
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (35thcycle)

Toward Fault-Tolerant Applications
on Reconfigurable Systems-on-Chip

By

Corrado De Sio

Supervisor(s):
Prof. Luca Sterpone, Supervisor

Doctoral Examination Committee:
Prof. Diana Göhringer, Referee, TU Dresden
Prof. Tanya Vladimirova, Referee, University of Leicester
Prof. Cristiana Bolchini, Politecnico di Milano
Prof. Mario Porrmann, Osnabrück University
Prof. Maurizio Rebaudengo, Politecnico di Torino

Politecnico di Torino

2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of Politecnico di Torino’s products or
services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution, please go
to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to
learn how to obtain a License from RightsLink. If applicable, University Microfilms
and/or ProQuest Library, or the Archives of Canada may supply single copies of the
dissertation.”

Corrado De Sio
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

http://www.ieee.org/publications_standards/publications/rights/rights_link.html

A Mamma e Papà,
who have been a light to me in dark places

Acknowledgements

I am immensely grateful to everyone who has supported me throughout this journey. I
would like to express my sincere appreciation to my supervisor, Prof. Luca Sterpone,
for allowing me to work on my research and being an exceptional guide, mentor,
and source of motivation throughout this period. I am deeply grateful to Prof. Sarah
Azimi, who has been an endless source of advice and inspiration for me over these
years and from whom I have learned more than any other.

I would like to thank Prof. Matteo Sonza Reorda and the CAD group for the
opportunity they have given me to work with them and my lab colleagues for the
invaluable help they have provided me all these years.

Finally, I would like to thank my entire family for the support and encouragement
they have given me over the years and throughout my whole life. I want to thank
Maria for standing by my side throughout this journey. Without her, I could not have
completed this journey.

Abstract

Thanks to their performance, reduced power consumption, and adaptability, Pro-
grammable Hardware devices, particularly Reconfigurable Systems-on-Chip, have
emerged as a cutting-edge platform for many performance-oriented applications,
including embedded ones. However, additional efforts are needed to ensure the
correct system functionality for applications where reliability is the main concern.
In particular, space exploration requires highly reliable systems that can operate
in extreme conditions and environments such as the space radiation environment.
Indeed, electronic devices, and especially programmable hardware, are sensitive to
radiation-induced faults and errors, necessitating fault tolerance in critical applica-
tions.

This dissertation proposes and explores methodologies and techniques to en-
able accurate fault analysis and reliability evaluation for Hardware-Reconfigurable
Systems-on-Chip, with a particular focus on safety-critical systems. It addresses
the challenges in analyzing radiation sensitivity in complex systems and applica-
tions, such as the need for efficient fault detection and diagnosis strategies and the
development of dedicated tools and methodologies.

Methodologies, evaluation flow, and tools for analysis and characterization of
radiation-induced faults, such as Single Event Transients and Single Event Upsets,
are proposed. They include both physical and electrical simulation approaches and
radiation test analysis.

Techniques and methodologies for assessing the reliability of heterogeneous
systems-on-chips, which includes both processor systems and accelerators based
on reconfigurable hardware paradigms, are also presented. Research efforts cover
the sensitivity of different modules against fault models resulting from physical
analysis, electrical analysis, and radiation test experiments. Evaluated modules

vi

include soft and hard processors, host-device interfacing systems, and neural network
accelerators.

The approaches, methodologies, and results presented in this dissertation aim to
enable the development of highly reliable and fault-tolerant systems in a wide range
of applications, particularly those requiring operation in extreme environments, such
as space exploration. Additionally, the proposed methodologies and techniques can
be used to analyze and evaluate the reliability of Reconfigurable Systems-on-Chip.
This research wants to provide the necessary means to develop and analyze the
reliable and efficient operation of such systems in extreme conditions and open the
door for new opportunities for the development of advanced, reliable, and efficient
systems based on a comprehensive and detailed analysis of the elements of hetero-
geneous computational platforms including programmable hardware, providing the
methodology as well practical tools for reaching this goal.

