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Abstract— The intima-media thickness (IMT) is an important 

parameter for evaluating cardiovascular disease risk and 
progression and can be extracted from B-mode longitudinal 
ultrasound images of the carotid artery. Despite its clinical 
significance, inter- and intra-operator variability in IMT 
measurement is a challenge due to subjective factors. Therefore, 
automatic and semi-automatic approaches based on heuristic 
methods and deep neural networks have been proposed to reduce 
the variability in IMT measurement. However, the inter- and 
intra- operator variability still remains an issue as it affects the 
quality and diversity of ground truth (GT) data used for training 
deep learning models. In this study, the authors evaluate the 
performance of different learning paradigms using different GTs 
on a multi-center IMT dataset. A recent segmentation network, 
ConvNeXt, is trained on a dataset of 2576 B-mode longitudinal 
ultrasound images of the carotid artery, using different GT 
annotations and learning paradigms. The method is then tested on 
an external dataset of 448 images from four different centers for 
which three manual segmentations were available. The results 
show how the use of different GT annotations and learning 
paradigms can enhance the generalization ability of deep learning 
models, demonstrating the importance of selecting appropriate 
GT data and learning strategies in achieving robust and reliable 
solutions. The study highlights the significance of incorporating 
heuristic methods in the training process of deep learning models 
to enhance the accuracy and consistency of IMT measurement, 
thus enabling more precise cardiovascular disease risk assessment. 
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I.  INTRODUCTION  
The intima-media thickness (IMT) measurement in B-mode 

ultrasound images is a non-invasive method used to assess the 
thickness of the intima and media layers of arterial walls [1], [2]. 
This technique has become increasingly important in clinical 
practice as it has been shown to provide valuable information 
about cardiovascular disease risk and progression. However, 
despite its clinical significance, there is a considerable amount 
of inter- and intra-operator variability in IMT measurement, 
which can be influenced by a variety of factors such as 
ultrasound device settings, operator experience, patient 
characteristics, and more, and numerous studies have also 
focused on formal methods for evaluating operator variability 
[3]–[6].  

Completely automatic and semi-automatic approaches based 
on heuristic methods (e.g., snakes) have been proposed to reduce 
inter- and intra-operator variability in IMT measurement [7]–
[13]. These methods extract objective features and improve the 
accuracy and consistency of measurement, minimizing the 
influence of subjective factors. Moreover, deep neural networks 
have recently shown significant promise in this domain, with 
state-of-the-art segmentation networks achieving high levels of 
accuracy and efficiency [14]–[16]. Despite significant advances 
in computer science and Artificial Intelligence (AI), the issue of 
inter-operator variability in medical image segmentation still 
remains a challenge. This variability results in discrepancies 
between different ground truth (GT) annotations, affecting the 
quality and diversity of the GT data used for training deep 
learning models. Therefore, selecting appropriate GT data for 
training segmentation networks is critical to achieving accurate 
and reliable medical image analysis [17].  

In this study, we evaluate the performance of various 
learning paradigms using different ground truths (GTs). The 
GTs were generated using a range of techniques, including 
manual segmentation by different operators, a semi-automated 
segmentation algorithm, and two consensus methods, STAPLE 
[18] and one based on a similarity coefficient [17]. 

The main contributions of this work are the following:  

• We trained a recent segmentation network using different 
ground truths (GTs) on a multi-center IMT dataset. The 
selected network, ConvNeXt, features a hierarchical design 
that shares similarities with vision transformers but relies 
exclusively on convolutional layers. This architecture is 
composed of multiple convolutional blocks, where each 
block employs grouped convolutions and a series of split-
transform-merge operations to enhance feature interactions 
across channels and spatial dimensions. 

• Our study provides a quantitative comparison that 
demonstrates how the use of different ground truth (GT) 
annotations and learning paradigms can enhance the 
generalization ability of deep learning models. Our findings 
highlight the importance of selecting appropriate GT data 
and learning strategies in achieving robust and reliable 
medical image analysis. 



