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Abstract: This study investigates the influence of the buried magnet arrangement on the efficiency
and drivability performance provided by an on-board interior permanent magnet synchronous
machine for a four-wheel-drive electric car with two single-speed on-board powertrains. The relevant
motor characteristics, including flux-linkage, inductance, electromagnetic torque, iron loss, total
loss, and efficiency, are analyzed for a set of six permanent magnet configurations suitable for the
specific machine, which is controlled through maximum-torque-per-ampere and maximum-torque-
per-voltage strategies. Moreover, the impact of each magnet arrangement is analyzed in connection
with the energy consumption along four driving cycles, as well as the longitudinal acceleration
and gradeability performance of the considered vehicle. The simulation results identify the most
promising rotor solutions, and show that: (i) the appropriate selection of the rotor configuration
is especially important for the driving cycles with substantial high-speed sections; (ii) the magnet
arrangement has a major impact on the maximum motor torque below the base speed, and thus on
the longitudinal acceleration and gradeability performance; and (iii) the configurations that excel in
energy efficiency are among the worst in terms of drivability, and vice versa, i.e., at the vehicle level,
the rotor arrangement selection is a trade-off between energy efficiency and longitudinal vehicle
dynamics.

Keywords: AC machines; electromagnetic analysis; electric vehicles; energy consumption; longitudi-
nal acceleration; finite element analysis; permanent magnet machines

1. Introduction

In recent years, interior permanent magnet synchronous machines (IPMSM) have been
widely used for electric vehicle (EV) powertrains [1,2], due to their superior electromagnetic
performance, e.g., in terms of high airgap-flux and power densities, low rotor losses, and
high efficiency for a wide speed range. Because of the variety of operating conditions
of electric powertrains, the electromagnetic maps of the motors are essential tools for
designing and evaluating the drives, and have been widely used in the literature [3–5].

In IPMSMs, the rotor is the most complex part, because of the permanent magnet (PM)
arrangement and its effect on the overall electromagnetic performance. The buried design
of the magnets prevents their separation from the rotor, despite the significant centrifugal
force at high speed, and produces a hybrid torque, combination of magnet and reluctance
contributions, which results in high efficiency [6]. Many complex magnet arrangements
have been proposed for achieving specific characteristics [7–9].
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References [7–13] discuss the performance improvement of IPMSMs, associated with
various magnet arrangements and shaping techniques. For example, in [10], Kim et al.
investigate the demagnetization performance of permanent magnets within three kinds
of rotor types for IPMSMs, as well as the resulting motor performance in terms of rated
torque, output current, and efficiency. In [11], Cirani et al. consider a novel rotor design
for IPMSMs. The advantage of their solution is a major reduction in magnetic flux leakage
in the rotor iron bridges, which represents the main limitation of this machine topology.
Kano [12] studies a novel flux barrier design for torque ripple reduction in saliency-based
sensorless drive concentrated-winding IPMSMs. Zhu et al. [13] adopt magnet shaping
techniques to improve the torque capability in brushless AC (alternating current) machines,
by optimizing the third order harmonic in an arrangement with inverse cosine shape airgap
and sinusoidal shape magnet, which results in 11% average torque increase.

The literature extensively analyzes the influence of the electric motor topology on the
resulting efficiency maps [14]. Several methodologies have been proposed for generating
efficiency maps, with the purpose of predicting the system performance through vehicle
simulations, and select the drive/s accordingly [3,4,14]. For example, in [15], the motor
efficiency map is generated from a time-domain two-dimensional (2-D) finite element
analysis (FEA) model in ANSYS Maxwell, which calculates the d- and q-axis currents,
and is coupled with a multi-objective optimization. During high-speed EV operation,
IPMSMs are typically subject to flux weakening; in this condition, the motor iron loss, more
precisely the eddy-current loss, tends to significantly increase, thus reducing efficiency.
In [16], Mohammadi and Lowther consider the 2010 Toyota Prius IPMSM and a PM-
assisted synchronous reluctance machine, and use nonlinear motor control formulations,
i.e., maximum-torque-per-ampere (MTPA), flux weakening, and maximum-torque-per-
voltage (MTPV), in the computation of the efficiency maps, while accounting for both
saturation and cross-coupling effects. MTPA and MTPV algorithms [17–24] are widely used
to enhance the efficiency and control performance of IPMSMs, below and above the base
speed, respectively. These strategies can be implemented through offline-generated maps,
reducing the online computational burden but increasing the memory requirements, or
through online optimization. The conventional optimality criteria for MTPA and MTPV do
not consider magnetic core saturation, and therefore result in deviations from the optimal
trajectory, especially at higher load currents. Recent research [25] proposes mathematical
formulations to account for magnetic core saturation in the MTPA and MTPV criteria, and
obtains the corresponding optimal solutions.

Although the available literature discusses various PM arrangements for EV traction
motors [14], to the best of the authors’ knowledge there is a lack of comprehensive compar-
isons of the resulting motor efficiency characteristics, and evaluations of the implications
at the EV level, e.g., in terms of energy consumption during driving cycles and drivability
performance. For a case study IPMSM for a four-wheel-drive EV with two single-speed
on-board powertrains, this research targets the identified gap with the following main
novel contributions:

• Simulation analysis, mapping, and comparison of the electromagnetic characteristics
of the IPMSM with six of the most common buried magnet arrangements, for the
same target magnet volume, demagnetization rating, rotor yoke volume per magnet
volume, and stator configuration;

• Comparison of the resulting EV energy consumption along a comprehensive set of
driving cycles, as well as drivability performance, and identification of the most
suitable rotor configurations.

