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Francesco Pizzato, Daniele Bringhenti, Riccardo Sisto, Fulvio Valenza
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Abstract—The continuous innovation in network softwariza-
tion has enabled higher dynamism and responsiveness in creating
and deploying complex network configurations. Following this
trend, several approaches have been proposed to automate the
allocation and configuration of network security functions to
satisfy a set of network security policies, describing the security
requirements to be fulfilled in the network. In particular, many
studies focused on addressing this problem for the packet filtering
firewall, as it is the most common firewall technology used in
computer networks. However, those proposed techniques for au-
tomatic firewall configuration are not optimized for reconfiguring
an already deployed network. This results in a computation delay
that is incompatible with the needs of modern networks and
the timing of current network attacks. In order to overcome
these limitations, this paper proposes an efficient method to
reduce the computation time for reconfiguration while providing
an automated, formally correct, and optimal placement and
configuration of the required network security functions. The
proposal has undergone validation and evaluation tests, so as to
show the achieved improvements in comparison to non-optimized
approaches.

Index Terms—firewall, optimized reconfigurartion, virtual net-
work orchestration

I. INTRODUCTION

Automatic approaches for network security management
have recently become popular as a consequence of the advent
of virtualized networks. Nowadays, many solutions leverage
the improved flexibility and dynamism introduced by virtu-
alization for synthesizing and deploying large and complex
architectures [1]. Furthermore, some of these solutions adopt a
formal approach to the problem, ensuring solution correctness
by construction. This is crucial because it allows to avoid
possible misconfigurations, which is an essential to provide
adequate network security [2] [3].

Despite the different advantages achieved by these solu-
tions, whenever there is a change in the network topology
or in the set of security policies to be enforced, most of
the approaches proposed so far need to be re-executed from
scratch to synthetize a new valid configuration, resulting in
a wasteful process both in terms of computation power and
time. Moreover, this may produce a significantly different
configuration with respect to the original one. Consequently,
in order to deploy the updated configuration, a large part of the
network need to be shut down, updated, and restarted, adding
another time delay which is not negligible (for example,
OpenStack requires more than 5 s for the deployment of a
single machine [4], and Open Source MANO, a well-known
NFV orchestrator, requires a delay of 134 s to deploy a virtual
function [5]).

This clashes also with the trend for modern networks
attacks, as reported by various sources [6], [7], according
to which nowadays attacks have shorter duration and rapidly
mutate between multiple attack vectors within minutes.

Considering these trends, there is a clear need for a solution
suitable for the timing of modern attacks that can reconfigure
the network quickly and adapt to evolving attack scenarios.
An automated approach based on formal methods could be a
potential solution to address this new generation of network
attacks, being able to proactively defend against incoming
attacks through the optimized computation of an updated
firewall configuration that blocks the attacker within a short
time delay, while ensuring formal correctness with respect to
all security policies in place.

In view of these motivations, this paper proposes a new
approach for the optimized security reconfiguration of dis-
tributed packet filters for an already deployed network within
a short computation time. The novelty of the proposal lies
in the coexistence of three important features that, to the
best of our knowledge, are not supported by any other re-
configuration approach: complete automation, optimization,
and formal correctness assurance. This is made possible by
the adopted technique, which is based on the resolution of
a partial weighted Maximum Satisfiability Modulo Theories
(MaxSMT) problem. This type of problem allows, with a
carefully designed model of the network configuration and
the desired security policies, the computation of a solution
that correctly enforces the given requirements while seeking
additional optimality goals, going beyond what is achievable
with commonly used approaches based on heuristics. The
methodology has been validated and implemented in one
of the existing automated approaches: VEREFOO (VErified
REFinement and Optimized Orchestration).

The remainder of this paper is structured as follows. Section
II contains a summary of the related work. Section III intro-
duces some key formalisms used to represent the network, the
approach and the main algorithms which have been designed.
Finally, Section IV summarizes the results of the performance
tests conducted on the implemented prototype, and Section V
presents the conclusion and future work.

II. RELATED WORK

Previous related work can be divided in three main cat-
egories: 1) approaches that pursue a similar idea but are
applied to a different subject with different characteristics and
needs, i.e., the problem of routing management (Subsection
II-A); 2) approaches that are designed for the same problem,



i.e., reconfiguration of firewalls, but lacking some of the
features with respect to our approach (Subsection II-B); 3)
approaches for the configuration of distributed firewalls with a
similar set of features, namely automation, formal correctness
assurance, and optimality, but without the support for a specific
reconfiguration procedure (Subsection II-C).