Contents

Acknowledgements iv

Abstract v

List of Figures xi

List of Tables xiv

Acronyms xviii

1 Introduction 1
1.1 Motivations . 1
1.2 Aims and Objectives . 2
1.3 Contributions . 3
1.4 Thesis Organization . 3
1.5 Publications . 4

I Context 7

2 Hardware-Reconfigurable Systems-on-Chip 9
2.1 Reconfigurable Hardware . 9

2.1.1 Reconfigurable Architecture 11
2.1.2 All-Programmable Systems-on-Chip 18

3 Radiation Effects on Electronics 19
3.1 An Introduction to Radiation Effects 19

3.1.1 Dose Effects . 20
3.1.2 Single Event Effects (SEEs) 21

3.2 Radiation Environments . 23

viii Contents

3.2.1 Electronics operating in Space 23
3.2.2 Electronics operating on Earth 25

II Physical-Level Radiation Analysis of Reconfigurable SoCs 27

4 Analysis of Single Event Transient 29
4.1 Overview on Single Event Transient Analysis 29
4.2 SETs Propagation in the Programmable Logic 30

4.2.1 State of the Art of the Analysis of SET Propagation in Pro-
grammable Devices . 30

4.2.2 A Static Analyzer for PIPB effect 32
4.2.3 Modeling Function Generators and SETs Characteristics . . 32
4.2.4 Analyzing PIPB on Placed-and-Routed Netlists 37
4.2.5 Validating PIPB Analysis on Benchmark Circuits 39

4.3 Effects of SETs during Hardware Reconfiguration 42
4.3.1 State-of-the-Art on the Evaluation of SETs during Hardware

Reconfiguration . 42
4.3.2 Modeling Reconfiguration Circuitry 43
4.3.3 Fault Model: From Transient Pulse to Soft Error 44
4.3.4 Evaluating Errors due to SETs during Reconfiguration . . . 45

4.4 Research Advancements on the Analysis of Single Event Transients 49

5 Analysis of Single Event Upset 51
5.1 Overview on Single Event Upset Analysis 51
5.2 PyXEL: A framework for Easing Bitstream Analysis and Experiments 52

5.2.1 Bitstream Analysis, Visualization, and Manipulation 53
5.2.2 Vivado Integration . 54
5.2.3 Bitstream Decoding . 55
5.2.4 Automation Support for Fault Injection and Radiation Test-

ing Experiments . 57
5.3 Analysis of Electrical Behaviour of Faulty Interconnections 58

5.3.1 Methodology for Interconnection Faults Analysis 59
5.3.2 Faulty Interconnection Electrical Characterization 62

5.4 Research Advancements on the Analysis of Single Event Upsets . . 63

6 Radiation Test Analysis 65

Contents ix

6.1 Overview on Radiation Test Analysis 65
6.2 Testing the Zynq On-Chip-Memory with Protons 66

6.2.1 State of the Art of Radiation Analysis of SoC Memory . . . 66
6.2.2 Proton Radiation Testing Setup 68
6.2.3 Proton Test Results and Fault Models 69
6.2.4 On-Chip Memory Fault Emulation 73

6.3 A CRAM Technology Analysis: CMOS vs FinFET 75
6.3.1 Proton Test Experiment Setup 76
6.3.2 Proton Test Results, Analysis, and Comparison 78

6.4 Research Advancements in Proton Testing of Reconfigurable SoCs . 80

III Reliability Analysis of Reconfigurable Hardware-Accelerated SoCs 82

7 Evaluating Reliability of Embedded Processor Systems 84
7.1 Overview on Reliability of Embedded Processor 84
7.2 Evaluating Reliability of Hard Processors 85

7.2.1 State of the Art of Reliability Analysis of Hard Processors . 85
7.2.2 Microprocessor Fault Injection Platform 87
7.2.3 Fault Models . 90
7.2.4 Software Benchmark Reliability Evaluation 92

