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ABSTRACT This study proposes a novel approach for cooperative adaptive cruise control (CACC) based on
the twin delayed deep deterministic policy gradient algorithm (TD3) for heavy duty battery electric vehicles
(BEVs). CACC is an advanced driver assistance systems (ADAS) that exploits vehicle connectivity to bring
new advantages to cruise control technologies. The TD3 algorithm, which is a deep reinforcement learning
(DRL) algorithm, was selected because it is currently at the forefront of the state of the art for problems with
continuous states and actions. Furthermore, compared to state-of-the-art techniques, such as linear MPC,
a DRL approach is more effective in dealing with highly nonlinear objectives. This enables us to explicitly
model the effect of air drag reduction in the ego vehicle, which positively affects energy savings. The air drag
reduction characteristic was modeled through experimental data from a previous work. At the same time,
driving comfort was also optimized with respect to the reference driving cycle, chosen as the HHDDT driving
cycle. Three different types of spacing strategies have been investigated that involve minimum time headway
and time-to-collision (TTC) to study the safety guarantee of the algorithm, particularly when facing critical
and unexpected situations such as sudden hard braking. The results achieved show how the Ego vehicle
can reduce energy consumption by up to 19.8% without the comfort worsening with respect to the preceding
vehicle, still guaranteeing safe driving conditions, when considering the spacing strategy based only on TTC,
developed to obtain the highest air drag reduction.

INDEX TERMS Cooperative adaptive cruise control, reinforcement learning, TD3 algorithm, heavy-duty
vehicle, air drag reduction, BEV.

I. INTRODUCTION
Advanced driver assistance systems (ADAS) are playing
an increasingly important role in supporting the driver to
create safer and more efficient driving conditions. Among
all ADAS, adaptive cruise control (ACC) is a system that
provides consistent aid, especially in highway mobility,
guaranteeing safety by minimizing the possible risk of
collision due to variations in the speed of the vehicle in front,
automatically adjusting the vehicle velocity and maintaining
the correct spacing. Theoretically, this type of system also
makes it possible to optimize road throughput, increasing
its capacity and reducing traffic congestion. However, it was
found in practice that the current generation of ACC systems
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does not guarantee the so-called string stability of a vehicle
platoon and can therefore lead to an actual decrease in traffic
capacity [1].

To overcome these issues, new cooperative adaptive cruise
control (CACC) systems are being proposed that exploit
vehicle-to-vehicle (V2V) connectivity, which can provide
additional safety and robustness guarantees and introduce the
possibility of concretely improving traffic flow stability [2],
[3], [4], [5].

A. REVIEW OF EXISTING ACC AND CACC SYSTEMS
In its simplest version, an ACC aims to maintain a constant
temporal gap between the two vehicles, using common PID
or LQ controllers [6], [7]. However, most of the ACC and
CACC solutions, such as [8], [9], [10], and [9] are based
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on model predictive control (MPC), which uses a dynamic
model of the system to calculate the optimal control signal
through an online optimization process. MPC is widely used
for automotive control systems because of its reliability and
solid theoretical foundations and because of the possibility
to explicitly deal with hard constraints. Recently, particular
attention has been paid to nonlinear MPC as an effective
control method for ACC/CACC problems [11], [12], since it
allows one to directly consider also energy-saving features,
which depend on strong nonlinear dynamics.

On the other hand, an alternative approach that is rapidly
gaining traction in control applications is reinforcement
learning (RL) [13]. RL, and more specifically deep rein-
forcement learning (DRL), a combination of RL with
deep learning, can also be particularly suitable for dealing
with continuous control problems that may be difficult to
model [14], [15]. It has been demonstrated how DRL can
achieve comparable or enhanced performance with respect
to more common optimal control strategies regarding an
ACC problem, especially in terms of computational costs
and in the presence of high-dimensional and uncertain
environments [16].

Recently, several ACC solutions that exploit a RL-
based control strategy have been proposed: for example,
[17] proposed a solution aimed at improving comfort and
safety using a deep deterministic policy gradient (DDPG)
algorithm [18], a widely used RL method in many ACC
solutions due to the possibility of considering a continuous
action space. Another relevant study [19] proposed a
supervised actor–critic approach, combining the benefits of
supervised learning with RL.

Similarly, several CACC systems that use V2V communi-
cation and at the same time exploit control strategies based
on RL have been introduced. For example, [20] proposed
a CACC solution using a control strategy based on the
policy gradient algorithm, while [21] developed an RL-based
car-following strategy with the aim of damping possible
traffic oscillations and improving energy consumption.
A CACC based on supervised RL was designed and
validated in [22], while the solution proposed by [23] takes
advantage of a model-based DRL control strategy. Other
solutions are instead based on controlling entire platoons
of several vehicles, resulting in more complex multiagent
strategies [24], [25].