A. Optimized Reconfiguration for routing problems

A small number of studies ([8], [9], [10]) adopt an approach
similar to the one presented in this paper, but for a com-
pletely different problem, i.e., routing management. Indeed,
they deal with routers, routing algorithms, and forwarding
policies instead of network security functions and policies.
In greater detail, [8] describes the design of the Control Plane
Repair algorithm, an approach based on a MaxSMT problem
to automatically compute correct and minimal repairs for
network control planes. The solution is based on a carefully
crafted formal model for the network, the routing protocols,
and the exchanged traffics. It supports as optimization goal
the minimization of the lines written in the configuration. [9]
outlines another synthesis tool, named AED, that formally
models the network and its configuration into a MaxSMT
problem. The optimality goals considered in the resolution are
more refined, allowing the operator to specify different man-
agement objectives, such as maintaining structural similarity
across devices or minimizing the number of modified devices.
Finally, [10] presents JINJING, an approach for the automatic
and correct update of routing configuration on the base of
intents expressed using an ad-hoc language. This approach
models the network as an SMT problem, leaving as open the
variables of the elements causing the inconsistencies between
current configuration and desired policies while keeping the
other elements as fixed. Optimality in this case is not present.
Moreover, the approach could produce redundancy in the com-
puted rules as it requires a post-processing task to minimize
the lines of the computed configuration, and it just focuses on
traditional networks, not allowing to modify the topology of
the control plane but only its configuration.

Overall, these approaches are not suitable to the problem
analyzed in this paper, even if they combine similar features
(automation, formal verification, and optimization), because
they apply them to a different context.

B. Automatic fixing of firewall configurations

Other studies ([11], [12], [13], [14], [15]) investigate the
problem considered in this paper, i.e. automatic reconfigura-
tion of firewalls, but they address it partially, as their proposed
solutions lack some of the features which are included in
our proposal. [11] proposes five algorithms to automatically
reconfigure a faulty firewall after five corresponding issues
(wrong rule order, missing rules, wrong condition predicates,
wrong decision actions, wrong extra rules) which are detected
through samples of misclassified packets, used as input of
the reconfiguration process. [13] uses a dedicated calculus
to formally verify if the configuration is compliant with the

security policies defined by the user, and, if not, to automati-
cally generate the optimal and correct configuration repair. [15]
illustrates a methodology for configuration refinement, formal
verification, and, if needed, the automatic computation of a fix-
ing strategy in case the current configuration does not enforce
correctly the user defined policies. This is based on a SMT
model and, for the fixing, on a constraint refinement approach.
[12] computes, whenever a misconfiguration is detected, a
formally correct fixing action by resolving a carefully designed
SMT problem. [14] presents another approach based on formal
models and the design of an SMT problem. It follows a repair
by example paradigm, providing as input of the reconfiguration
a set of user defined examples of the desired filtering behavior.

Concerning their limitations, [11], [14] can not guarantee
the formal correctness of the configuration with respect to a
set of security policies, because they do not model all the
traffics but either only those provided in the examples or
those involved in a detected misclassification, and so they
can not guarantee the correctness for all traffics. Almost all
of the approaches [11], [12], [13], [14] are not designed
for distributed firewalls but they support only single firewall
instances. Moreover, they do not support the synthesis of new
services from scratch but they can only modify those that
have already been deployed. [12], [14] adopt limited or none
optimization for the computation of the new configuration.
[15] is the most complete one in terms of features but its focus
is mostly on access control instead of reachability policies, and
it is mostly a description of a possible approach rather than a
fully functional solution.

C. Automatic, formal, and optimal firewall configuration

Finally, there are studies that propose automatic technique
for the allocation or configuration of distributed firewall sys-
tems with all the features we are considering. Among all
the ones that are reported in a state-of-the-art survey about
automatic security configuration [1], the most relevant ones
are ConfigSynth [16] and VEREFOO [17], [18]. The former
automates the generation of the firewall allocation scheme
(but not of the configuration) with an optimized and formal
approach based on the definition of an iterative SMT problem.
The idea is that, at each step of the algorithm, the architecture
is tuned until it properly enforces all the security properties.
In this case, the optimization criteria is the minimization of
the network security functions allocated in the network. The
latter proposes the definition of a MaxSMT problem to model
the network and its configuration. The formal assurance is
provided with a correctness-by-construction approach and the
involved optimality criteria are the minimization of the number
of allocated firewall and the number of firewall rules, so as to
reduce the amount of consumed resources.