II. MATERIALS AND METHODS 

A. Dataset and Ground Truth Definition 
To train and validate our model, we utilized two previously 

published datasets [1], [14], which are freely available for 
download. The resulting dataset comprised 2576 B-mode 
longitudinal ultrasound images of the carotid artery, with 
acquisition details provided in the original publications. To test 
different learning paradigms, we employed two manual 
annotations of the LI and MA profiles from the same expert 
analyst at two time points (A1 and A1s), along with one 
computerized measurement based on dynamic programming 
[19], which is also freely available for download [1], [14]. The 
dynamic programming method was developed by researchers 
from Technische Universität München and is referred to here as 
TUM for simplicity. Then, two consensus methods were 
employed: the well-established STAPLE method [18] and a 
recently proposed method based on the computation of a 
similarity index [17]. 

To evaluate the effectiveness of our proposed method, we 
tested it on an external dataset comprising 448 images from four 
different centers. For this dataset, we compared the automatic 
segmentation with three manual tracings, reported here as GT1, 
GT2 and GT3 [20]. 

B. Segmentation Network 
The ConvNeXt network architecture (Fig. 1) is a state-of-

the-art deep learning model that features a hierarchical design 
inspired by vision transformers. However, unlike traditional 
transformers, ConvNeXt exclusively utilizes convolutional 
layers, making it highly suitable for medical image analysis 
tasks. At its core, ConvNeXt consists of multiple convolutional 
blocks, each of which comprises multiple convolutional layers, 
grouped convolutions, and a series of split-transform-merge 
operations. These blocks are designed to capture and process 
high-level features from medical images with complex 
structures and variations, enabling the network to achieve 
superior performance in various medical imaging tasks. 

In this segmentation network the traditional ReLU activation 
function is replaced with the GeLU (Gaussian Error Linear Unit) 
activation function. GeLU has shown promise in improving the 
performance of deep learning models in various image 
processing tasks by incorporating a non-monotonic behavior 
that captures both positive and negative input values. By 
leveraging this activation function in our segmentation network, 
we aim to enhance its accuracy and robustness in handling 

medical image data with complex structures and varying 
intensities. 

To train the deep learning model for semantic segmentation, 
we randomly divided the 2576 images of the dataset into training 
and validation sets, containing 2311 and 265 images, 
respectively. The ConvNeXt was trained for 30 epochs, with an 
early stopping equal to 5 epochs. We used focal loss as the loss 
function and employed AdamW optimization algorithm with an 
initial learning rate of 10-4, and a batch size of 8. On the training 
set we applied on-the-fly data augmentation with the following 
transformation: horizontal flips (with probability 0.25), blurring 
(with probability 0.25), and photometric distortions that changed 
the relative contrast (between 0.90 and 1.10) and saturation 
range (between 0.90 and 1.10). We selected the best model based 
on the Intersection over Union (IoU) metric on the validation set. 
Our approach was implemented using Pytorch and the 
mmsegmentation library [21]. Each segmentation model was 
trained on an RTX 3090 GPU with 24 GB of VRAM, taking 
approximately 3 hours of training time. 

C. Validation metrics 
To validate the results obtained, four different metrics were 

employed. First of all, the segmentation masks were compared 
using the Dice coefficient to determine how similar the manual 
and automatic masks were. Then, the absolute IMT error was 
computed as follows:  

Abs. IMT Bias =|IMTmethod-IMTGround truth| (1) 

 

 

 
Fig. 1. Segmentation network used in this work. (a) The PPM (Pyramid Pooling Module) allow to exploit global context information by fusing 
features into four different pyramid scales. The feature map is then used to perform the segmentation of the intima media complex. (b) Block design 
of the ConvNeXt. The GELU (Gaussian Error Linear Unit) replace the traditional RELU (Rectified Linear Unit) in the convolutional block.  

 
Fig. 2. Segmentation results. The LI profile is shown in cyan, and the MA 
profile in yellow. A) original image; B) GT1; C) GT2; D) GT3; E) 
ConvNeXtTUM; F) ConvNeXtSTAPLE; G) ConvNeXtA1; h) ConvNeXtA1s.  