B. RESEARCH GAP AND PROPOSED SOLUTION
In any case, most ACC and CACC solutions are designed for
standard light-duty vehicles rather than heavy-duty vehicles
(HDVs). However, HDVs make up a considerable share of
highway traffic, as they are indispensable for regional and
long-distance freight transport. According to [26], energy
demand from heavy-duty trucking is expected to increase by
more than 50% between 2000 and 2040.

Although electrification may contribute to mitigate the
GHG intensity of freight transport, this sector will remain
in the near future very challenging to electrify and there

is a growing need to explore alternative solutions that can
reduce unnecessary energy consumption. To this end, one
promising solution is platooning [27], [28], [29], a technique
that allows to reduce energy consumption by exploiting the
reduction in aerodynamic drag resulting from cruising at
a reduced intervehicular distance. In practice, platooning
can be achieved using ACC or CACC systems and leads
to improved fuel economy. Many works have already
demonstrated the potential benefits of platooning for heavy-
duty vehicles [30], [31], [32]. The solutions proposed by [33],
[34], and [35] are all examples of CACC in which the
reduction in air drag is explicitly considered for energy
savings purposes.

However, there is a poor availability of solutions that also
factor in passenger comfort in conjunction with the energy-
saving benefits of platooning, which could be detrimental
to user experience. Furthermore, very few CACC solutions
for heavy duty vehicles are already available that take
advantage of a DRL control approach [36], [37]. For
these reasons, in this work, a novel CACC solution for
heavy-duty vehicles based on a DRL control strategy is
proposed, simultaneously focusing on energy savings and
comfort improvement. As shown later in this article, this is
particularly relevant as these two are conflicting objectives;
therefore, if passenger comfort is not explicitly taken into
account in its development, a CACC system can lead to
unacceptable behavior.

Clearly, designing such a CACC system poses a complex
multi-objective problem driven by non-linear dynamics.
For this reason, we propose a novel implementation based
on the recently introduced twin delayed deep determinis-
tic policy gradient (TD3) algorithm [38], instead of the
more commonly used deep deterministic policy gradient
algorithm (DDPG). To test our solution, we developed
a case study simulating a platoon of two heavy-duty
vehicles, with equal characteristics, considering highway
scenarios.

Two notable aspects of our proposed solution are the
multi-objective reward function that was developed for
the RL agent and the employment of an experimental air
drag reduction characteristic. The proposed reward function
explicitly accounts for energy saving and comfort and also
employs a two-term spacing policy based on time headway
and time to collision. As discussed in Sec. VI, this spacing
policy proved to be superior in our simulation results with
respect to simpler spacing policies. Another important aspect
is in the inclusion of a term associated to the air drag reduction
obtainable as a function of intervehicular distance, which is
a novel solution in RL-based ACC systems. This additional
term improves the ability of the agent to achieve energy
efficient operation.

Summarizing, the CACC system proposed in this work
aims to address the previously mentioned research gap with
respect to coordinated optimization of energy saving and
passenger comfort by using an advanced RL algorithm (TD3)
that leverages an explicit non-linear model of the achievable
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air drag reduction and V2V connectivity and a spacing policy
based on time headway and time to collision.

II. VEHICLE MODEL
The vehicle model considered in this work is a quasi-static,
backward-facing powertrain simulation model for a heavy-
duty battery electric vehicle (BEV). The discrete longitudinal
dynamics equation of the vehicle is based on Newton’s
second law:

s(k + 1) = s(k) + v(k)δt
v(k + 1) = v(k) + a(k)δt

a(k) =
1
mv

(Ftraction(k) − Faero(k) − Froll(k))

(1)

where s, v and a are respectively the travelled distance, the
velocity and the acceleration of the vehicle, mv is the vehicle
mass and δt is the discrete time interval.Froll = crollmvg is the
simplified rolling resistance force, with croll corresponding
to the rolling coefficient and g to gravity acceleration,
Faero(k) =

1
2ρaircd (k)mvAv(k)

2 is the aerodynamic force to
which the vehicle is subject, where ρair is the air density, cd is
the air drag coefficient and A is the frontal area of the vehicle,
and Ftraction(k) is the traction force at the wheels. The vehicle
is powered by a 372 kW electric motor, which characteristic
are reported in Table 1, together with the other vehicle’s main
parameters.