The remainder of the manuscript is organized as follows: Section 2 presents the
considered IPMSM rotor topologies and their parametric design process; Section 3 describes
the adopted analytical models; Section 4 compares the motor maps; Section 5 analyzes the
EV energy efficiency and drivability performance, and is followed by the conclusions.



Energies 2021, 14, 1418 3 of 22

2. Considered Rotor Configurations

The simulated three-phase IPMSM with inner rotor topology has 48 slots and 8 poles,
with a total mass of 10.5 kg. Each phase has 110 conductors, with a net fill factor equal
to 0.51. The magnet and core materials are NdFeB and M330-35A, respectively. Figure 1
presents the three-phase winding distribution of the stator, and the slot-related parameters
(given in Figure 1b), while Table 1 reports the geometric stator specifications, which are
the same for all considered arrangements. Figure 1c shows the rotor parameters. The rotor
arrangements depend on the PM layouts, which affect the electromagnetic behavior of the
machines. For a fair comparison, the total PM volume, Vm, of the considered configurations
is identical, and set to 24 cm3. All magnets are radially magnetized.

Figure 2 illustrates the considered PM arrangements, commonly investigated by
researchers, e.g., see [10,11,13,26–41], in a cross-sectional view: (i) a rectangular magnet
with a rectangular and open window (referred to as R-ROW in the remainder) [10,26,27],
see Figure 2a; (ii) an arrangement similar to the previous one, but with a semicircular open
window (R-SOW) [11], see Figure 2b; (iii) a rectangular magnet with an isosceles-trapezoid-
shaped open window (R-IOW) [28–33], see Figure 2c; (iv) two separate rectangular magnets,
divided by a central leg, with a semicircular open window (RCL-SOW), similarly to [35–37],
see Figure 2d. The material used in the central leg is the same as for the rotor yoke; (v) a
rectangular magnet with a central leg, and an isosceles-trapezoid-shaped open window
(RCL-IOW) [34,38,40], see Figure 2e; and (vi) an irregular hexagonal magnet (known as
bread loaf), with no open window (H-NOW) [13], see Figure 2f.
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Figure 2. Qualitative layout of the considered rotor magnet arrangements: (a) R-ROW, (b) R-SOW,
(c) R-IOW, (d) RCL-SOW, (e) RCL-IOW, and (f) H-NOW. Each subplot represents two of the eight
poles of the rotor.

The first three magnet arrangements, i.e., R-ROW, R-SOW, and R-IOW, use different
shapes of the open windows to reduce the leakage flux at both ends of the magnet. The
second and third arrangements are more practical than the first one from the viewpoint
of the manufacturing process to fix the magnets. The central legs in RCL-SOW and RCL-
IOW improve the ratio of reluctance torque to magnet torque and saliency, in addition to
reducing the cogging torque. Although they increase the leakage flux, the higher d-axis
inductance can improve the flux weakening capability. The last magnet arrangement,
H-NOW, is designed to exploit the harmonic components of the magnetomotive force
and permeance.

Table 1. Main stator parameters.

Parameter Description Unit Value

Dsi Inner stator diameter mm 178
Dso Outer stator diameter mm 318
Hs Slot height mm 41
Ho Height of the slot opening mm 4.0
H1 Intermediary height of the slot width mm 2.2
L Axial length mm 84
Lg Airgap length mm 0.8
Ns Number of slots - 48
R Fillet radius mm 1.3
V Undercut angle of stator tooth tip deg 41

Ws1 Bottom slot width mm 6.3
Ws2 Top slot width mm 8.8
WT1 Tooth width, upper part of slot mm 6.2
WT2 Tooth width, bottom part of slot mm 6.2
Wo Width of slot opening mm 1.3

Figure 3 presents the effect of the main geometric magnet parameters, i.e., magnet
width and pole arc. The sensitivity analysis, using the design of experiment/regression
(DOE/R) method [42], shows that the increase in the pole arc amplitude brings a reduc-
tion in the electromagnetic torque (Figure 3a) and torque ripples level (Figure 3b). The
output power increases with increasing magnet width (Figure 3c); however, the magnet
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width also provokes an increase in the peak-to-peak cogging torque, see Figure 3d. The
demagnetization effects are covered in Figure 3e,f. The increase in the magnet width results
in higher magnetic flux density, and consequently higher torque and power. However,
this increase can critically cause demagnetization risks, which vary among the rotors, see
Figure 3f, i.e., the R-IOW, R-SOW, and R-ROW arrangements have the highest magnetic
field capability. This advantage becomes vital for high-speed applications because the risk
of demagnetization significantly increases during full-load and high-speed operation.
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Figure 3. Sensitivity analysis for magnet sizing, in terms of: (a) electromagnetic torque as a function
of pole arc, (b) electromagnetic toque ripples level as a function of pole arc, (c) output power as a
function of magnet width, (d) cogging torque as a function of magnet width, (e) magnetic flux density
as a function of magnet width, and (f) demagnetization curves for the considered PM arrangements.
The circles highlight the selected parameter values for each configuration.

For fairness of comparison, the main magnet parameters for the considered arrange-
ments have been selected through sensitivity analysis, as a trade-off in terms of electro-
magnetic performance, while accounting for saturation rating. The selected parameters
are reported in Table 2, which includes ranges for the parameters that vary among the
configurations. The axial length of the magnets is the same as the length of the rotor for
all cases.
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Table 2. Ranges of main rotor parameters for the considered PM arrangements.

