at the same time need to prune all the new nodes that were discovered
after traversing one of the nodes just removed from the pool, because they would walk a
path no longer available. This check would cause a significant performance loss, that could
scale even worse by increasing the number of routes in parallel. The worst case would be
represented by spending more time checking if nodes were invalidated than searching the
routes themselves. To avoid this computation, it is possible to leverage information about
the FPGA architecture, described in Section 3.1. The coarse-grained technique consists of
dividing the list of nets into N+1 different sets, with N being the number of Tiles. One
set contains nets that have source and sink in different Zones. The other N sets contain
nets with source and target within the same Tile. Each set will route its nets sequentially,
resulting in N+1 sequential flows of routing. However, N of these sets route nets that use
different routing resources, allowing us to route them in parallel without checking if the
resources taken can alter the other BFSs. Thus, when one of the N-1 sets removes from the
pool some available resources, the resources removed will only be resources that might
have been used inside that set. The Ni+1 set contains every other net, (i.e., nets with source
and sink not belonging to the same Tile) or with one or both of them being inside a Zone
that is not a Tile. This set cannot be routed concurrently with the others because it may
remove available resources that are in common with the other sets. Because of this, it can
either be the first to be computed, before the other N sets, or the last one, after the other N
sets finished their routing.

6. Experimental Results

This section presents the analyses and the results we collected in order to quantify
the performances of our tool. First, profiling the two database loading configurations has
provided an efficient way to discriminate the choice according to the feature the user wants
to utilize. The time the system has taken to fetch each level of hierarchy has been presented
in Table 1 for two variants (NG-MEDIUM and NG-ULTRA, respectively).

Table 1. Response Time of Start-Up and Getter Methods for the Loading Configurations.

Config. Start-Up [µs] getZone [µs] getNetwork [µs] getDevice [µs] getEmit. [µs]

NG-MED NG-ULT NG-MED NG-ULT NG-MED NG-ULT NG-MED NG-ULT NG-MED NG-ULT

Full Load. 19 × 106 452 × 106 4.768 5.323 4.034 4.873 4.733 5.543 4.768 5.323
Req. Load. - - 189.452 378.574 245.829 201.551 387.002 568.719 639.402 739.321

As stated in Section 4.1, the Full Loading configuration mainly affects the start-up
timing as all the data are loaded in memory. In particular, the NG-ULTRA analysis takes
up to 8 min to complete the loading. However, this overhead is required only at the
start of the tool and it does not affect any subsequent computation. The Request Loading
configuration does not need any start-up overhead although getters take significantly more
time compared to the Full Loading. A slight increase in the time as the hierarchy level goes
from Zone to Plug has also been registered in this configuration. This is due to the more
complex queries and filters that the system demands from the database as the hierarchy
level of the objects decreases.

Moreover, an analysis of the timing required for NXRouting to fully route several
benchmarks using the routePoints method on NG-MEDIUM architecture has been per-
formed. Four benchmarks have been selected from the ITC’99 benchmark suite [28], in

Electronics 2024, 13, 2803 12 of 14

particular B03, B06, B09, and B12. These designs have been chosen for their well-known ar-
chitecture, and behavior and for covering a wide section of the routing complexity spectrum.
Table 2 shows the number of nets to be routed for each benchmark.

Table 2. Number of Nets to be routed for each Benchmark.

Benchmark Number of Nets [#]

B03 253
B06 68
B09 284
B12 1688

Results about the routing time have been collected from three different routing con-
figurations exploiting parallelization at various levels. The first configuration, sequential,
implements no parallel computation performing routing of signals in series. The second
and third configurations exploit fine and coarse-grained parallelization described in the
previous sections. Unfortunately, no other third-party router is available in the literature
for comparison at the time being. Table 3 presents the obtained results. The tool has been
implemented on a GPU NVIDIA Jetson Nano.

Table 3. Performance Comparison among Routers Configurations on NG-MEDIUM.

Benchmark
Routing Time [s]

B03 B06 B09 B12

Sequential Router 143.17 62.73 300.05 433.14
Fine-Grained Router 0.81 0.47 0.89 4.62

Fine-Coarse-Grained Router 0.60 0.47 0.58 2.64

The results show a decrease in routing time using the Fine-Coarse-Grained configura-
tion with respect to the other ones. However, the timing still seems to scale on the number
of nets to route. This is mainly due to the unfeasibility of issuing a number of kernels equal
to the amount of nets (i.e., achieving an embarrassingly parallelization of the problem).