7.3 Evaluating Software Reliability in Soft Processors 96
7.3.1 State of the Art of Reliability Analysis of Soft Processors . . 96
7.3.2 Soft Processor Reliability Analysis Flow 98
7.3.3 SEUs Evaluation of Hardened Software on Soft Processor . 101

7.4 Reliability of Applications running in Real-Time Operating System
on Soft Processors . 104
7.4.1 State of the Art of Reliability Analysis of Real-Time Applic-

ations on Soft Processors 104
7.4.2 Multiple Bit Upset Fault Model 106
7.4.3 Soft Processor under Test: Device, Hardware, Operating

System and Application 109
7.4.4 Reliability Analysis for Soft Processor running RTOS . . . 110

7.5 Research Advancements in Reliability Evaluation of Embedded
Processors . 115

x Contents

8 Evaluating Reliability of Host-Accelerator Interfacing 116
8.1 Overview on Reliability of Host-Accelerator Interfacing 116
8.2 Analysis of the AXI Interconnect Module 117

8.2.1 State of the Art on the Evaluation of Robustness of AXI
Interconnection Core . 117

8.2.2 The Reliability Evaluation Flow for AXI interconnect Core . 118
8.2.3 Hardware and Software Benchmark 120
8.2.4 Reliability Analysis for AXI Interconnect IP Core 121
8.2.5 Results of Reliability Analysis of AXI Interconnect IP Core 122

8.3 Research Advancements in Reliability Evaluation of AXI Intercon-
nections Module . 124

9 Evaluating Reliability of Hardware-Acceleration for Neural Networks 125
9.1 Overview on Reliability of Hardware-Accelerated Neural Networks 125
9.2 Effects of SEUs on Reconfigurable Accelerated Quantized Neural

Network . 127
9.2.1 State of the Art of Reliability Analysis of Quantized Neural

Network implemented on Reconfigurable Hardware 127
9.2.2 Fault Injection Platform 128
9.2.3 Reliability Evaluation Analysis of the Binarized Network . . 130

9.3 Emulating Architectural Faults on Hardware Accelerated Neural
Networks . 133
9.3.1 State of the Art of Robustness Analysis of Hardware Accel-

erated Neural Networks 133
9.3.2 Hybrid-based Approach to Neural Network Reliability . . . 136
9.3.3 FireNN Platform . 138
9.3.4 Reliability Analysis of an AlexNet Layer 142
9.3.5 Results of Software-based Reliability Evaluation of an AlexNet

Layer . 146
9.3.6 Results of Hybrid-based Reliability Evaluation of an AlexNet

Layer . 148
9.4 Research Advancements in Reliability Evaluation of Hardware-

Acceleration for Neural Networks 150

10 Conclusions and Future Directions 152
10.1 Conclusions . 152

10.2 Future Directions . 154

Bibliography 156

List of Figures

2.1 Conceptual schema representing the relation between configuration
memory and hardware resources. 11

2.2 Schema of the architecture of an FPGA. 12
2.3 The internal structure of logic tile. 14
2.4 A switch matrix of a programmable hardware device with highlighted

point-to-point interconnections and long lines. 16
2.5 Overview of programmable segments associated with a junction in

an interconnection box. 17

3.1 Conceptual schema of common Earth orbits for space application . . 25

4.1 Conceptual representation of PIPB effect. 31
4.2 Conceptual schema of proposed Function Generator Model 33
4.3 Conceptual schema of proposed LUT architecture used in the Func-

tion Generator Model . 34
4.4 GDS layout of 28 nm CMOS LUT. 35
4.5 SET Characterization resulting from physical simulation of 1,000

particles for each heavy ion. 37
4.6 Conceptual schema of SET propagation procedure. 39
4.7 Workflow for evaluating PIPB effect. 40
4.8 Sensitivity of the flip-flops in the analyzed benchmark designs. . . . 41
4.9 An example of Configuration Memory control circuitry. 43
4.10 A representation, based on GDS-II description, of three 28 nm flip-

flops of the shift-register. 44
4.11 SET cross-section of a 28 nm FF of the shift register 45
4.12 SET sampling as reported by the electrical simulation tool. 46
4.13 DRPM System Architecture . 47

xii List of Figures

4.14 Dynamic Error Rate for different categories of frames 49

5.1 Visualization feature offered by PyXEL. 54
5.2 Bitstream Decoding Flow. 56
5.3 Example of possible faulty configurations of the connection that can

be caused by SEUs in configuration memory 60
5.4 Conceptual schema of the system architecture, the design benchmark,

and methodology for electrical characterization of faulty program-
mable interconnections . 61