Despite the relevance of these two studies and other re-
lated ones in the same category, they simply regenerate the
allocation scheme or configuration from scrath every time,
and therefore they do not provide an optimized procedure for
reconfiguration.



Fig. 1: general schema of the approach

III. THE PROPOSED APPROACH

The approach proposed in this paper consists in a method-
ology that computes automatically the reconfiguration of a
distributed firewall, whenever the user specifies new Network
Security Requirements (NSRs) that are not yet enforced in the
network. Full automation is combined with optimization and
formal verification, so that the result of the reconfiguration
process is computed within a short computation time, while
ensuring that the given set of NSRs is satisfied.

As shown in Fig. 1, the presented approach receives two
inputs from the user. The first input is the logical topology
of a virtual network with an already existing distributed
firewall configuration, composed of the allocation scheme of
its instances and their filtering rules. The second input is a
pair of NSR sets: the Initial NSR set, including the old NSRs
already satisfied by the existing firewall configuration, and the
Target NSR set, including the new NSRs to be enforced in the
updated network configuration. The produced outputs are the
updated allocation scheme and the reconfigured filtering rules
of the firewall.

Starting from these inputs, the approach is composed of
multiple steps. The first one involves the definition of a
complete and formal model that represents the network, the
configuration of the different network functions, and the traffic
exchanged (Subsection III-A). Then, a central part of this
proposal, representing the main novelty introduced here, is
the design of an algorithm able to identify the network areas
that must be reconfigured based on the intersection of the two
sets of NSRs provided as input (Subsection III-B). Having
computed this intersection, it is possible to discern which
NSRs have been added, kept or deleted in the new set of NSRs
with respect to the original one. The algorithm identifies, for
all the “added” requirements, i.e., those relevant for the recon-
figuration scenario, which elements of the provided network
should be modified because in conflict with the new set of
security requirements. The configuration of these elements is
therefore put under question. Finally, the approach formulates
a MaxSMT problem whose resolution allows to generate the
new allocation graph and configuration rules of the needed
firewalls (Subsection III-C). A MaxSMT problem differs from
an SMT problem because it allows the definition of two
types of clauses: the hard constraints that are compulsory, and
the soft constraints that are optional and have an associated

weight. The selected solution is the one that satisfy all the
hard constraints and maximise the sum of the weights of the
satisifed soft constraints.

This approach avoids the need to recompute the entire
network from scratch, resulting in a significant reduction in
computation time. The proposed strategy speeds up the process
by narrowing down the space of possible solutions that are
analyzed, keeping certain parts of the configuration as fixed,
and modifying optimality related clauses, which are provided
to the solver, to have a faster convergence towards the optimal
solution. Notably, the problem still models all the traffic for
the NSRs in the target set, so the union of “added” and “kept”.
This ensures that the computed solution is guaranteed to be
correct with respect to the desired NSRs.

A. Formal models

The formal models used in this paper stem from VEREFOO
[17], [18], a policy-based approach for automatic firewall
configuration, which has all the features (automation, formal
verification, optimization) we are interested in. Here, we
report the main features of those models that are required to
understand the remainder of the section, focusing on the ones
that are different with respect to [17], [18]

The logical topology of the input network is modeled as
a directed graph, named Service Graph (SG), whose nodes
represent all the network functions and endpoints (e.g., web
clients, web servers, firewalls, NATs) and whose edges rep-
resent directed connections. However, the SG model is not
directly used by the next steps of the proposed approach, but
it is preliminarily pre-processed to create an alternative repre-
sentation, named Allocation Graph (AG). The main difference
is that the AG model is characterized by an extra node type
named Allocation Place (AP), representing a placeholder node
that can be used by the MaxSMT solver to potentially allocate
a firewall. The transformation of the SG model into the AG
consists in adding an AP only in-between pairs of network
nodes that do not contains any function that could be reused,
e.g., firewalls, as the idea is to reconfigure previously allocated
firewall instances whenever it is possible, rather than placing
additional ones in other APs.

The packets that may cross the AG are grouped in classes,
depending on the values of their header fields. Each packet
class, also called traffic in this paper, is represented as a pred-
icate computed over some variables representing the header
fields. Packets whose fields have the same values belong to
the same traffic, represented by the same predicate, and are
therefore managed in the same way by all nodes crossed in
the network. Their predicate representing the formal model
of each traffic is a conjunction of sub-predicates, one for each
considered packet field. Since this approach works with packet
filters, the modeled fields are the five ones composing the IP
5-tuple, i.e., source and destination IP addresses, source and
destination ports, and protocol type. Each sub-predicate can
represent a single value, a range of values, or the range of all
possible values, denoted with the “*” symbol. The set of all
different packet classes crossing the AG is denoted as T .