Parameter Description Unit Values

Dro Outer rotor diameter mm 176.4
Dri Inner rotor diameter mm 88
p Number of poles - 8

parc Pole arc deg 10–12
Tm Magnet thickness mm 6.5–8.5
T1 Thickness of rotor yoke under the magnet mm 33–35
Lm Axial length of magnet mm 74–84
Vm Magnet volume cm3 24
Vp Angular pitch deg 45
Wm Magnet width mm 24–26

3. Mathematical Modeling of the IPMSMs
3.1. Finite Element Analysis Model

The objective of the simulation study is the electromagnetic evaluation of the magnet
arrangements and their influence on dq-axis flux linkage, dq-axis synchronous inductance,
back-electro-motive force (EMF), electromagnetic torque, as well as Joule and iron losses.
The electromagnetic parameters are calculated with a 2-D FEA approach using the software
package Flux. In the FEA simulations, constant settings are defined for: (i) the maximum
root mean square (RMS) line current, provided by the inverter to the motor, set to 103 A,
i.e., it is assumed that the operating limits of the powertrain are caused by the inverter; (ii)
the maximum motor speed, i.e., ωmax = 10,000 rpm; and (iii) the current coefficient, set to
0.8. Moreover, the speed range is discretized with steps of 10 rpm; the adopted airgap mesh
density is 1.5; 100 operating points are considered per electrical torque period. Finally,
steady-state thermal conditions are assumed. By supplying sinusoidal currents into the
steady-state FEA model, the influence of the various magnet arrangements on the IPMSM
performance is observed from the motor maps, which are generated over the whole motor
speed (ωmot) range, by applying the MTPA and MTPV strategies. The FEA simulation
outputs several variables, the main ones being the magnetic flux density, B, and PM flux
linkage, λm, which—in the post-processing phase—are used to calculate the d- and q-axis
components of the inductance, Ld and Lq, as well as the different motor loss components,
through analytical formulations.

3.2. Main Analytical Formulations

In the steady-state dq-framework rotating with electrical frequency ωe [22], the voltage
equations of the IPMSM are:[

vd
vq

]
=

[
Rs −ωeLq

ωeLq Rs

][
id
iq

]
+

[
0

ωeλm

]
(1)

where vd, vq, id, and iq are the dq-axis voltages and currents; and Rs is the stator winding
resistance. id and iq are related to the stator current, is, through the current angle β:{

id = −is sin β

iq = is cos β
(2)

The electromagnetic and reluctance torque, Te, is computed as:

Te =
3
2

p
[
λm +

(
Ld − Lq

)
id
]
iq (3)
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In the generation of the results, MTPA is adopted below the base speed, ωb, while
MTPV is used above ωb. The MTPA algorithm is based on the solution of an optimization
problem [22–25], which minimizes the continuous stator current, is, that generates the
reference torque, Tre f , while meeting current and voltage constraints:

[
id,MTPA, iq,MTPA

]
= arg min i2s

s.t.

vs ≤ Vdc√
3
= Vmax

is =
√

i2d + i2q ≤ Imax

Tre f − Te = 0

(4)

where Imax is the stator current limit, which depends on the capability of the inverter; Vmax
is the stator voltage limit; Vdc is the DC (direct current) voltage of the inverter; and vs is the
magnitude of the stator voltage, given by:

vs =
√

v2
d + v2

q =ωe

√(
Lqiq

)2
+ (Ldid + λm)

2 (5)

The solution of the MTPA optimization problem results in the following current angle,
βMTPA, which was imposed in the generation of the motor maps through the FEA model:

βMTPA = sin−1
−λm +

√
λ2

m + 8
(

Lq − Ld
)2i2s

4
(

Lq − Ld
)
is

(6)

MTPV is an effective strategy to obtain maximum torque when operating the motor
in the flux weakening region, i.e., above the base speed [22–25]. The MTPV optimization
problem can be formulated as:

[
id,MTPV , iq,MTPV

]
= arg min v2

s

s.t.

vs ≤ Vmax

is ≤ Imax

Tre f − Te = 0

(7)

which, without considering core saturation, leads to:

id,MTPV = −λm

Ld
+
−Lqλm +

√(
Lqλm

)2
+ 4L2

q
(

Ld − Lq
)2i2q

2Ld
(

Ld − Lq
) (8)

Condition (8) was imposed in the map generation process for ωmot ≥ ωb.
The total motor power loss, Wmot,loss, is computed as the sum of the Joule loss WJ , iron

loss W f e, and mechanical loss Wmech:

Wmot,loss = WJ + W f e + Wmech (9)

where WJ is:

WJ = mRph
i2d + i2q

2
= mRph I2

ph (10)

In (10), m is the number of phases; Rph is the phase resistance; and Iph is the RMS
value of the phase current. W f e depends on the magnetic flux density, B. For each node of
the iron loss mapping, B is output by a semi-numerical method based on the integration
of the flux density in the airgap. B is computed as a function of the angular position θ, by
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considering all relevant parts of the machine, i.e., the stator foot teeth, stator teeth, and
yokes. A mathematical transformation is applied to obtain the time derivative of B for each
speed interval:

dB(t)
dt

=
dB(θ)

dθ

dθ

dt
(11)

W f e is given by:

W f e = KhK f Vf e

(
Bmax
K f

)αh
+ KcK f Vf e

1
te

∫ te
0

(
1

K f
dB
dt

)αc
dt

+KeK f Vf e
1
te

∫ te
0

(
1

K f
dB
dt

)αe
dt

(12)

where Kh, Kc, Ke, and K f are hysteresis, eddy-current, excessive, and stacking coefficients;
αh, αc, and αe are fitting constants for the hysteresis, eddy-current, and excessive terms; Vf e
is the iron lamination volume; Bmax is the maximum magnetic flux density; and te is the
electrical period. Wmech is defined as:

Wmech = W0

(
ωmot

ωmot,0

)K+1
(13)

where W0 is the mechanical loss at a reference speed; ωmot,0 is the nominal rotor speed; and
K is the speed exponent. The magnitude of the mechanical loss is estimated for all motor
configurations, and is the lowest for the R-SOW arrangement.