6.1 SEEs and Bits Cross-Sections for OCM of Zynq-7020. 69
6.2 SEUs Cross-Section for OCM of Zynq-7020. 70
6.3 SEMUs Cross-Section for OCM of Zynq7020. 71
6.4 Burst Events Cross-Section for OCM of Zynq-7020. 73
6.5 Overall Error Rate of the Software against Evaluated Fault Models . 74
6.6 Results categorization for different software and fault models 75
6.7 Architecture of the application running on the platforms during the

proton test. 77
6.8 Comparison between SEU cross-section of Zynq UltraScale+ and

Zynq7. 78
6.9 Cluster shapes and sizes resulting from proton tests in 28 nm CMOS

and 16 nm FinFET. 79
6.10 Comparison of Cross-Sections for different cluster sizes 80

7.1 Fault Injection Platform for SEE in processor memory 88
7.2 Fault Injection Platform for SEE in processor registers 89
7.3 Most common shapes of SEMU observed during heavy-ion irradiation 91
7.4 Cross-Section for different clusters of radiation-induced bit flip. . . 91
7.5 Overview of the type of the instruction characterizing the evaluated

software applications. 92
7.6 Error Rates resulting from fault injection campaign on ARM A9

embedded processor. 94
7.7 Overview of the type of the instruction characterizing the evaluated

software applications. 95
7.8 Overview of the type of the instruction characterizing the evaluated

software applications. 95
7.9 Schematic view of a baseline software and its hardened version. . . 98

7.10 Figure of Merit of baseline software reliability against SEUs. 103
7.11 Figure of Merit of hardened software reliability against SEUs. . . . 103
7.12 Comparison between baseline and hardened software reliability

against SEUs. 104
7.13 Shapes of MBU cluster detected in Zynq7020n configuration memory

during proton test . 108
7.14 Cross-Sections for MBU clusters detected in Zynq-7020 configura-

tion memory during proton test . 109
7.15 Hardware Platform under Evaluation 110
7.16 Error Rate for software application resulting from MBU fault injec-

tion weighted on cluster cross-section. 113
7.17 Classification of the Effects caused by Cluster with different size. . . 114
7.18 Classification of Exceptions observed during the two fault injection

campaigns. 114
7.19 METF and MTTF for the applications based on cross-sections and

error rate for different energies and fluxes reported in Table 7.4. . . 115

8.1 A conceptual view of the reliability evaluation environment for AXI
Interconnect IP Core . 119

8.2 A schema of the architecture of the benchmark design 120
8.3 A schema of the experimental flow for evaluating errors on the AXI

Interconnect IP Core . 122
8.4 Categorization of SEU-induced Errors on AXI Interconnection Core 123

9.1 Architectural Schema of the Fault Injection Platform 128
9.2 Conceptual schema for the proposed approach. 137
9.3 Architectural view of the FireNN platform and its modules. 138
9.4 Example of the evaluation flow of the FireNN platform. 142
9.5 Distribution of the degradation (a,c) and misclassification (b,d) out-

comes resulting from SEU in the weights (a,b) and SEU in input and
output data (c,d) fault models. 147

9.6 Distribution of the degradation (a,c) and misclassification (b,d) cat-
egories resulting from emulating SEU in CRAM (a,b) and open-
routing fault model (c,d) over the number of outputs experiencing
the effect. 150

xiv List of Tables

List of Tables

4.1 Cells information for proposed LUT Physical Layout. 35
4.2 Implementation Details for the Benchmark Designs. 40
4.3 Max PIPB effect predicted . 42