The way each node composing the AG handles each input
packet class is then modeled in a way that is as lightweight as
possible, by considering only the parameters that are actually
relevant for the security reconfiguration problem. In partic-
ular, it is modeled by means of two functions, representing
respectively the forwarding and transformation behaviors. On
the one hand, the function modeling the forwarding behavior
of node ni is denyi : T → B. This function maps an ingress
traffic t to true, if and only if ni blocks all the packets of that
class. For simplicity, we denote Id the set of denied packets,
and Ia the set of allowed packets. On the other hand, the
function modeling the transformation behavior of node ni is
Ti : T → T . This function maps an input traffic t to the
corresponding output traffic, after the possible modifications
that it may apply. For several function types (e.g., forwarders,
traffic monitors, firewalls), Ti is the identity function, as they
cannot modify the input traffic. Instead, for functions such as
NATs and load balancer, it provides the information related to
the changes applied to the 5-tuple fields.

These models (i.e., the ones of packet classes and network
node behavior) allow to introduce the concept of traffic
flow. A traffic flow represents how a specific packet class is
forwarded and transformed within its path. A flow f ∈ F
is modeled as a list of alternating nodes and packet classes
[ns, tsa, na, tab, nb, ..., nz, tzd, nd], where each node ni in
the list represents a node crossed by the flow, whereas the
traffic tij is a predicate representing the class of packets
transmitted from node ni to node nj . The definition of the
traffic flows crossing the AG may differ, depending on how
single packets are grouped into the corresponding classes.
From this point of view, we decided to adopt the grouping
strategy named Atomic Flow (AF), proposed in [19]. The
reason is that, according to that study, it is the technique
that provides more benefits and better performance for solving
an automatic (re)configuration problem. In greater detail, this
grouping strategy is based on the Atomic Predicate concept,
proposed by [20] for the network reachability problem. The
idea is that, given a set of predicates of the network, it is
possible to compute a set of corresponding atomic predicates
that are minimal, unique, and fully representative of the inital
set. Then, a flow f = [ns, tsa, na, tab, nb, ..., nz, tzd, nd] can
be defined atomic if each traffic tij is an atomic predicate.
To compute the set of atomic predicates, and then the set of
AFs, we consider the ”interesting” predicates extracted from
the NSRs and the network configuration. The algorithms are
not reported here, because they are already described in [19].

Lastly, the security requirements that must be enforced in
the AG are modeled as the combination of two elements: a
set of specific NSRs R and a general behavior. On the one
hand, each specific NSR r ∈ R is formally modeled as a tuple
(a,C), where a is the action that must be applied on packets
matching with the condition predicate C. The NSR is defined
isolation requirement if the action a is deny, reachability
requirement if instead the action a is allow. The set of specific
NSRs provided by the user is assumed to be anomaly-free,
which is not a limitation because there are many well-known

anomaly analysis techniques ([21], [22]) that easily allows to
derive anomaly-free policy sets. On the other hand, the general
behavior adopted in this proposal is a “don’t care” approach,
which allows users to define both reachability and isolation
requirements without imposing any restriction on other packet
classes (i.e., users are not concerned about the reachability
and isolation of packets for which they have not specified a
specific NSR).

The formalization of the specific reachability and isolation
NSRs in terms of traffic flows management is as follows: an
isolation NSR is satisfied if for any associated traffic flow
there is at least one node with an allocated function configured
to block the traffic in input for that flow (eq. 2), whereas a
reachability NSR is satisfied if there is at least one associated
traffic flow that is not blocked from source to destination
by any of the crossed nodes (eq. 1). These will be modeled
in the MaxSMT problem as hard constraints, making their
satisfaction mandatory. Note that the reported equations are
using some utility functions whose meaning is as follows: π(f)
returns the nodes belonging to flow f (excluding the source),
allocated(n) returns true if there is a firewall allocated in node
n, and finally τ(f, n) returns the traffic in input to node n for
flow f .