The motor efficiency, ηmot, is computed as:

ηmot =
ωmotTe−Wmech−W f e

ωmotTe+WJ
= ωmotTmot

ωmotTe+WJ

= ωmotTmot
ωmotTmot+WJ+Wmech+W f e

= ωmotTmot
ωmotTmot+Wmot,loss

(14)

where Tmot is the mechanical torque at the motor shaft during steady-state operation.

4. Electromagnetic Performance Mapping of the IPMSMs

Based on the models in Section 3, the electromagnetic characteristics are generated as
functions of flux linkage, across the whole speed-torque range. Table 3 reports the main
electromagnetic properties for a current density of 6 A/mm2. The produced magnetic
field strength H (mean value) due to the permeances (with relative permeability of 1.1)
and the flux per pole have their highest values in R-SOW, R-IOW, and H-NOW. The PM
flux λm is particularly high for the R-IOW, R-SOW, and H-NOW arrangements, which
are characterized by the lowest flux leakage. High values of the saliency ratio, ρmax, such
as those of the R-IOW and R-SOW arrangements, imply higher power capability and
lower demagnetization, i.e., better high-speed performance. Lq has the highest values for
RCL-SOW and RCL-IOW; moreover, the d-axis inductance Ld of RCL-SOW and RCL-IOW
is rather high because the magnet is cut into two parts, which ultimately results in lower
ρmax. Figure 4 reports the flux linkage as a function of rotor position, with the highest
magnitude shown by R-IOW and RCL-SOW, followed by R-ROW. Results of fast Fourier
transform analysis show total harmonic distortions for the studied magnet arrangements
ranging from 9.28 to 11.26%, with the lowest values belonging to R-SOW and R-IOW.

Figure 5 includes the iron loss maps at 6000 rpm, as functions of the dq-axis currents.
Each map is divided into four quadrants, defined by dashed lines in the plots. In particular,
for all layouts, the maximum iron losses are in the quadrant with dq-axis currents in the
ranges −100 A ≤ Id ≤ −50 A and 0 A ≤ Iq ≤ 50 A. The variations of the shape of the
iron loss iso-lines highlight that the current amplitude and its angle are highly dependent
on the magnet arrangement, which affects the power-related computations in the entire
operating range. In general, the lowest maximum iron losses occur for R-ROW, RCL-SOW,
and RCL-IOW.
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Table 3. Electromagnetic characteristics of the considered PM arrangements for a current density of
6 A/mm2.

Configuration H [A/m] Flux/Pole
[mWb] λm [Wb] Lq [mH] ρmax [-]

R-ROW 74,823 4.18 0.103 32.52 2.15
R-SOW 96,987 4.62 0.130 29.89 2.45
R-IOW 99,146 4.61 0.132 31.62 2.44

RCL-SOW 64,746 3.32 0.092 38.44 2.29
RCL-IOW 66,328 3.31 0.093 39.94 2.31
H-NOW 94,065 4.74 0.115 29.05 2.28
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Figure 6 presents the total loss maps as functions of torque, while Table 4 reports the
RMS value of the phase current Iph, as well as the Joule loss WJ , iron loss W f e, mechanical
loss Wmech, and total loss Wmot,loss, resulting from (9)–(13), at the maximum speed and
torque of each configuration. For facilitating the visual analysis, the maps in Figure 6
subdivide the operating speed range of the motor into the following three regions, namely:
(i) the starting-torque low-speed (ST-LS) region, below the base speed of the machine; (ii)
the torque attenuation phase (AP), where the maximum torque is subject to a rather steep
reduction with speed. This region covers the intermediate range of available speeds; and
(iii) the highway driving high-speed region (HD-HS), covering the top range of achievable
speeds of the machine, where the maximum torque reduction with speed is more moderate
than in (ii). Depending on the vehicle type and application, the performance can be
prioritized for different regions, e.g., the AP region can be the most significant one for a
racing car, while the ST-LS region can be the most important one for an urban EV.

For example, the map for the R-ROW configuration in Figure 6a shows a constant
torque range capability of 135 Nm, with a maximum loss of 1084 W at the base speed.
In the AP speed range, the torque is subject to a significant reduction, with a maximum
loss of 1807 W at 65 Nm and 6000 rpm. Under HD-HS operation, the total loss reaches
3750 W at 10,000 rpm, speed at which the maximum torque is ~30 Nm. In the R-SOW
configuration in Figure 6b, the total losses are higher than for the R-ROW layout across the
entire speed range; however, the torque production has considerably increased to 158 Nm,
with a ~1300 W maximum loss at the base speed. During HD-HS operation, the torque
capability is slightly higher than for R-ROW, but this corresponds to an increase in total loss,
reaching a value in excess of 4000 W. Similar analyses can be made for all configurations.

Figure 7 reports the resulting power efficiency maps. All configurations have a region
with efficiency values in excess of 0.97 at medium-to-high torque, for a speed range across
the ST-LS and AP sectors. Such premium efficiency region covers a relatively small torque
range in R-ROW, RCL-SOW, and RCL-IOW, and a wider torque range in R-SOW, R-IOW,
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and H-NOW, while the speed range of the top efficiency region is rather similar for all
maps. During high-speed operation, i.e., in the HD-HS range, the power efficiency of all
configurations significantly decreases to values well below 0.90, and in some cases below 0.80.