5.1 Conflict Electrical Characterization Resume 63

6.1 Proton Test Conditions: Energy, Flux and Fluence 69
6.2 Normalized Occurrence of Logical Distance of SEMU in OCM. . . 71
6.3 Normalized Occurrence of SEMU Size. 72
6.4 Normalized Occurrence of Memory Locations Number affected by

a Single Burst Events. 72
6.5 FPGA utilization for the Benchmark Circuits 77
6.6 Proton Test Conditions: Energy, Flux and Fluence 78

7.1 FPGA utilization for the PULPissimo Soft Processor implemented
on Nexys Video Artix-7 . 99

7.2 Error categorization resulting from fault injection campaigns on
baseline software. 102

7.3 Error categorization resulting from fault injection campaigns on
hardened software. 102

7.4 Proton Test Conditions: Energy, Flux and Fluence 107
7.5 Programmable-hardware utilization of the Microblaze Soft Processor

implemented on Zynq-7020 . 111

9.1 Programmable-hardware utilization of the cnvw1a1 network imple-
mented in Zynq-7020 . 130

9.2 Resources used by the convolutional layer in Programmable Hardware.144
9.3 Result of Fault injection campaign of SEUs in CRAM 148

List of Tables xv

Acronyms

AI Artificial Intelligence.

ALU Arithmetic-Logic Unit.

ANN Artificial Neural Network.

ASIC Application Specific Integrated Circuit.

BNN Binarized Neural Network.

BRAM Block RAM.

CLB Configurable Logic Block.

CMOS Complementary Metal-Oxide Semiconductor).

CNN Convolutional Neural Network.

CORDIC COordinate Rotation DIgital Computer.

COTS Commercial Off-the-Shelf.

CRAM Configuration RAM.

DD Displacement Damage.

DNN Deep Neural Network.

DRPM Dynamically Reconfigurable Processing Module.

FF Flip-Flop.

FinFET Fin Field-Effect transistor.

Acronyms xvii

FPGA Field-Programmable Gate Array.

GCR Galactic Cosmic Ray.

GSO Geosynchronous Orbit.

HEO High Earth Orbit.

IC Integrated Circuit.

IOB Input-Output Block.

LEO Low Earth Orbit.

LUT Look-up Table.

MBU Multiple Bit Upset.

MEO Medium Earth Orbit.

MPSoC Multiprocessor System-on-Chip.

MUX Multiplexer.

NN Neural Network.

OCM On-Chip Memory.

OS Operating System.

PIP Programmable Interconnection Points.

PL Programmable Logic.

PREDA Placed-and-Routed Electronic Design Analyzer.

PS Processor System.

RAM Random Access Memory.

RTOS Real-Time Operating System.

xviii Acronyms

SDC silent Data Corruption.

SEE Single Event Effect.

SEFI Single Event Functional Interrupt.

SEMU Single Event Multiple Upset.

SET Single Event Transient.

SEU Single Event Upset.

SoC System-on-Chip.

SRAM Static RAM.

TID Total Ionizing Dose.

TMR Triple Modular Redundancy.

UART Universal Asynchronous Receiver-Transmitter.

US UltraScale.

US+ UltraScale+.

Chapter 1

Introduction

1.1 Motivations

In the modern era, computer systems have become essential to our society. Starting
with the transistor invention, they have quickly breached and influenced nearly any
aspect of human life and modern culture. As a consequence, they evolved to target
the specific needs and requirements of industries and applications. This trend led
to the rise of a multitude of different computational systems based on different
architectures and paradigms.

From the beginning of the computer era, the reliability of computer systems has
been a major concern to ensure the correct functioning of the systems. However,
starting in the 1960s with the NASA space program, the reliability requirements
required for safety-critical applications responsible for human lives have pushed the
need for reliability assurance to an even higher level.

Along with the need for more robust and reliable systems, we moved toward
more high-performant systems that can fastly process large amounts of data, perform
real-time operations, and deal with complex tasks. This has led to the development
of more complex computer systems that require the use of multiple components
working together.