∃f ∈ Fr.∀i.(ni ∈ π(f) ∧ allocated(ni)
=⇒ ¬denyi(τ(f, ni)))

(1)

∀f ∈ Fr.∃i.(ni ∈ π(f) ∧ allocated(ni)
∧ denyi(τ(f, ni)))

(2)

Moreover, the input NSR set R is composed of two subsets:
the Initial set Ri, including the NSRs that are already enforced
in the existing network modeled by the AG, and the Target
set Rt, including the new NSRs to be enforced in the updated
network configuration.

B. Algorithm for detection of network area to reconfigure

Starting from the formal models of all the input components
(i.e., network topology, function behavior, traffic flows, and
NSRs), our approach envisions the execution of an algorithm,
designed to detect the network areas that actually require
firewall reconfiguration for the satisfaction of the Target NSRs
included in Rt.

First, this algorithm classifies each NSR r ∈ {Rt ∪ Ri}
to one of the following groups: (i) Rd = {r ∈ Ri|r /∈ Rt},
the “deleted” NSRs which are no more needed in the final
configuration but are present in the initial one, (ii) Ra = {r ∈
Rt|r /∈ Ri}, the “added” NSRs that should be enforced in the
final configuration and are not present in the initial one, and
(iii) Rk = {r ∈ Rt|r ∈ Ri}, the “kept” NSRs that are already
configured in the provided network and should continue to be
enforced in the final configuration.

Second, the algorithm detects, for all “added” requirements
Ra, i.e., those relevant to the reconfiguration scenario, which
elements of the provided network should be modified because
in conflict with at least a new requirement. Due to the different
formulations of the two requirement types, this part of the



Algorithm 1 Algorithm for selecting network area to recon-
figure for each added isolation requirement
Input: an isolation requirement r, and an AG GA
Output: nodes to be reconfigured Nreconfigure

1: for f ∈ Fr do
2: found← False
3: for ni ∈ π(f) = [n1, n2, ..., nd] do
4: if allocated(ni) & denyni (τ(f, ni)) then
5: found← True
6: break
7: end if
8: end for
9: if found == False then

10: Nreconfigure ← π(f) {All nodes in the path should be recon-
figured}

11: end if
12: end for
13: return Nreconfigure

Fig. 2: Example of addition of an isolation requirement

algorithm is differently formulated for the case of isolation
requirements, and the case of reachability requirements. Any-
how, it is important to underline that the algorithm selects as
reconfigurable all the nodes which can potentially be used to
fulfill the NSRs in Ra, since it can not decides a priori which
is either the optimal node for blocking a traffic or the optimal
traffic flow which must be allowed from source to destination.

Considering a new isolation requirement r ∈ Ra and a
given AG GA, the procedure to compute the network elements
to be reconfigured is presented in Algorithm 1. This procedure
starts considering for each isolation requirement, r, all the
correlated atomic flows, Fr. The algorithm checks whether
there is a node along the flow path that is currently blocking
the incoming traffic for that flow (lines 3-7). If no such node
is found for a given flow, then all the nodes crossed along
the flow path are designated as eligible for reconfiguration
(lines 9-11). This would allow the solver to subsequently
decide in which node a firewall should be allocated to enforce
the isolation requirement r. Fig. 2 clarifies this with an
example, where the algorithm takes as inputs the two sets
of Initial and Target NSRs, along with a partially configured
network that comprises a firewall and two forwarders. The
the new requirement that should be enforced is the isolation
requirement for the traffic from the web client 10.0.0.1 to the
web server 20.0.0.1. In this case, there are two paths associated
with this requirement, each with only one AF. These two flows

Algorithm 2 Algorithm for selecting network area to recon-
figure for each added reachability requirement
Input: a reachability requirement r, and an AG GA
Output: nodes to be reconfigured Nreconfigure

1: tmpReconfigured← ∅
2: for f ∈ Fr do
3: tmpF low ← ∅
4: for ni ∈ π(f) = [n1, n2, ..., nd] do
5: if allocated(ni) & denyni (τ(f, ni)) then
6: tmpF low ← ni

7: end if
8: end for
9: if tmpF low.isEmpty() then

10: tmpReconfigured← ∅
11: break
12: else
13: tmpReconfigured← tmpF low
14: end if
15: end for
16: return Nreconfigured ← tmpReconfigured

Fig. 3: Example of addition of a reachability requirement

are labeled A and B, respectively. The algorithm analyzes each
flow to determine if there exists a node blocking the traffic.
In this scenario, flow B encounters a firewall that blocks all
traffic through its default action, consequently the condition
is satisfied. Instead, flow A does not crosses any network
function that is blocking the traffic. So, the nodes belonging
to its path must added to the set of nodes to be reconfigured,
Nreconfigure (i.e., the two forwarders in this case).