Combining Eq. (1) with the dynamic equation of the motor,
the relation that associate the acceleration of the vehicle to the
motor torque Tm(k) can be expressed as:

Tm(k) =

(Froll + Faero(k))rwheel + Im,eq
a(k)
rwheel

τdiff
(2)

where Im,eq is the equivalent inertia at the motor output, rwheel
is the wheel radius and τdiff is the differential ratio.
The total power requested to the battery is therefore the sum
of three terms:

Pbatt (k) = Pm(k) + Ploss(k) + Paux (3)

where the motor power is calculated from the motor torque
net of the gear efficiency (ηgear ) and the final drive efficiency
(ηfd ). The power related to motor losses Ploss(k) due to
friction, hysteresis, and parasitic effects depends instead on
the actual motor efficiency ηm(k), while Paux is the average
power absorbed by the auxiliary devices.

Themotor is supplied by a 346 kWh battery, modeled using
an equivalent Thevenin circuit for which the Open Circuit
Voltage VOC (k) and the equivalent internal resistance Rint (k)
values depends on the actual State of Charge SOC(k) level.
The SOC variation at each time step is calculated including
also the battery nominal capacity Qnom following Eq. (4):

SOC(k + 1) = SOC(k)

−
VOC (k) −

√
VOC (k)2 − 4Rint (k)Pbatt (k)
2Rint (k)Qnom

(4)

TABLE 1. Vehicle parameters.

The main battery parameters are reported in Table 1. For the
sake of clarity, it is important to highlight that the vehicle
dynamics alone is sufficient to calculate the correct action
through the RL algorithm, while the e-machine and battery
models are only used to assess the energy efficiency of the
developed CACC.

A. SAFETY PARAMETERS
The RL agent, which represents the follower (or ego)
vehicle, is trained with the aim to mainly reduce energy
consumption by minimizing the intervehicular gap, thus
reducing the air drag coefficient, and at the same time
improve driving comfort, a feature commonly associated with
vehicle acceleration and jerk [39], with respect to the leading
truck, also thanks to the consideration of a variable time
headway in the control strategy.

In the CACC framework, the ego vehicle must respect
safety conditions that are strictly related to two main
kinematic quantities, the time headway and the time to
collision (TTC), as defined in Eq. (5) and Eq. (6) respectively.

h(k) =
sLead (k) − sEgo(k) − lv

vEgo(k)
(5)

TTC(k) =
sLead (k) − sEgo(k) − lv
vEgo(k) − vLead (k)

(6)

where sLead , sEgo, vLead , vEgo are respectively the travelled
distances and the longitudinal velocities of the leading and
ego vehicles, while lv is the length of the leading truck. The
time headway simply corresponds to the temporal distance
between the two vehicles, while the TTC is a measure of the
time it will take for two vehicles to collide, given their current
positions and velocities [40]. TTC explicitly quantifies the
risk of rear-end collision at a certain time, and is commonly
considered as a traffic safety indicator, including possible
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related variants [41], [42]. Both time headway and TTC have
been taken into account in different ways, resulting in three
different adopted strategies.

V2V communication has been exploited instead with the
objective of obtaining more precise values of the leader’s
velocity and acceleration in fast time, allowing the ego
truck to act promptly to their possible variations and thus
to follow more closely the leader, also improving string
stability [2], [43]. Anyway, for simplicity, in this work the
communication between the two vehicles is considered ideal,
without taking into consideration possible communication
delays or communication losses that may be present in real
case scenarios.

B. VARIABLE AIR DRAG COEFFICIENT
Heavy-duty vehicles have a larger frontal area compared to
commercial light duty vehicles and are consequently subject
to much larger aerodynamic forces. For this reason, they are
particularly sensitive to the trial effect that arises from the
presence of the preceding lead vehicle in an adaptive cruise
control problem. The impact of reduced air resistance can be
taken into account considering a variable air drag coefficient,
depending on the intervehicular gap [44]: intuitively, the air
drag coefficient decreases with distance, and consequently
the aerodynamic forces are lower. Therefore, a reduced gap
leads the ego vehicle to be subject to a lower resistance force.

Several relations between the air drag coefficient and the
intervehicular gap have been investigated in previous works
regarding heavy-duty vehicles [28]. In the proposed solution,
the relation between cd and the distance between leader
and ego vehicle is based on [31] and it has been obtained
experimentally: cd (k)=cd,inf

a3g3+a2g2+a1g+a0
b3g3+b2g2+b1g+b0

if g < G0

cd (k)=cd,inf otherwise
(7)

ai, bi and G0 are parameters calculated specifically for
an heavy-duty vehicle, while ρair is the air density and
g(k) = sLead (k) − sEgo(k) − lv is the intervehicular distance,
corresponding to the space between the front end of the ego
vehicle and the rear end of the Lead vehicle. The relationship
between cd (k) and g(k) is shown graphically in Fig. 1.