The emergence of Hardware-Reconfigurable Systems-on-Chip has enabled the
development of complex systems with high performance, low power consumption,

2 Introduction

and high flexibility. They soon found their way into many fields, such as space
exploration, healthcare, automotive, and more.

However, the architecture of these systems makes them vulnerable and partic-
ularly sensitive to faults and errors. Additionally, the intrinsic complexity of these
heterogeneous systems makes evaluating their robustness challenging. Nevertheless,
fault tolerance and robustness is an important design goal for these systems that
need to be evaluated and met, as it is mandatory for critical safety systems and
applications.

This is especially true for space applications that require systems that can op-
erate in extreme conditions and work properly even in a radiation environment
for long periods of time, as well as equipment for radiation facilities and safety-
critical systems such as systems used in the automotive and avionic industries.
Hardware-Reconfigurable Systems-on-Chip provides a promising platform for these
applications due to their ability to be reconfigured to meet the changing requirements,
increasing the duration of the device and enabling in-field updates.

1.2 Aims and Objectives

The research work exposed in this thesis aims to identify and develop methodo-
logies and techniques to evaluate and improve robustness and fault tolerance in
Hardware-Reconfigurable Systems-on-Chip applications, with a major focus on
space systems. It addresses the challenges associated with analyzing radiation sensit-
ivity in Hardware-Reconfigurable Systems-on-chips applications. These challenges
include the need for efficient fault detection, analyses, and diagnosis strategies and
the development of dedicated tools and methodologies.

In addition, it aims to explore the potential of programmable hardware for
building resilient applications and the potential for using Hardware-Reconfigurable
Systems-on-Chip to develop fault-tolerant systems with high reliability and robust-
ness. By exploring the potential of Hardware-Reconfigurable Systems-on-Chip for
fault tolerance systems, the goal is to enable the development of reliable and robust
systems that will benefit a wide range of applications.

1.3 Contributions 3

1.3 Contributions

As main contributions, the research proposes and explores a range of tools and
methods for analyzing, evaluating, and improving the reliability of Programmable
Hardware-Reconfigurable devices, including fault injection methodologies, accel-
erated radiation testing, and emulation. The research covers different types of
computational systems, fault models, and techniques, showing the potential of these
tools and methodologies to analyze critical applications and modules in detail. Tech-
niques dedicated to analyzing the sensitivity of systems to Single Event Transients
and Single Event Upsets in programmable hardware are proposed. They are achieved
by taking into account the devices’ specific characteristics and susceptibility to
radiation-induced faults by relying on radiation testing, electrical characterization,
fault modeling, and novel methodologies.

The robustness of modules that build complex systems based on reconfigur-
able systems-on-chips, such as Hard and Soft processing systems, interconnection
modules, and accelerators, with a particular focus on hardware-accelerated neural
network applications, are addressed as well. The research shows the potential of
reconfigurable hardware to be used to analyze applications and modules in detail,
proposing platforms for analyzing the reliability of systems and exploring the real
hardware device itself.

1.4 Thesis Organization

The thesis is structured as follows:

Part I is dedicated to introducing the context of the work presented in Parts II and
III. Hardware-Reconfigurable Systems-on-chip are introduced in Chapter 2, while
Chapter 3 is dedicated to Radiation Effects on Electronics devices.

Part II is dedicated to modeling and evaluating basic radiation-induced effects on
Reconfigurable Systems-on-chip. In particular, Chapter 4 presents the analysis of
Single Event Transient effects, followed by Chapter 5, which focuses on the analysis
of Single Event Upset effects. Chapter 6 presents the results of two proton test
experiments.

4 Introduction

Part III of the thesis focuses on methodologies and techniques for evaluating the
elements composing a heterogeneous system based on programmable hardware, con-
sidering the various elements composing the system, such as processors, hardware-
accelerated unit, and their interfacing. Chapter 7 presents the evaluation of reliability
for Embedded Processor Systems, considering both hard and soft processors. Chapter
8 focuses on the evaluation of reliability for Host-Accelerator Interfacing, while
Chapter 9 then presents the evaluation of the reliability of Hardware-Accelerators
for Neural Networks implemented in programmable hardware.