Considering a new reachability requirement r ∈ Ra and
an AG GA, the procedure for selecting the network elements
to be reconfigured is presented in Algorithm 2. In this case,
the satisfiability condition is the logical negation of the prior
scenario. The algorithm has to look for the existence of an
atomic flow that is not blocked from the source up to the
destination. If such a flow is found to satisfy the reachability
condition, the algorithm may terminate before having checked
all flows. For all the flows Fr correlated with the reachability
requirement r, the algorithm examines whether the nodes
along the path are blocking the incoming traffic for the given
flow. If this is the case, these nodes are added to a temporary
list (lines 4-8). In the end, if the algorithm does not find an
atomic flow satisfying the reachability condition, all the nodes
in the temporary list are selected for reconfiguration and added
to the set Nreconfigure. Considering the example in Fig. 3,



we encounter a situation analogous to the previous scenario
but with different inputs. In this case, the network consists of
two firewalls configured in whitelisting mode and a forwarder.
The new requirement that should be added is the reachability
from node 10.0.0.1 to node 20.0.0.1, encompassing all possible
ports and protocol types. This requirement is associated with
two paths, each with an associated atomic flow. These are
referred as A and B. In this instance, the algorithm checks
whether at least one of these flows does not block the traffic.
If this is not the case, the algorithm proceeds to select for
reconfiguration, in each flow, the nodes that are blocking the
traffic. In this specific case, both flows encounter a firewall
that is blocking their traffic. As a result, the algorithm selects
the nodes that are blocking both flows, as the solution would
be to reconfigure either FW1 or FW2. This ensure that at least
one atomic flow can reach the destination, thus meeting the
reachability requirement condition.

C. MaxSMT Problem formulation

After the algorithm has identified all the firewall instances
that may potentially require reconfiguration, this information
is used, jointly with the formal models of the input, for
the formulation of the MaxSMT problem. The core of this
formulation is mutuated from the one proposed in [17], [18]
for automatic firewall configuration from scratch. However,
some key changes have been introduced to contextualize that
formulation to the optimized reconfiguration scenario.

A first difference is that the approach proposed in this
paper restricts the set of APs that are available for the solver
to allocate firewall instances, and keeps some of them as
static elements, which cannot be updated within the security
configuration.

Moreover, to further optimize this approach, also the soft
constraints involved in the optimization phase have been
adjusted, leading to an additional performance improvement.
The guiding principle is that the optimal reconfiguration is
the one that does not require any update to the network, thus
causing the lowest possible delay. Following this idea, the soft
constraints have been updated to prefer an already allocated
firewall instead of deploying a new one, as well as an already
configured rule must be preferred with respect to a newly
generated one.

The same classes of soft constraint have been employed to
express both objectives, namely the minimization of resource
usage and the preference of reusing the original firewall config-
uration. However, the weights associated to these constraints
differ in relation to the considered subject, whether it is an
empty AP or reconfigured firewall, or a newly generated
firewall rule with respect to an already configured one. This
difference is such that the usage of a reconfigured node, as
any of its rules, would result in an higher sum of weight and
a preferred solution. As a result, the final configuration will
be the one that not only minimizes the number of consumed
resources in general, but also the one that produces the
smallest possible number of changes with respect to the initial
configuration.

In particular, the soft constraint regulating the allocation of
a firewall for each node n in the set of APs A, is formulated
as in equation 3. This instructs the solver to prefer a solution
that does not allocate a firewall for any APs. Indeed, the non-
allocation soft constraint produces a contribution to the sum
of weights equal to ck.

∀ai ∈ A. Soft(¬allocated(ai), ck) (3)

Similarly, the soft constraint regulating the configuration of
firewall rules is presented in equation 4. In this case a different
weight cki, smaller than the previous, is assigned to the non
configuration of each potential firewall rule pi. The set Pk

contains all the rules that should be potentially configured in
a firewall if it is allocated.

∀pi ∈ Pk. Soft(¬configured(pi), cki) (4)

In the approach optimized for reconfiguration, the weights
associated to these soft constraints are modified for the nodes
in Nreconfigured. The first soft constraint has been modified
in such a way that the non-allocation of each firewall in
Nreconfigured produces a contribution cRk to the sum of
weights, such that cRk < ck. In this way, the non-allocation
of an empty AP would be preferred to the non-allocation of
a reconfigured firewall because it has an higher weight. The
same principle is applied for the second soft constraint.In this
case, for each firewall in Nreconfigured, any of the configured
rules pi has an associated weight cRki, such that cRki < cki.
As before, this implies that the non-configuration of a new
potential rule is preferred with respect to the non-configuration
of a previously used one.