The above relation has been calculated for a reference
velocity of 100 km/h, and for this reason it can be considered
only for highway scenarios. Anyway, the ego vehicle is much
less affected by the aerodynamic influence if the velocity is
low. Hence, the air drag coefficient reduction has a negligible
impact when considering urban driving cycles.

III. REINFORCEMENT LEARNING AND
ALGORITHM SETTINGS
A. SELECTION OF THE ALGORITHM
Reinforcement learning (RL) has recently gained increasing
importance in control problems characterized by complex and
difficult-to-model systems. In the RL framework, an agent is
trained to select actions based on a set of observations which

are used to define the current state of the system [45], [46].
After choosing an action, the agent also receives a reward;
when deployed, the agent attempts to maximize both the
instantaneous reward and future rewards.

Many ACC solutions based on RL ( [17], [47]) use a
particular model-free and off-policy method based on policy
gradient that exploit the actor-critic architecture, called deep
deterministic policy gradient (DDPG) introduced by [18].
DDPG has become one of the most popular RL choice in this
kind of control applications due to the possibility to work in
both continuous action and state space. Another advantage of
DDPG is that it works well in a noisy environment: indeed,
a noisy environment is explicitly wanted for exploration
making the algorithm off-policy. DDPG is based also on the
use of target networks and experience replay, two techniques
already introduced in DQN, that allow, respectively, to make
the learning process more stable and avoid correlations
between samples, basing the learning process on independent
data.

The proposed solution is based on a particular variant
of DDPG, called twin delayed deep deterministic policy
gradient (TD3), introduced by [38]. TD3 algorithm has
basically the same structure and characteristics as DDPG, but
it also considers some few additional features that address
the issue of overestimation bias, typical of deep Q-learning
and also present in DDPG, which can lead to sub-optimal
policies. In particular, the algorithm tries to minimize the
overestimation effect that may arise from the recursive
formulation of the updating step using a double critic. The
two critics estimate both Q values, but only the lower of them
is used in the subsequent update step, mitigating the problem.
TD3 also faces the problem of high variance that may slow
the learning process [13], due to a policy regularization due
to the addition of a clipped noise to the target action, and
a less frequent policy update, reducing the accumulating
error, thus improving the stability and the performance of the
algorithm. Considering its peculiarities, the TD3 algorithm
is particularly suitable for a CACC problem, since it takes
advantage of all the benefits of the DDPG algorithm but at the
same time addresses the common problems of overestimation
and high variance.

B. ALGORITHM SETUP
The states considered in this work are the lead vehicle
acceleration aLead (k) and speed vLead (k), the speed of the
ego vehicle vEgo(k) and the time headway h(k). All these
quantities are related to the objectives of CACC,which are the
vehicle’s acceleration and jerk, the TTC, the time headway,
and the air drag coefficient. The control action calculated by
the algorithm is instead associated with the acceleration of the
ego vehicle, similarly to many other CACC solutions ( [17],
[21]), and is necessarily scaled in order to match the chosen
acceleration physical range.

Regarding the characteristics of the actor/critic network
and the training process, the settings were mostly the same
as considered in the original algorithm evaluation test [38].
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FIGURE 1. Drag coefficient as function of the gap.

TABLE 2. Algorithm parameters.

The only differences are in the size of the actor and critic
networks, in the replay buffer and mini-batch sizes, and in
the learning rate value, which has been lowered from the
moment that it showed more stable convergence results for
this specific type of problem. The algorithm parameters are
summarized in Table 2.

IV. REWARD FUNCTION DEVELOPMENT
As discussed in Sec. III, the formulation of the reward
function plays a fundamental role in meeting the identified
controller objectives and constraints. In particular, for cruise
control applications, the reward function must:

• Implement a spacing policy, which is an expression of
the desired spacing between two consecutive vehicles at
steady state operation [48].

• Favor desirable behavior in terms of other control
objectives, such as comfort and energy savings.

• Strongly penalize unacceptable behavior in terms of
safety, which are to be considered as hard constraints.

With respect to these requirements, RL applications have
so far focused on formulating reward functions based on
a desired IVD or time headway [20], [49], and then
possibly terms related to velocity, acceleration, and/or jerk

to account for comfort [16], [21], [22], [24]. Some ( [17])
authors have also considered time-to-collision as a safety
threshold.

In contrast, our approach introduces a reward function
that directly considers features related to comfort and energy
efficiency (jerk, acceleration, and air drag) as well as a
spacing policy including both time headway and time-to-
collision. Furthermore, the term associated with air drag is
evaluated by explicitly modeling the air drag coefficient as a
function of the IVD, as described in Sec. II-B, which is based
on experimental data.