Table 5 summarizes the electromagnetic performance of the considered configurations,
with the following highlights: (i) the peak phase voltage is the highest in the R-SOW
configuration, followed by R-IOW and H-NOW; (ii) the energy production of the permanent
magnets is the highest for R-IOW, followed by R-SOW and H-NOW; (iii) at ωb, the highest
power is produced by R-SOW, R-IOW, and H-NOW. The maximum output power at ωb is
subject to a major variation depending on the rotor configuration, and ranges from ~42.3 to
~51.7 kW, i.e., the EV with the considered set of motors will have very different longitudinal
acceleration performance characteristics; (iv) at ωmax, the top power capability is provided
by R-SOW, followed by R-IOW; (v) the usable torque per magnet volume, i.e., Te/Vm, is the
highest for R-SOW at ωb and ωmax; and (vi) R-SOW has the highest maximum efficiency at
ωb, while H-NOW has the highest maximum motor efficiency at ωmax. In general, based on
the table and Figures 6 and 7, the R-SOW and R-IOW configurations, followed by H-NOW,
appear to have overall desirable characteristics in terms of torque density production and
premium efficiency area, which would make them good candidates for EV implementation.

To complete the analysis, Figure 8 shows the steady-state temperature distributions in
the rotors, based on the FEA model results at the peak torque and base speed, and includes
iso-temperature lines. The maximum temperatures are rather uniform among the magnet
arrangements, with approximately 4 ◦C variations among the configurations. The lowest
maximum temperature, equal to 64.5 ◦C, occurs for the H-NOW arrangement.
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Table 4. Phase current and losses at the maximum speed, under flux weakening conditions, for the
considered arrangements.

Configuration Iph [A] Wj [W] Wfe [W] Wmech [W] Wmot,loss [W]

R-ROW 51.6 195 3281 524 4000
R-SOW 72.8 389 3104 508 4001
R-IOW 71.0 369 3051 530 3950

RCL-SOW 54.0 213 2915 572 3700
RCL-IOW 53.1 207 3161 584 3952
H-NOW 65.2 311 3154 536 4001
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Table 5. Comparative summary of electromagnetic performance of the considered arrangements.

Key Parameters R-ROW R-SOW R-IOW RCL-
SOW RCL-IOW H-NOW

Peak phase voltage 60.5 68.8 68.7 47.2 47.1 68.6
Energy production [kJ] 35.597 45.178 46.074 31.305 32.025 44.317

Output power at ωb
[kW] 43.091 51.725 50.661 43.476 42.334 48.073

Output power at ωmax
[kW] 25.096 37.401 36.602 25.946 25.712 32.177

Power factor at ωmax 0.8348 0.8822 0.8876 0.8220 0.8278 0.8366
Flux weakening

capability Medium Medium Low Medium Medium Low

Max. temperature at ωb
[◦C] 68.7 67.2 67.2 65 65 64.5

Power losses for ST-LS Low Low Low Low Low High
Power losses for AP Low High Medium Medium Medium High

Power losses for HD-HS
[-] Medium High High Medium Medium High

Torque ripple [%] 6.73 7.33 8.29 5.81 6.54 9.66
Te/Vm at ωmax

[Nm/cm3] 0.685 1.134 0.999 0.738 0.628 0.978

Te/Vm at ωb [Nm/cm3] 3.772 4.492 4.446 3.715 3.683 4.028
Max. efficiency at ωb 0.9707 0.9758 0.9748 0.9699 0.9688 0.9734

Max. efficiency at ωmax 0.8632 0.8609 0.8592 0.8666 0.8668 0.8734
Notes: Bold text indicates the best performance among the considered arrangements, whereas underlined
text indicates the worst performance.
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(e) RCL-IOW, and (f) H-NOW arrangements.

5. Electric Vehicle Simulation Results and Discussion
5.1. Case Study Vehicle

The case study EV is a light four-wheel-drive electric car, with two identical on-
board IPMSMs, one per axle. The four-wheel-drive powertrain layout with central motors
is becoming rather common in recent electric vehicles, see [14,43,44], as it conjugates a
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simple configuration of the individual powertrains (see [45] for an example of powertrain
optimization study) with the enhanced performance of a four-wheel-drive system. Each
IPMSM is connected to the two wheels of the axle through a single-speed mechanical
transmission with open differential, half-shafts, and constant velocity joints, according to
the schematic in Figure 9. The main vehicle parameters are in Table 6.
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Table 6. Main EV parameters.

Parameters Description Unit Value

m0 Vehicle mass kg 680
m1 Payload kg 200
A Frontal area m2 2
L Wheelbase m 2.3
a Front semi-wheelbase m 1.3

HCG Center of gravity height m 0.5
RW Wheel radius m 0.3
Cd Aerodynamic drag coefficient - 0.35

Cr0
Rolling resistance coefficient (contribution

independent from vehicle speed) - 0.015

K Rolling resistance coefficient (factor to be
multiplied by vehicle speed squared) s2/m2 6.5 × 10−6

5.2. Driving Cycle Simulation

By using the power loss maps in Figure 6, the motor performance for each magnet
arrangement is analyzed in terms of energy efficiency during traction along multiple
driving cycles, representative of a wide range of operating conditions, namely: (i) the
New European Driving Cycle (NEDC); (ii) the Worldwide harmonized Light vehicle Test
Procedure (WLTP) Class 2; (iii) the ARTEMIS urban cycle; and (iv) the ARTEMIS motorway
cycle [46].