7. Conclusions

Among the rad-hard FPGA vendors, NanoXplore is the first European developer
of SRAM-based radiation-tolerant devices. Its market is continuously growing and the
users started to feel the necessity to develop their own placement and routing algorithms
to fulfill custom needs. However, NanoXplore models are very different from the most
common ones due to several architectural constraints that the devices present. For this
reason, common placement and routing approaches cannot be applied. Moreover, the lack
of info about the routing structure negatively affects any third-party research effort.

In this paper, we presented NXRouting, the first Python-based tool that allows the
user to easily explore the NanoXplore architecture, its hidden modules and resources
exploiting data coming from the C++ vendor APIs. Therefore, the designer will be able
to analyze and extract the architectural details in order to validate custom placement
algorithms. Two different start-up configurations are available to choose from in order
to focus on performances or timing, and a profiling analysis has been performed in the
paper. Moreover, the tool presents a routing feature to drive nets from and to any points
in the reconfigurable plane according to the Breadth-First Search algorithm. This allows
the extraction of the branches and resources involved and to validate the routability and
feasibility of custom algorithms and implementations, emulating the routing model from
NanoXplore in detail. A GPU implementation of the tool and the algorithm is proposed in
the paper and routing timings have been extracted for several benchmarks.

Electronics 2024, 13, 2803 13 of 14

Author Contributions: Conceptualization, A.P.; methodology, A.P.; software, A.P. and A.S.; validation,
A.P.; writing—original draft preparation, A.P.; writing—review and editing, S.A.; supervision, S.A,
L.S., A.K. and D.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from NanoXplore SAS and are available from the authors with the permission of NanoXplore.

Acknowledgments: We would like to acknowledge NanoXplore for giving us the possibility to
extract data from their proprietary libraries and APIs.

Conflicts of Interest: Authors A.K and D.D. were employed by the company NanoXplore. The
remaining authors declare that the research was conducted in absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

References
1. León, A.F. Trends and Patterns of ASIC and FPGA Use in European Space Missions; ESA-ESTEC: Noordwijk, The Netherlands, 2013.
2. Kok, C.L.; Siek, L. Designing a Twin Frequency Control DC-DC Buck Converter Using Accurate Load Current Sensing Technique.

Electronics 2024, 13, 45. [CrossRef]
3. Teo, B.C.T.; Lim, W.C.; Venkadasamy, N.; Lim, X.Y.; Kok, C.L.; Siek, L. A CMOS Rectifier with a Wide Dynamic Range Using

Switchable Self-Bias Polarity for a Radio Frequency Harvester. Electronics 2024, 13, 1953. [CrossRef]
4. Kok, C.L.; Tang, H.; Teo, T.H.; Koh, Y.Y. A DC-DC Converter with Switched-Capacitor Delay Deadtime Controller and Enhanced

Unbalanced-Input Pair Zero-Current Detector to Boost Power Efficiency. Electronics 2024, 13, 1237. [CrossRef]
5. Kong, J.; Siek, L.; Kok, C.-L. A 9-bit body-biased vernier ring time-to-digital converter in 65 nm CMOS technology. In Proceedings

of the IEEE International Symposium on Circuits and Systems(ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 1650–1653.
[CrossRef]

6. Wirthlin, M. High-Reliability FPGA-Based Systems: Space, High-Energy Physics, and Beyond. Proc. IEEE 2015, 103, 379–389.
[CrossRef]

7. Portaluri, A.; De Sio, C.; Azimi, S.; Sterpone, L. A New Domains-based Isolation Design Flow for Reconfigurable SoCs. In
Proceedings of the 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), Turin, Italy,
28–30 June 2021.

8. Deepa, M. An Improvised Voter Architecture For TMR With Reduced Area Overhead. In Proceedings of the Third International
Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022;
pp. 1001–1007.

9. NanoXplore. From Radiation Hardening to BRAVE FPGA devices. In RADSAGA Initial Training Event; NanoXplore: Geneva,
Switzerland, 2017.

10. European Space Components Coordination. ESCC Qualified Part List (QPL) ESCC/RP/QPL005-246 (REP 005); ESA: Paris, France, 2024.
11. De Sio, C.; Azimi, S.; Sterpone, L.; Merodio Codinachs, D.; Decuzzi, F. PyXEL: Exploring Bitstream Analysis to Assess and

Enhance the Robustness of Designs on FPGAs. In Proceedings of the 2023 19th International Conference on Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Funchal, Portugal, 3–5 July 2023; pp. 1–4.