More in detail, the proposed reward function consists
in a partial weighted sum of terms having the general
formulation:

rtot (k) =
wjerkrjerk (k) + waccracc(k) + wdragrdrag(k)

wjerk + wacc + wdrag
+

+ rh(k) + rTTC (k) (8)

where rjerk (k) and racc(k) are terms related to jerk and
acceleration, two quantities typically associated to comfort,
while rdrag(k) is a air drag reduction term that represent the
energy-saving feature. These three terms can assume values
between [−1; 1] and are weighted and then normalized
using three corresponding weighting factors, which gives the
possibility of considering a trade-off between comfort and
reduction in energy consumption, the two main objectives of
the proposed solution.

While the first part of the equation is devoted to comfort
and energy-saving features, the last two terms of the reward
function, rh(k) ∈ [−1; 0] and rTTC (k) ∈ [−1; 0], related,
respectively, to the time headway and TTC, are essentially
used as soft constraints to ensure safety conditions in different
ways, depending on the adopted strategy. Differently from
the other terms, they never give positive rewards to the agent,
since their aim is to act only when the ego vehicle approaches
a possible episode failure and, in all other cases, not interfere
with the other reward terms.
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A. TIME HEADWAY PENALTY TERM
The time headway penalty term rh(k) is necessary to maintain
the temporal gap between the two vehicles in a certain
reasonable range. Instead of defining a fixed desired target
for the time headway, in this work the time headway is left
free to vary between two bounds. Possible advantages of a
variable time headway considering heavy-duty vehicles have
been discussed in [50]. In this work, the consideration of a
variable time headway has the main purpose to give the agent
more freedom in satisfying the comfort and air drag reduction
goals.

Specifically, if h(k) is kept between the two desired
values, a null penalty is applied. Otherwise, if these limits
are exceeded, a linear penalty is considered according to
equation (9):

rh(k) = −
h(k) − hlow,des

hmin − hlow,des
if h(k) < hlow,des

rh(k) = −
h(k) − hhigh,des
hmax − hhigh,des

if h(k) > hhigh,des

0 otherwise

(9)

where hmax,des is the time headway desired upper bound,
considered always equal to 2 s; hmin,des is the time
headway desired lower bound, and can assume different
values depending on the specific strategy; hmin = 0 s is the
minimum time headway limit, which corresponds to a crash
with the Lead vehicle; hmin = 4 s is the maximum time
headway limit that, if exceeded, it can be deemed that the ego
vehicle has lost the leader.

The maximum and minimum limits are instead related to a
failure of the algorithm: if these limits are reached, a severe
overall penalty of rtot = −100 is given to the agent strongly
discouraging it to somehow approach this headway values in
the future.

B. TIME-TO-COLLISION PENALTY TERM
The time-to-collision is a quantity strictly related to safety,
as it quantifies the collision risk between two vehicles at a
specific time instant. For this reason, the additional penalty
term rTTC (k) based on TTC has been introduced in the total
reward definition. Some ACC solutions based on RL that
considers the TTC in the reward function uses a logarithmic
variability ([17], [47]) below a certain safety threshold under
which the risk of collision is considered high. This limit is
usually chosen equal to 4 seconds [51]. However, in [52]
it is highlighted how a limit of 4 seconds may lead to
false alarms, suggesting a threshold of 3 seconds. Basing on
these considerations, a linear penalty has been introduced,
according to the following equation:
rTTC (k)=0 if TTC(k) ≥ TTClim
rTTC (k)=−1 if TTC(k) ≤ TTClim,low

rTTC (k)=
TTC(k) − TTClow
TTClim − TTClim,low

otherwise

(10)

where TTClim = 4 s and TTClim,low = 3 s. This type of
variability proved to discourage the ego vehicle to exceed
the TTC threshold maintaining safe driving conditions, and,
differently from a logarithmic penalty, it allows to severely
penalize the agent even before the TTC reaches values close
to zero.

C. JERK REWARD TERM
The acceleration rate of change is an important quantity that is
directly related to driver and passengers’ comfort. Reduce the
jerk can lead tomore comfortable driving conditions [53], and
for this reason, the reward term rjerk (k) is introduced with the
aim to encourage the agent to provide, when possible, smooth
acceleration profiles. The reward term has the following
expression:

rjerk (k) = 1 if |j(k)| ≤ jmin

rjerk (k) = 1 − 2
|j(k)| − jmin
jmax − jmin

if jmin < |j(k)| < jmax

rjerk (k) = −1 if |j(k)| ≥ jmax
(11)

where jmin = 1 m/s3 is the limit under which the
jerk, in absolute value, is considered optimal in terms of
comfort [54], while jmax = 10 m/s3 is a maximum limit that
should be never overcome, if possible.