To emulate the operation along a driving cycle, the torque of each machine is calculated
under the following assumptions: (i) the road has zero longitudinal gradient; (ii) the
regenerative braking capability of the electric powertrains is neglected, i.e., only the friction
brakes are used for slowing down the vehicle, and thus the efficiency performance of the
motors is analyzed solely for traction conditions; (iii) the transmission efficiency is constant;
and (iv) the torque is evenly distributed between the two motors.

Each motor torque, Tmot, is calculated through a backward facing approach:

Tmot =

{
1
2

FtRW
ηtransGr

, i f Ft ≥ 0
0, i f Ft < 0

(15)
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where RW is the wheel radius; ηtrans is the transmission efficiency; Gr is the transmission
gear ratio; and Ft is the longitudinal force, given by the sum of the aerodynamic drag force,
Fd, the rolling resistance force, Fr, and the inertial force, Fa:

Ft = Fd + Fr + Fa (16)

where the individual force contributions are:

Fd =
1
2

ρair ACdv2 (17)

Fr = Cr(m0 + m1)g (18)

Fa =
(
m0 + mapp + m1

)
ax (19)

In (17)–(19), ρair is the air density; v is the vehicle speed; Cr is the rolling resistance
coefficient, expressed as Cr = Cr0 + Kv2, see [47]; g is the gravitational acceleration; mapp
is the apparent mass of the rotating components of the electric powertrains; and ax is the
longitudinal vehicle acceleration. In the phases of the driving cycles in which v = 0, the
condition Fr = 0 is imposed.

Through (15)–(19), the operating motor profiles along the considered driving cycles,
i.e., the time histories of motor torque and speed, are calculated and represented on the
power loss map. The interpolation of the speed and traction torque values on the motor
maps brings the total motor power loss profile in traction, Wmot,loss(t), from which, through
time integration, the motor energy loss along the driving cycle, Emot,loss, is obtained:

Emot,loss =
∫ tN

t0

Wmot,loss(t)dt ≈
N−1

∑
i=0

Wmot,loss(ti+1) + Wmot,loss(ti)

2
(ti+1 − ti) (20)

where t0 = 0 s and tN are the initial and final times of the driving cycle; the subscript i
defines the considered time step; and the index N represents the last step of the driving
cycle. The total motor energy consumption along the cycle, Emot,cons, is given by:

Emot,cons = Emot,traction + Emot,loss =
∫ tN

t0
Tmot(t)ωmot(t)dt + Emot,loss

≈
N−1
∑

i=0

Tmot(ti+1)ωmot(ti+1)+Tmot(ti)ωmot(ti)
2 (ti+1 − ti)

+Emot,loss

(21)

where Emot,traction is the net traction energy of one motor, and ωmot = vGr/RW . The
specific traction energy, Emot,traction, the specific energy loss, Emot,loss, and the specific
energy consumption of the motor, Emot,cons, are obtained by dividing Emot,traction, Emot,loss,
and Emot,cons by the driving cycle distance, dcycle:

Emot,traction =
Emot,traction

dcycle
(22)

Emot,loss =
Emot,loss

dcycle
(23)

Emot,cons =
Emot,cons

dcycle
(24)

The average energy efficiency of the traction motors along the driving cycle, ηmot, is
calculated as:

ηmot =
Emot,traction

Emot,cons
=

Emot,traction

Emot,traction + Emot,loss
(25)



Energies 2021, 14, 1418 15 of 22

5.3. Longitudinal Acceleration and Road Gradient Performance Simulation

Under the assumption of high tire-road friction condition, i.e., with friction coefficient
µmax = 1.0, the vehicle performance associated with the considered motor arrangements is
evaluated in terms of:

• Maximum longitudinal acceleration from standstill, ax,max, on a road with zero longi-
tudinal gradient:

ax,max = max
Tmot,F ,Tmot,R

(Tmot,F+Tmot,R)Grηtrans−Cr(m0+m1)gRW

(m0+mapp+m1)RW

s.t.

Tmot,F/R ≤ Tmot,max
Fx,F/R
Fz,F/R

≤ µmax

(26)

where the subscripts ‘F’ and ‘R’ refer to the front and rear axles; the notation Fx,F/R
indicates the front or rear longitudinal tire force in traction, calculated from the
respective motor torque; and Fz,F/R is the vertical load on the front or rear axle, which
is a function of ax, see [47] for the details. According to (26), the optimization results are
calculated under the assumption that the front-to-total motor torque distribution can
vary, according to the intervention of a traction controller that prevents wheel spinning
on the critical axle. The results showed that for the specific vehicle the intervention of
the traction controller is not required for maximum longitudinal acceleration in high
tire-road friction conditions.

• Maximum longitudinal road gradient, ϑmax, on which the vehicle can travel at very
low speed (approaching zero) and zero longitudinal acceleration:

ϑmax = max
Tmot,F ,Tmot,R

ϑ

s.t.
(Tmot,F+Tmot,R)Grηtrans

RW
− (m0 + m1)gsin(ϑ)− Cr(m0 + m1)gcos(ϑ) = 0

Tmot,F/R ≤ Tmot,max
Fx,F/R
Fz,F/R

≤ µmax

(27)

In this case, it was verified that the traction controller has to intervene on the front
axle for most motor configurations, i.e., the motor torque on the front axle has to be
reduced to the level compatible with the tire-road friction condition.