Finally, it is worth noting that the proposed approach may
only produce a solution that is optimal with respect to the
network areas identified as to be reconfigured, and not an
optimal solution in a global sense. Nevertheless, this limitation
is compensated by the improved computation time, which
represent a more critical parameter in the proposed scenario
of a cybersecurity attack.

IV. IMPLEMENTATION AND VALIDATION

The proposed approach has been implemented as a Java-
based framework, and the Z3 theorem prover [23] has been
used to solve the formulated MaxSMT problem. The frame-
work has been extensively tested to assess its correctness and
its performance improvement with respect to the traditional
approach for firewall configuration from scratch. The vali-
dation was carried out on synthetic networks of increasing
sizes and various reconfiguration scenarios. The performance
tests were designed to evaluate how much the results obtained
with the proposed optimized reconfiguration approach deviate
from those obtained with a state-of-the-art approach lacking
support for optimized reconfiguration. For this purpose, the
comparison has been done with the official implementation of
VEREFOO [24]. The evaluation also covered the achievement
of the optimality goals, quantifying the deviations of the
proposed approach from the global optimum in terms of
resource consumption. As mentioned in III-C, this approach



Case-A Case-B Case-C Case-D Case-E
0

0.5

1

1.5

2

2.5

3

3.5

·104

2
9 8
1 2
5
8

8
7
9 2,
5
2
9

2
5 8
1 4
0
2 1,
4
4
3 4,
5
0
9

2
6 93 3
6
2 1,
9
0
3

8,
3
9
9

43 1
32 5
9
5

4
,9
3
2

1
3
,9
1
7

3
0 1
57 1,

6
1
4

8
,7
9
4

3
4
,3
4
3

A
ve

ra
ge

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

90% PercReqKept 70% PercReqKept 50% PercReqKept
10% PercReqKept Complete Reconfiguration

Fig. 4: Performance tests

considers a limited subset of the solution space, thus it may
compute a configuration that is locally optimal concerning the
reconfigured nodes but not in a global sense.

The main parameters used in the different test cases are
the number of NSRs, the number of endpoints, and number
of NATs (which introduce an additional complexity factory,
ad they can modify the crossing traffic). Another important
parameter is PercReqKept, which represents the percentage
of requirements in the set Rk with respect to the complete
set of NSRs. In other words, it represents the proportion of
kept requirements with respect to the total number of defined
NSRs. Clearly, if the percentage of requirements maintained
between the Initial and Target sets of NSRs increases, then the
number of NSRs in the added (Ra) and deleted (Rd) groups
will consequently decrease.

The first analysis, shown in Fig. 4, compares the perfor-
mance of the algorithm in five different types of networks,
differentiated by an increasing number of endpoints, NSRs and
NATs, and with four reconfiguration scenarios, differentiated
by the value of the PercReqKept parameter. In particular, the
five differents classes of networks that have been tested are:
case-A with 10 NSRs, 60 enpoints and 5 NATs, case-B with
15 NSRs, 80 endpoints, 10 NATs, case-C with 20 NSRs, 100
endpoints, 15 NATs, case-D with 25 NSRs, 120 endpoints,
20 NATs, and case-E with 30 NSRs, 140 endpoints and 25
NATs. Then, the application of the framework to each of these
network classes has been tested in four different reconfigura-
tion scenarios, each characterized by a decreasing value of
PercReqKept, and, as a consequence, an increased number
of modified NSRs. The values adopted for this parameter
are as follows: 90%, 70%, 50%, and 10%. Note that the
tested scenarios are more concentrated on higher values of
PercReqKept, as justified by multiple sources. For instance,
[25] reports that updates in the Facebook infrastructure affect
on average 157 lines of configuration, considering only the
backbone, or 738 lines, if also data centers and edge servers
are considered. Both numbers of lines are relatively small,
when compared to the huge scale of their network. Instead,
[26] questioned different large online service providers and

found out that, for 75% of the networks operated by them, the
median change includes only three devices.

For each value of PercReqKept, and for each type of
network, the algorithm has been executed 100 times. More-
over, this analysis aimed to highlight the improvement versus
an unoptimized approach, which is referred in the tests as
the Complete Reconfiguration case and it corresponds to the
vanilla version of VEREFOO.