D. ACCELERATION REWARD TERM
Also the acceleration of the ego vehicle, similarly to its rate
of change, can be associated to comfort features. Unnec-
essary oscillations of the acceleration, especially with high
magnitude, can lead to uncomfortable rides [39] if compared
to driving conditions with slow changes in the velocity
profile. For this reason, the agent is rewarded with positive
values when, if possible, provides low acceleration values.
The acceleration reward term racc(k) significantly influences
the ego vehicle behavior depending on its formulation and,
for this reason, several attempt has been done investigating
the best reward definition. While a linear reward definition
makes the agent more sensible also to accelerations with very
small magnitude, leading to a more unstable training process,
a quadratic formulation [55] proved to be more tolerant with
a relatively wide range of small acceleration values but at the
same time more stringent with medium and high acceleration
peaks. Consequently, the chosen reward formulation has a
quadratic variability: racc(k) = 1 − 2

(
a(k)

amax(k)

)2

if a(k) < amax(k)

racc(k) = −1 if a(k) ≥ amax(k)

(12)

where amax is chosen as the minimum value between the
peak acceleration of the reference highway driving cycle
(0.8 m/s2) and the maximum acceleration that the vehicle
can produce depending on the motor power at each time step.
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E. AIR DRAG COEFFICIENT REDUCTION REWARD TERM
Finally, the reward term rdrag(k) is introduced to achieve
energy savings thanks to the air drag reduction. This reward
term indirectly encourages the agent to follow the leading
vehicle with the smallest gap possible, maximizing the air
drag coefficient reduction, which is modeled as a function
of IVD. The chosen reward formulation is based on a linear
variability between two air drag coefficients limits:

rdrag(k) = 1 if c̄d ≤ c̄d,min

rdrag(k) = −1 if c̄d ≥ c̄d,max

rdrag(k) = 1 − 2
(

c̄d − c̄d,min

c̄d,max − c̄d,min

)
otherwise

(13)

where c̄d is the air drag coefficient normalized with respect
to the undisturbed one (cd,inf ). c̄d,min and c̄d,max are the
normalized air drag coefficients calculated according to
Eq. (7), considering the mean gaps at time headways hlow,des
and hhigh,des.

V. ADOPTED STRATEGIES
In this work, three different spacing strategies have been
investigated involving minimum time headway and TTC as
safety parameters with the aim of showing the different
related behaviors and the entity of reduction of energy
consumption.

A. STRATEGY BASED ON MINIMUM TIME HEADWAY
ONLY (H STRATEGY)
The first solution considered is based only on minimum time
headway as safety parameter, chosen equal to 0.5 seconds.
Hence, the time headway is let free to vary between the two
desired values equal to hmin,des = 0.5 s and hhigh,des = 2 s,
as also considered in [56]. At this stage, the TTC is not used
in the reward function to ensure safety.

B. STRATEGY BASED ON TIME-TO-COLLISION ONLY (TTC
STRATEGY)
As already discussed before, the TTC, differently from
time headway, quantifies at every time instant the potential
collision risk between the two vehicles, a peculiarity that
makes it a perfect candidate for a penalty term that aims at
safety. In the second spacing solution, the TTC penalty term
is introduced in the reward expression as a safety feature, but
at the same time it is not considered any lower bound for
the time headway. The objective is to minimize as much as
possible the intervehicular gap in order to strongly reduce the
energy consumption, but at the same time guaranteeing safety
conditions thanks to the presence of the TTC penalty term.

C. STRATEGY BASED ON BOTH MINIMUM TIME
HEADWAY AND TIME-TO-COLLISION (H-TTC STRATEGY)
The use of TTC as a safety parameter without any lower
bound on the time headway leads occasionally to very close
gap between the vehicles. It has been proven by [57] that in
case of communication loss the effectiveness of cooperation

drops and the distance that ensures a secure following
in a CACC problem inevitably increases. Moreover, [58]
investigated the relation between time headway and TTC
and has highlighted how the use of time headway can
help to prevent the approaching to critical TTC values. For
these reasons, a third approach based on the combination of
minimum time headway and TTC allows to consider a double
check regarding safety, increasing the safety guarantees. The
minimum time headway limit has been reduced to hmin,des =

0.25 s, thanks to the presence of the TTC as an additional
safety parameter, with the objective of utilizing a reduced
gap for energy-saving purposes. The consideration of both
minimum time headway and TTCmake this approach the best
candidate for a possible implementation among the presented
spacing strategies, taking into account safety guarantees,
energy-saving performance, and the possible presence of
real-case issues like communication delays.