 



where method refers to the automatic segmentation and Ground 
truth is the IMT measured from the three manual operators 
(GT1, GT2 or GT3, respectively). Finally, the Hausdorff 
Distance (HD) between the manual and automatic profiles were 
compared, considering separately the LI and MA profile (HD LI 
and HD MA, respectively).  

III. RESULTS 
Fig. 2 shows some qualitative segmentation results obtained 

by the different networks. Table 1 instead reports the obtained 
quantitative results comparing the three manual segmentations 
GT1, GT2 and GT3 on the test set. The most significant metrics 
reveal that the network trained on TUM segmentations 
(ConvNeXtTUM) consistently performs within the inter-operator 
variability range, even if it is not the top-performing network 
overall. This is in contrast to the other methods, which often 
perform outside of the inter-operator variability range.  

It is important to note how, overall, the systems that 
performed the best on the external test set were those that 
included in some manner the TUM semi-automatic algorithm, 
either entirely (i.e., ConvNeXtTUM) or through a consensus 
method (i.e., ConvNeXtSTAPLE and ConvNeXtHYBRID). In 
general, these three networks performed similarly when 
considering the Dice coefficient, but show an increase in 
performance when considering the absolute IMT error and the 
Hausdorff distance, especially considering the MA profile. This 
hints at the fact that the TUM semi-automatic algorithm provides 
essential information for accurately segmenting the MA border.   

Fig. 3 presents bar plots of the results obtained by the 
network trained on the TUM semi-automatic algorithm 
compared with inter- and intra- operator variability on the test 
set, considering the GT1, GT2, and GT3 manual segmentations.    

IV. DISCUSSION AND CONCLUSIONS 
The accurate and reliable measurement of the IMT in B-

mode ultrasound images is crucial in assessing cardiovascular 
disease risk and progression, yet the high inter- and intra-
operator variability can pose significant challenges in achieving 
reliable and reproducible results. Despite significant advances in 
deep learning techniques in recent years, the issue of inter- and 
intra- operator variability in medical image segmentation 
remains an open challenge. This variability causes 
inconsistencies in ground truth annotations, which affects the 
quality and diversity of the data used for training deep learning 
models. Hence, choosing appropriate GT data is essential for 
reliable and accurate medical image analysis. 

In this study, we explored the impact of various learning 
paradigms for deep learning networks using different GT 
techniques, including manual segmentations by multiple 
operators, semi-automated segmentation, and the consensus of 
multiple operators obtained using two methods. A well-
established deep learning network was trained with the various 
learning paradigms to evaluate the different performance on an 
external test set that had been segmented by three different 
operators. The results indicate that the network trained on the 
semi-automatic TUM algorithm performed similarly to other 

TABLE I.  PERFORMANCE METRICS OF SEGMENTATION MODELS ON THE TEST SET COMPARED WITH THE MANUAL OPERATORS 
(GT1, GT2, AND GT3). METRICS ARE COMPUTED ON THE COMMON SUPPORT BETWEEN BINARY MASKS.  

Metric 
Segmentation models vs GT1 Between manual operators 

ConvNeXtA1 ConvNeXtA1s ConvNeXtTUM ConvNeXtSTAPLE ConvNeXtHYBRID GT1 vs GT2 GT1 vs GT3 

DSC 0.868±0.051 0.825±0.068 0.874±0.051 0.876±0.045 0.873±0.049 0.864±0.062 0.868±0.061 
ABS IMT 
bias 
(mm) 

0.121±0.104 0.261±0.126 0.101±0.133 0.118±0.095 0.153±0.097 0.120±0.106 0.083±0.091 

HD LI 
(mm)  0.198±0.139 0.219±0.141 0.186±0.145 0.177±0.087 0.179±0.109 0.223±0.093 0.183±0.083 

HD MA 
(mm) 0.283±0.132 0.362±0.145 0.214±0.115 0.256±0.119 0.268±0.126 0.195±0.139 0.200±0.108 