Finally, Chapter 10 concludes the thesis and provides insights into future research
directions in Hardware-Reconfigurable Systems-on-chip, providing a summary of
the findings and suggesting potential areas for further research in this field.

1.5 Publications

Part of the results presented in this thesis has been reported in the following publica-
tions:

Journal Papers

• C. De Sio, S. Azimi, L. Sterpone, and B. Du. "Analyzing radiation-induced
transient errors on sram-based fpgas by propagation of broadening effect".
IEEE Access, 7:140182–140189, 2019.

• C. De Sio, S. Azimi, L. Bozzoli, B. Du, and L. Sterpone. "Radiation-induced
single event transient effects during the reconfiguration process of sram-based
fpgas". Microelectronics Reliability, 100-101:113342, 2019.

• C. De Sio, S. Azimi, and L. Sterpone. "On the analysis of radiation in-
duced failures in the axi interconnect module". Microelectronics Reliability,
114:113733, 2020.

• S. Azimi, C. De Sio, D. Rizzieri, and L. Sterpone. "Analysis of single event
effects on embedded processor". Electronics, 10(24), 2021.

1.5 Publications 5

• S. Azimi, C. De Sio, A. Portaluri, D. Rizzieri, and L. Sterpone. "A comparative
radiation analysis of reconfigurable memory technologies: Finfet versus bulk
cmos". Microelectronics Reliability, 138:114733, 2022.

• C. De Sio, S. Azimi, and L. Sterpone. "Firenn: Neural networks reliability
evaluation on hybrid platforms". IEEE Transactions on Emerging Topics in
Computing, 10(2):549–563, 2022.

• S. Azimi, C. De Sio, A. Portaluri, D. Rizzieri, E. Vacca, L. Sterpone, and D.
Merodio Codinachs. "Exploring the impact of soft errors on the reliability of
real-time embedded operating systems". Electronics, 12(1), 2023.

Conference Papers

• L. Bozzoli, C. De Sio, L. Sterpone, and C. Bernardeschi. "Pyxel: An integrated
environment for the analysis of fault effects in sram-based fpga routing". In
2018 International Symposium on Rapid System Prototyping (RSP), pages
70–75, 2018.

• C. De Sio, S. Azimi, and L. Sterpone. "On the evaluation of the pipb effect
within sram-based fpgas". In 2019 IEEE European Test Symposium (ETS),
pages 1–2, 2019.

• B. Du, S. Azimi, C. De Sio, L. Bozzoli, and L. Sterpone. "On the reliability of
convolutional neural network implementation on sram-based fpga". In 2019
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 1–6, 2019.

• C. De Sio, S. Azimi, and L. Sterpone. "On the evaluation of seu effects on
axi interconnect within ap-socs". In A. Brinkmann, W. Karl, S. Lankes, S.
Tomforde, T. Pionteck, and C. Trinitis, editors, Architecture of Computing
Systems – ARCS 2020, pages 215–227, Cham, 2020. Springer International
Publishing.

• C. De Sio, S. Azimi, and L. Sterpone. "An emulation platform for evaluating
the reliability of deep neural networks". In 2020 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 1–4, 2020.

6 Introduction

• C. De Sio, S. Azimi, A. Portaluri, and L. Sterpone. "Seu evaluation of
hardened-by-replication software in risc- v soft processor". In 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nano-
technology Systems (DFT), pages 1–6, 2021.

• C. De Sio, S. Azimi, L. Sterpone, and D. Merodio Codinachs. "Analysis of
proton-induced single event effect in the on-chip memory of embedded pro-
cess". In 2022 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2022.