VI. RESULTS
A. SIMULATION SETUP
The CACC problem has been discretized in 0.1 s: at each
time step, the physical information regarding the ego vehicle
is calculated from the action provided by the TD3 algorithm.
The ego vehicle starts each episode with an instantaneous
velocity equal to that of the leading vehicle, andwith an initial
time headway of 1 s. Moreover, both vehicles are supposed
to start an episode with a SOC equal to 80%. The ego truck
is trained until the cumulative reward reaches convergence,
which is considered achieved when it does not vary over 5%
for at least 100 episodes.

The vehicle is subject to some physical limitations that
must be respected in all simulations. More specifically,
it cannot exceed amaximum velocity equal to vmax = 30m/s,
while it is not allowed to reach negative velocity values,
to restrict the problem to a classical car-following problem.
Acceleration has a limited asymmetric range −3 m/s2 ≤

a(k) ≤ 2 m/s2, cautiously below performance criteria [59].
The velocity profile of the preceding vehicle is chosen

as the cruise portion of a standard driving cycle, the Heavy
Heavy-Duty Diesel Truck (HHDDT) cycle [60], with the
aim of obtaining replicable and comparable results. At first,
a restricted section of the HHDDT cycle corresponding to its
first 400 seconds has been used in order to investigate clearly
the behaviors and benefits of each strategy. Then, the three
strategies have also been tested on the full HHDDT cycle to
investigate their behavior during a complete driving mission.
Finally, the algorithm has also been tested on a modified
small portion of the reference driving cycle, including a hard
braking that corresponds to a maximum permitted constant
deceleration of −3 m/s2 applied for 4.5 s, with the objective
of investigating its approach to critical situations.

B. GENERAL OBSERVATIONS
The consideration of the air drag reduction as an energy-
saving feature in the reward structure leads the ego vehicle
to reduce the intervehicular distance with the aim to exploit
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FIGURE 2. Results for the portion of HHDDT driving cycle.

the aerodynamic effect of the vehicle in front. The ego
vehicle has the tendency to close the gap with the leader
until it is allowed by the safety parameters defined in
the adopted spacing strategy. All three strategies respect
the safety guarantees for the whole driving cycle, without
exceeding the safety limitations, also when considering the
full HHDDT driving cycle. For all the three different spacing
strategies, the proposed solution also proved to reach good
results in improving at the same time the driving comfort with
respect to the leader’s driving cycle, reducing the acceleration
and jerk signals thanks to the consideration of a variable time
headway, which provides an additional degree of freedom
in meeting the comfort goals. The entity of the acceleration
and jerk reductions in RMS terms for the three spacing
strategies, together with their relative obtained SOC savings,
are resumed in Table 3. On the other hand, the behaviors of
each strategy considering the portion of the HHDDT driving
cycle are shown in Fig. 2, while the results of all the different
strategies considering the full reference driving cycle are
reported in Table 3.

C. H STRATEGY
Regarding the H strategy, since a minimum time headway is
given as a safety parameter, the ego truck tends to quickly
get closer to the Lead vehicle and then to correctly maintain
the time headway toward the defined minimum desired limit
of 0.5 s, as can be seen in the bottom right graph in
Fig. 2. The H strategy results to be the most conservative
approach, with a fairly high TTC for almost the majority
of the driving mission, as can be seen in the bottom right
graphic in Fig. 3, even if it is not directly considered in

TABLE 3. Performance of the three strategies. Acceleration and jerk here
refer to reduction in the respective RMS values.

the reward function, confirming the fact that a higher time
headway helps to prevent low TTC values [58]. Moreover,
the comfort improvement is significant, as can be noticed
in Table 3. Anyway, this strategy leads to the lowest energy
saving compared to the other two, due to a minor reduction in
the aerodynamic coefficient, with a maximum SOC reduction
of the 14.38% in the full HHDDT driving cycle with respect
to the leading vehicle consumption.

D. TTC STRATEGY
On the contrary, the TTC strategy, without any lower bound
on the time headway, leads to reduce in a significant way
the intervehicluar space showing excellent energy savings,
without decreasing comfort and never running into concrete
risks of collision keeping the TTC always above the safety
threshold (Fig. 2, bottom right). The TTC strategy proved
to reach the highest energy savings among the three spacing
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FIGURE 3. Results for the full HHDDT driving cycle.