 Segmentation models vs GT2 GT2 vs GT1 GT2 vs GT3 

DSC 0.879±0.069 0.864±0.073 0.894±0.060 0.896±0.062 0.894±0.060 0.864±0.062 0.858±0.057 
ABS IMT 
bias 
(mm) 

0.091±0.137 0.200±0.153 0.092±0.130 0.085±0.121 0.107±0.29 0.120±0.106 0.131±0.094 

HD LI 
(mm) 0.231±0.136 0.185±0.131 0.194±0.137 0.196±0.087 0.190±0.096 0.223±0.093 0.217±0.093 

HD MA 
(mm) 0.283±0.198 0.362±0.199 0.205±0.161 0.257±0.194 0.269±0.205 0.195±0.139 0.204±0.167 

 Segmentation models vs GT3 GT3 vs GT1 GT3 vs GT2 

DSC 0.852±0.066 0.806±0.073 0.870±0.052 0.862±0.057 0.858±0.059 0.868±0.061 0.858±0.057 
ABS IMT 
bias 
(mm) 

0.145±0.101 0.298±0.119 0.121±0.118 0.142±0.090 0.185±0.099 0.083±0.091 0.131±0.094 

HD LI 
(mm) 0.191±0.127 0.206±0.134 0.178±0.137 0.169±0.076 0.171±0.101 0.183±0.083 0.217±0.093 

HD MA 
(mm) 0.301±0.136 0.382±0.148 0.232±0.129 0.275±0.126 0.285±0.128 0.200±0.108 0.204±0.167 

GT: Ground truth; GT1, GT2, GT3: manual operators 1, 2, and 3 that segmented the test set, respectively; DSC: Dice Similarity Coefficient; 
ABS IMT bias: Absolute IMT bias; HD LI: Hausdorff distance between automatic and manual LI profiles; HD MA: Hausdorff distance between 
automatic and manual MA profiles; ConvNeXtA1: network trained with A1 manual profiles as GT; ConvNeXtA1s: network trained with A1 manual 
profiles as GT; ConvNeXtTUM: network trained with TUM semi-automatic profiles as GT; ConvNeXtSTAPLE: network trained with the STAPLE 
consensus as GT; ConvNeXtHYBRID: network trained with the hybrid consensus as GT; ConvNeXtA1. 

 



operators. While all networks showed comparable results in 
terms of the Dice coefficient, only some were reliable in terms 
of HD and absolute IMT bias, with the networks trained on 
STAPLE and TUM performing better. Further analysis showed 
that the network trained on TUM had the lowest HD value on 
both LI and MA profiles and, in some cases, obtained lower 
values than inter-operator variability (HD LI vs. GT3: 
0.178±0.137 mm for TUM vs. 0.183±0.083 for GT1 and 
0.217±0.093 for GT2). This indicates that the TUM-trained 
network was able to generalize the segmentation task better than 
the other networks. 

The superior performance of the TUM network can be 
attributed to its ability to extract objective image features, 
resulting in better pixel-based performance compared to manual 
operator annotations, producing more consistent LI and MA 
profiles. The results here demonstrate the advantages of using a 
deep network trained on a GT obtained by a quantitative 
algorithm, which leads to better generalization compared to 
using single manual annotations or consensus methods. These 
findings are consistent with recent studies [22] in which deep 
learning generative algorithms are employed to overcome the 
limitations of heuristic algorithms, turning an initial semi-
automatic, slow, and unstable heuristic algorithm into an 
automatic, near real-time, and robust solution. 

Future developments could include the implementation of 
novel losses that focus on the common trait between manual and 
automatic segmentation, computed only on the common 
support. This would allow the network to better recognize the 
similarities between the two and improve segmentation 
accuracy. Additionally, exploring other deep network 
architectures, such as transformers, can provide insight into the 
effect of different types of ground truths. Applying this approach 
to other fields of medical imaging, such as nuclei instance 
segmentation in digital pathology or brain tumor segmentation 
in MRI, can lead to more reliable, generalizable, and robust 
algorithms. By continuing to develop and refine these 
techniques, we can improve medical image analysis and 
ultimately provide better patient care. 
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