12. Azimi, S.; Du, B.; Sterpone, L.; Merodio Codinachs, D.; Cattaneo, L. SETA: A CAD Tool for Single Event Transient Analysis and
Mitigation on Flash-Based FPGAs. In Proceedings of the 2018 15th International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design (SMACD), Czech Republic, Prague, 2–5 July 2018.

13. Petersen, M.B.; Nikolić, S.; Stojilović, M. NetCracker: A Peek into the Routing Architecture of Xilinx 7-Series FPGAs.
In Proceedings of the 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Array, Virtual Event,
28 February–2 March 2021.

14. Guccione, S.A.; Levi, D.; Sundararajan, P. JBits: A Java-based interface for reconfigurable computing. In Proceedings of the
Second Annual Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Laurel,
MD, USA, 28–30 September 1999.

15. Pham, K.D.; Horta, E.; Koch, D. BITMAN: A tool and API for FPGA bitstream manipulations. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017.

16. Haroldsen, T.; Nelson, B.; Hutchings, B. RapidSmith 2: A Framework for BEL-level CAD Exploration on Xilinx FPGAs. In
Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’15), New York, NY,
USA, 22–24 February 2015; pp. 66–69.

17. Lavin, C.; Kaviani, A. RapidWright: Enabling Custom Crafted Implementations for FPGAs. In Proceedings of the IEEE
26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Boulder, CO, USA,
29 April–1 May 2018; pp. 133–140.

18. Zhang, T.; Wang, J.; Guo, S.; Chen, Z. A Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code.
IEEE Access 2019, 7, 38379–38389. [CrossRef]

https://doi.org/10.3390/electronics13010045
https://doi.org/10.3390/electronics13101953
https://doi.org/10.3390/electronics13071237
https://doi.org/10.1109/ISCAS.2015.7168967
https://doi.org/10.1109/JPROC.2015.2404212
https://doi.org/10.1109/ACCESS.2019.2901949

Electronics 2024, 13, 2803 14 of 14

19. Benz, F.; Seffrin, A.; Huss, S.A. Bil: A tool-chain for bitstream reverse-engineering. In Proceedings of the 22nd International
Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway, 29–31 August 2012; pp. 735–738.

20. Mo, F.; Tabbara, A.; Brayton, R.K. A force-directed maze router. In Proceedings of the IEEE/ACM International Conference
on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281), San Jose, CA, USA,
4–8 November 2001; pp. 404–407.

21. Tessier, R. Negotiated A* Routing for FPGAs. In Proceedings of the 5th Canadian Workshop on Field Programmable Devices,
Montréal, QC, Canada, 7–10 June 1998.

22. McMurchie, L.; Ebeling, C. PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs. In Proceedings of the Third
International ACM Symposium on Field-Programmable Gate Arrays, Napa Valley, CA, USA, 12–14 February 1995; pp. 111–117.

23. Shen, M.; Luo, G. Accelerate FPGA routing with parallel recursive partitioning. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2–6 November 2015.

24. Chan, P.; Schlag, M. Acceleration of an FPGA router. In Proceedings of the Proceedings. The 5th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines Cat. No.97TB100186), Napa Valley, CA, USA, 16–18 April 1997.

25. Gort, M.; Anderson, J. Deterministic multi-core parallel routing for FPGAs. In Proceedings of the International Conference on
Field-Programmable Technology, Beijing, China, 8–10 December 2010.

26. NanoXplore. NanoXplore Wiki. Available online: https://nanoxplore-wiki.atlassian.net/wiki/spaces/NAN/overview?mode=
global (accessed on 2 June 2024).

27. Palanisamy, V.; Vijayanathan, S. Cluster Based Multi Agent System for Breadth First Search. In Proceedings of the 20th
International Conference on Advances in ICT for Emerging Regions (ICTer 2020), Colombo, Sri Lanka, 4–7 November 2020.

28. Davidson, S. ITC’99 Benchmark Circuits—Preliminary Results. In Proceedings of the International Test Conference 1999.
Proceedings (IEEE Cat. No.99CH37034), Atlantic City, NJ, USA, 30 September 1999; p. 1125.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://nanoxplore-wiki.atlassian.net/wiki/spaces/NAN/overview?mode=global
https://nanoxplore-wiki.atlassian.net/wiki/spaces/NAN/overview?mode=global

	Introduction
	Motivations
	Main Contribution

	Related Works
	Proposed Model
	Resources Hierarchy
	Routing Model

	NXRouting Tool
	Database Management
	Data Organization and Structures
	Routing Points

	GPU Implementation
	Fine-Grained Parallelization
	Coarse-Grained Parallelization

	Experimental Results
	Conclusions
	References