FIGURE 4. Cumulative reward trend.

strategies, obtaining up to the 19.82% of SOC saving with
respect to the leader in the entire HHDDT cycle thanks to an
average time headway of 0.23 s, still improving at the same
time the driving comfort due to the reduction of acceleration
and jerk, obtaining satisfying reductions in terms of the RMS
values which are reported in Table 3. The TTC has the
tendency to be lower compared to the one in the H strategy,
but the imposed safety limitation of 4 s is never exceeded,
therefore, without ever reaching a concrete risk of collision.

E. H-TTC STRATEGY
The hybrid H-TTC strategy can be considered as a compro-
mise between the previous two, as it considers both TTC and
minimum time headway, this time chosen as 0.25 s, as safety
parameters. The combination of these two features leads to
obtain a high SOC saving with respect to the leader (up to

18.15% over the whole HHDDT cycle) and at the same time
generally high TTC values during the whole cycle. Unlike
the TTC strategy, the ego vehicle never gets too close to
the leader, avoiding the occurrence of very short gaps. All
these characteristics make this strategy the best candidate
among the other proposed spacing strategies for a possible
implementation.

F. CUMULATIVE REWARD TREND
The training progress in terms of cumulative reward is shown
in Fig. 4. While the H strategy converges stably after a
relatively low number of episodes, the TTC one has the
most unstable trend and needs more attempts to perform
correctly. The learning process of the H-TTC strategy is
instead comparable with that of the H strategy, even if it is
slightly slower.
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FIGURE 5. Braking test.

G. BRAKING TEST
Standard driving cycles are representative of common
driving attitudes and are suitable references for vehicle
testing activities, typically with respect to emissions or
fuel consumption. Anyway, they usually do not contemplate
critical or particular unexpected situations that may arise
from real driving scenarios, like, for example, hard braking
due to traffic slowdowns or obstacles on the road. For this
reason, in order to investigate the algorithm’s behavior also
in front of these particular situations, the braking driving
cycle defined in Sec. VI-A has been used. The reason of
this test is to simulate a critical situation, and compare the
different safety approaches of the three spacing strategies
to this specific problem, and their possible chanches of
success. As resumed in Fig. 5, all three spacing strategies
proved to perform correctly the braking without colliding
with the leading vehicle, respecting the corresponding safety
parameters. Also, the TTC strategy, which is critical since it
leads to the smallest average gap between the two vehicles,
proved to successfully face the braking maneuver, if correctly
trained. An interesting observation to note is that all three
strategies have a quite stable learning process, including the
TTC one unlike for the standard driving cycle (Fig. 5, bottom
left), demonstrating good adaptability by the algorithm even
in critical situations.

VII. CONCLUSION
In this work, a novel CACC solution has been proposed for
heavy duty vehicles based on RL using the TD3 algorithm,
focusing on air drag reduction as an energy-saving feature
and, at the same time, on the comfort improvement obtainable

thanks to the reduction in acceleration and jerk values.
Three different spacing strategies that involve minimum
time headway and TTC as safety parameters have been
investigated, testing their behaviors considering the HHDDT
standard driving cycle. Finally, a braking test has been
performed that evaluates the algorithm behavior also in front
of critical scenarios. All three adopted spacing strategies
proved to correctly satisfy the comfort, energy-saving and
safety objectives defined in the reward function in all possible
situations. The ego vehicle tends to correctly close the gap
with the leader, within the imposed limits: while the H
strategy is the most conservative one in terms of safety,
the TTC strategy led to the smallest average gap without
consequent collision risks, showing up to 19.82% of energy
reduction with respect to the Lead truck. However, the TTC
strategy, which occasionally leads to very narrow gaps, may
be not feasible for a real-case application, if considering
also possible communication and actuation delays. The H-
TTC strategy stands between the other strategies as the best
candidate for a possible implementation, since it allows to
obtain excellent energy-saving benefits and at the same time
allows to always maintain a certain margin of gap with the
leader, mitigating the influence of the aforementioned delays.
The simultaneous comfort improvement with respect to the
reference driving cycle is significant, resulting in smoother
velocity and acceleration profiles and consistent reductions
of the jerk peaks.

Regarding possible future developments of the proposed
solution, some simplifications andmodifications can bemade
to the reward function and to each reward term to optimize
the training process and obtain more stable results. As has

127154 VOLUME 11, 2023



M. Acquarone et al.: CACC Based on RL for Heavy-Duty BEVs

been done with the acceleration reward term, a study on
possible nonlinear variabilities of the other reward terms
can be performed with the aim of increasing the training
performances. Moreover, a deep investigation about the
possible effects of time delays or communication losses in
the V2V data exchange between the two trucks, by explicitly
modeling these phenomena in the simulation model, can be
interesting in highlighting their influence on the three spacing
strategies in real-case applications.
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