5.4. Vehicle Simulation Results

Table 7 illustrates the motor and resulting vehicle performance characteristics. For
the driving cycles, the table reports: (i) Emot,traction; (ii) Emot,loss; (iii) Emot,cons; (iv) ηmot;
(v) ηmot,avg, i.e., the average efficiency of each motor configuration along the four cycles;
(vi) σηmot

, i.e., the standard deviation of ηmot of each configuration along the cycles. Low
values of σηmot

highlight consistent energy efficiency for the considered variety of driving
conditions; (vii) ηDC, i.e., the average value of ηmot of all motor configurations, computed
for each driving schedule; and (viii) σηDC , i.e., the standard deviation of ηmot for all motor
configurations, computed for each cycle. (i)–(vi) assess the efficiency performance of
each motor configuration, while (vii) and (viii) provide an indication of the impact of the
driving schedule on the results. Moreover, for the four cycles, the torque-speed diagrams
in Figures 10–13 show the motor energy loss distributions for all cases. The white markers
represent the operating points of the individual motors along the cycles. The magnitude of
the energy losses in the corresponding torque-speed regions is indicated by the values in
red as well as by the color maps, obtained by summing the energy losses of all operating
points located in the region.
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Table 7. Comparative summary of the performance of the case study EV with the considered IPMSM magnet arrangements.

Key Variables R-ROW R-SOW R-IOW RCL-SOW RCL-IOW H-NOW

Energy efficiency indicators

Emot,traction
(W.h/km)

NEDC 54.67
WLTP class 2 44.48

ARTEMIS urban 52.05
ARTEMIS motorway 96.77

Emot,loss
(W.h/km)

NEDC 3.85 4.72 4.70 3.21 3.17 4.52
WLTP class 2 3.12 3.81 3.76 2.54 2.51 3.70

ARTEMIS urban 2.60 2.81 2.79 2.37 2.36 2.82
ARTEMIS motorway 7.42 9.10 9.49 6.46 6.39 8.46

Emot,cons
(W.h/km)

NEDC 58.52 59.39 59.36 57.88 57.84 59.19
WLTP class 2 47.60 48.29 48.24 47.02 46.98 48.18

ARTEMIS urban 54.65 54.86 54.84 54.42 54.41 54.87
ARTEMIS motorway 104.18 105.86 106.26 103.23 103.16 105.23

ηmot(-)

NEDC 0.9343 0.9206 0.9209 0.9445 0.9452 0.9236
WLTP class 2 0.9344 0.9211 0.9220 0.9460 0.9467 0.9232

ARTEMIS urban 0.9524 0.9487 0.9491 0.9564 0.9565 0.9486
ARTEMIS motorway 0.9288 0.9141 0.9107 0.9374 0.9381 0.9196

ηmot,avg (-) 0.9375 0.9261 0.9257 0.9461 0.9466 0.9288

σηmot
(-) 0.0089 0.0133 0.0142 0.0068 0.0066 0.0116

ηDC (-)

NEDC 0.9315
WLTP class 2 0.9322

ARTEMIS urban 0.9520
ARTEMIS motorway 0.9248

σηDC (-)

NEDC 0.0105
WLTP class 2 0.0109

ARTEMIS urban 0.0034
ARTEMIS motorway 0.0107

Vehicle performance indicators

ax,max (m/s2) 5.75 6.87 6.80 5.66 5.61 6.15

ϑmax (deg) 35.0 37.5 37.4 34.8 34.7 35.9

Notes: Bold text indicates the best performance among the considered arrangements, whereas underlined text indicates the worst performance.

During the cycles, the motors mainly operate at low torque, i.e., at less than half of
their maximum torque. The variety of driving conditions is confirmed by the spread of the
Emot,cons and ηmot values. For example, Emot,cons along the WLTP is less than half than along
the ARTEMIS motorway. The energy efficiency along the ARTEMIS urban is the highest
among the four driving cycles for each magnet arrangement. In general, motor efficiency
is characterized by a decrease in high speed conditions. The effect is confirmed by ηDC,
which ranges from 0.9248 for the ARTEMIS motorway to 0.9520 for the ARTEMIS urban,
indicating that the low speed operation typical of urban driving is favorable to efficiency.
The highest significance of the magnet arrangement on energy consumption is obtained
for the ARTEMIS motorway, with ~3% energy efficiency increase from the R-IOW to the
RCL-IOW configurations.

Among all arrangements, RCL-IOW provides the highest energy efficiency along each
selected driving cycle, and has the lowest energy loss not only in the peak-loss region,
but also in most operating areas, see Figures 10–13, followed by RCL-SOW and R-ROW.
The RCL-IOW set-up also shows the lowest energy efficiency standard deviation among
the different cycles, and thus provides consistently low consumption in various driving
conditions.

At the bottom end of the ranking, R-SOW has the lowest energy efficiency along the
NEDC and WLTP, while H-NOW and R-IOW rank last along the ARTEMIS urban and
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ARTEMIS motorway. The H-NOW arrangement, which was very promising according to
the power efficiency map in Figure 7, is not competitive when realistic driving scenarios
are investigated, although it exhibits high maximum efficiency for both the base and top
speeds, see Table 5. On the contrary, the RCL-IOW arrangement, which in Table 5 has
significantly lower maximum values of power efficiency than H-NOW, provides higher
energy efficiency during driving cycle operation.

Interestingly, the results show that the observation of the power efficiency maps may
be misleading for predicting the energy consumption performance along different driving
conditions. This can be explained based on Figures 7 and 10, Figures 11–13, as most of
the operating points of the considered driving cycles do not fall in the premium efficiency
regions, but are rather at lower torque and higher speeds within the AP region, where
the gradient of the motor efficiency characteristic, with respect to the variation of both
speed and torque, becomes the most important aspect. The RCL-SOW and RCL-IOW
configurations present indeed lower gradients of the power efficiency characteristic in
comparison with the solutions with the widest premium efficiency regions, i.e., R-SOW
and R-IOW.