The observed trend is that the computation time is directly
proportional to the number of endpoints and NSRs, and
inversely proportional to the percentage of kept requirements.
Every considered reconfiguration scenario achieves an aver-
age computation time significantly lower than the approach
adopted in the vanilla VEREFOO. The obtained results high-
light that the main parameters increasing the computation time
are the number of endpoints, the number of NSRs and, just
for the reconfiguration case, the percentage of NSRs which are
maintained, i.e., the PercReqKept parameter. Indeed, the Initial
and Target NSR sets, once overlapped, form a shared region
representing the groupRk. The larger this area, the smaller the
setsRa andRd, representing the added and deleted NSRs, and
fewer NSRs must be processed, making the reconfiguration
process less expensive in terms of computation time.

These results show that the highest advantage in terms
of computation time is obtained when the reconfiguration
regards a small subset of the total NSRs. This is an expected
result. In fact, the optimization improvement of the presented
approach is mainly achieved by limiting the solution space
that is considered by the solver. This reduction is achieved by
fixing the configurations of some network elements which are
unaffected by the new NSRs, shrinking the set of variables
whose values must be determined with the resolution of the
problem. If the modified NSRs represent a major part of the
whole set, then the unaffected area is reduced, and the opti-
mization effect is limited. This validation phase also assessed
that the impact of the designed algorithm could be considered
irrelevant when compared to the overall computation time,
since its contribution always ranged between 0 to 100 ms,
with most of the runs being under 10 ms. In general, the
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Fig. 5: Optimality comparison
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Fig. 6: Scalability tests

results confirm the feasibility of the proposed approach and
its relevant advantages in terms of computation time when
compared to the previous solution, based on a complete
reconfiguration of the whole network.

In this phase, also the optimality of the solution has been
analyzed. The results show that the reconfiguration approach
achieves a slightly higher number of allocated firewalls and
configured rules. The extent of this difference changes depend-
ing on the ratio between the weight assigned to a reconfigured
node and that used for a new one. This is demonstrated
by the additional tests shown in Fig. 5. Two different cases
are represented here, one in which the ratio between the
weight assigned to a new AP and the weight assigned to a
reconfigured node is equal to 2, in Fig. 5a, and another case
in which the same ratio is equal to 10, Fig. 5b. As we can see,
increasing this ratio results in an increase for the number of
generated firewall rules, and the same applies to the number
of firewalls (even if not represented here). The sub-optimality
of the result is due to two factors: first, the reduction of the
solution space for the solver which is limited to the subset
of allocation places that could be modified, and second, the
soft constraints which force the preference of reusing old
configuration elements even if a completely new configuration
would result in a slightly better optimality. Note that the results
for performance and scalability have been conducted using the

value 2 for the ratio, which allows to reduce the computation
time while achieving a nearly optimal usage of resources.

The second validation analysis tested the approach with
larger networks and considering just a single reconfiguration
scenario in which 70% of NSRs are kept from the Initial to the
Target set. Fig. 6 compares the obtained average computation
time for the proposed approach compared with the previous
one. The considered networks types have increasing sizes,
specifically the considered cases are from left to right: 200
NSRs and 40 endpoints, 300 NSRs and 60 endpoints, with
400 NSRs and 80 endpoints, and 500 NSRs and 100 nodes.
As we can see, even considering the high variability of the
obtained values, the reconfiguration approach performs well
when compared to the previous one also in terms of scalability.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel approach for the optimized
reconfiguration of distributed firewall systems. To the best
of our knowledge, the proposed approach is the first one
in literature to address that problem while combining three
main features: full automation in computing the firewall re-
configuration, formal correctness assurance of the computed
configuration, and optimizations in terms of resource con-
sumption. The proposal was designed considering use cases of
network attacks, requiring the computation of a new formally
correct and secure solution within a short computation time,
so as to limit the exposure of the systems to the attack.
The proposed strategy has been implemented as a framework,
whose validation showed benefits in terms of performance
with respect to a state-of-the-art technique that automatically
computes the firewall configuration from scratch.

As future work, the current methodology may be extended
to the reconfiguration of other network security functions, such
as anti-spam filters and web application firewalls. A longer-
term work is also to exploit this solution as a starting point
for the design of a parallelized approach for the resolution
of the problem, dividing the network into independent areas
that could be configured separately (and in parallel), and
consequently breaking one single and complex problem into
multiple smaller ones, each requiring a shorter computation
time.
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