The bottom half of Table 7 deals with the longitudinal acceleration and gradeability
performance associated with each rotor configuration, and reports the values of ax,max and
ϑmax. The most energy-efficient configurations, e.g., RCL-IOW, are characterized by low
values of torque for the considered maximum inverter current, thus providing sub-optimal
drivability at low speed. Vice versa, the configurations with the highest maximum torque
score worse in the energy consumption simulations. For example, below the base speed, a
layout like R-IOW provides a maximum torque that is ~30 Nm higher than that for RCL-
IOW, which is the most energy-efficient configuration. The correlation of the driving cycle
results and electromagnetic analysis suggests that the low gradient of the efficiency map of
the best performing motors along the cycles is associated with low flux densities, and thus
low maximum torque capability. The important conclusion is that the rotor arrangement
selection is a compromise between: (i) desirable acceleration and gradeability performance,
requiring motor behavior optimized for high torque conditions, with high flux density;
and (ii) energy efficiency along driving cycles, requiring low gradients in the relevant parts
of the efficiency map, even at the price of narrower premium efficiency regions.
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6. Conclusions

This study evaluated the influence of six buried magnet arrangements on the perfor-
mance of a case study 48-slot 8-pole IPMSM for automotive traction applications, controlled
through maximum-torque-per-ampere (MTPA) and maximum-torque-per-voltage (MTPV)
strategies. The magnet sizing for each arrangement was based on the DOE/R sensitivity
method, for a constant total magnet volume. The electromagnetic parameters for the rotor
configurations were calculated through a two-dimensional finite element analysis approach,
under the assumption of steady-state thermal conditions in the rotors. dq-axis modeling
was adopted to analyze the performance of the IPMSMs with different rotor configurations,
by using circuit equations that consider stator and PM flux linkages, as well as d- and q-axis
inductances that are nonlinear functions of the flux level. The respective power loss and
efficiency maps were generated over the entire torque-speed range. The performance of
the considered IPMSMs was evaluated along four driving cycles, representative of urban
and extra-urban driving conditions, as well as in terms of acceleration and gradeability, by
simulating a light four-wheel-drive electric vehicle with two on-board motors and even
wheel torque distribution among the two axles.

The main conclusions of the electric motor and vehicle simulation analyses are:

• The power efficiency values show major variations for the different motor configura-
tions, especially at medium-to-high speed values. The premium efficiency region, i.e.,
with efficiency values in excess of 0.97, covers a small range, both in terms of torque
and speed, for the R-ROW, RCL-SOW, and RCL-IOW configurations, and a slightly
wider speed range with a significantly wider torque range in the R-SOW, R-IOW, and
H-NOW layouts.

• For the considered maximum inverter current, the torque capability of the motor is
significantly affected by the magnet arrangement; in fact, the maximum torque ranges
from ~130 Nm for the RCL-IOW configuration to ~160 Nm for the R-SOW layout.

• As the power efficiency of the case study motors tends to significantly decrease
with speed, the cycles with substantial urban driving sections provide higher energy
efficiency, e.g., the average energy efficiency of the considered motors is 0.9248 along
the ARTEMIS motorway cycle, and 0.9520 for the ARTEMIS urban.

• The energy efficiency along driving cycles is affected by the magnet arrangement,
and can vary up to ~3% depending on the rotor configuration. The WLTP class 2
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cycle originates the maximum standard deviation of the motor energy efficiency with
the considered set of rotor layouts. The magnet configuration selection is crucial for
traction motors of electric vehicles operating in a wide range of speeds, while it is less
significant in urban driving, e.g., the standard deviation of the energy efficiency along
the ARTEMIS urban is less than one third of the respective value along the ARTEMIS
motorway.

• In typical driving schedules, the motors operate at relatively low torque, i.e., normally
at less than half of their peak torque in the considered electric vehicle. Hence, the
magnet arrangements providing high values of maximum efficiency for high torque
at the base and top speeds, such as H-NOW, may not yield practical benefits along
normal driving, while configurations with lower maximum efficiency at high torque,
such as RCL-IOW, can be rather effective in realistic scenarios.

• With an average efficiency of 0.9466, the RCL-IOW layout is the most efficient config-
uration for the specific vehicle, followed by RCL-SOW and R-ROW, having average
energy efficiencies of 0.9461 and 0.9375 along the selected schedules.

• For the given maximum inverter current, the longitudinal acceleration and gradeability
performance is very strongly affected by the rotor arrangement, i.e., the maximum
longitudinal acceleration at zero road gradient ranges from 5.61 to 6.87 m/s2, and
the maximum road gradient ranges from 34.7 to 37.5 deg, in high tire-road friction
conditions.

Interestingly, the rotor configurations providing the best drivability performance
are those with the lowest energy efficiency, and vice versa. Hence, the selection of the
motor rotor configuration must be the result of a trade-off between drivability and energy
efficiency, depending on the specific vehicle requirements, and cannot be based only on
motor performance analysis results.

Future investigations will include: (i) more accurate modeling techniques for the
machines, e.g., three-dimensional FEA approaches accounting for the axial length effects;
(ii) optimal sizing of the magnets for each rotor arrangement; (iii) more advanced vehicle
simulations, e.g., to include tire slip power losses; (iv) energy-efficient front-to-rear motor
torque distribution algorithms, including regenerative braking functionalities; and (v)
different electric powertrain topologies.
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