• A. Portaluri, S. Azimi, C. De Sio, D. Rizzieri, and L. Sterpone. "On the
reliability of real-time operating system on embedded soft processor for space
applications". In M., Carsten Trinitis, N. Papadopoulou, and T. Pionteck,
editors, Architecture of Computing Systems, pages 181–193, Cham, 2022.
Springer International Publishing.

Part I

Context

Chapter 2

Hardware-Reconfigurable
Systems-on-Chip

2.1 Reconfigurable Hardware

In recent years, Field Programmable Gate Arrays (FPGAs) have become the lead-
ing solution among reconfigurable hardware systems. Reconfigurable Hardware is
a computer architecture with the capability to be customized by end users or de-
velopers, differently from traditional hardware where functionality is defined during
fabrication.

Thanks to this characteristic, reconfigurable hardware provide some valuable
advantages compared to traditional fixed-a-function Application-Specific Integrated
Circuit (ASIC) devices, such as low costs, flexibility, and fast time-to-market. ASICs
still outperform reconfigurable systems on specific tasks, but the huge amount of
resources that modern FPGAs can provide, along with the introduction of hardwired
blocks (e.g., Digital Signal Processors, Artificial Intelligence engines, and micropro-
cessors) are significantly reducing the performance gap. Additionally, the flexibility
provided by reconfigurability ensures a smaller turnaround time, a longer lifetime,
and in-field bug fixing and updates.

Additionally, in the past decade, hardware-reconfigurable Systems-on-chip (SoC)
hit the market, making adaptive computing and heterogeneous computing a viable
solution, thanks to commercial off-the-shelf solutions that reduced the costs and the

10 Hardware-Reconfigurable Systems-on-Chip

required expertise by providing a higher level of abstraction and automated design
process integrated with the development environments. As a consequence of that,
these devices are nowadays widely adopted in many industries and sectors, such as
space missions, avionics, automotive, server acceleration, and healthcare.

The traditional FPGA architecture consists of thousands of configurable logic
tiles. These tiles can be configured to implement custom logic functions and then
connected by using dedicated interconnection tiles to other logic blocks or the output
pins of the system, virtually making it possible to implement any digital circuit in the
fabric of the device. Nowadays, modern devices include also macro blocks directly
inside the programmable fabric, such as Digital Signal Processors (DSPs), and Block
Rams (BRAMs) that can be connected with the programmable elements.

Starting from a description of the circuit to implement on the programmable
hardware, the development flow for the design to be implemented in programmable
hardware includes several steps, such as synthesis, place and route, and bitstream
generation. During synthesis, the high-level description of the design is translated to
simple logic elements, such as logic gates and primitives, that are then associated
with specific hardware resources in the FPGA fabric during place and route. During
place and route also connection between these elements is performed. During the
bitstream generation, a bitstream containing the configuration data for implementing
the circuit on the target device is generated.

The configuration data of the device are stored within SRAM cells of the named
configuration memory (CRAM) of the device. In modern FPGAs, the configuration
memory can be either SRAM-based or Flash-based. Even if Flash-based FPGAs
present advantages due to low power consumption and non-volatile configuration
memory cells, SRAM-based solutions can take advantage of the last standard fabric-
ation processes (FinFET and CMOS) that provide higher density and performance.

Configuration bitstreams are binary files that are used to program programmable
hardware. In modern devices, a bitstream consists of hundreds of millions of bits
containing metadata, configuration data, and programming instructions [1, 2]. The
structure of the hardware is composed of multiple tiles, each of which has basic
hardware resources that can be configured to execute a certain function. These
resources include programmable interconnects that link two routing paths and Look-
Up Tables (LUTs) that can implement custom logic functions. Each tile is associated

2.1 Reconfigurable Hardware 11

Figure 2.1 Conceptual schema representing the relation between configuration memory and
hardware resources.

with certain bits in a configuration memory (CRAM), which are used to configure
the components within the tile. The configuration memory is made up of frames,
which are the smallest addressable group of bits. The number and the size of frames
vary depending on the device size and architecture. While the bitstream file structure
is partially revealed by manufacturers, the actual purpose of the specific bits in the
configuration data and their connection to hardware resources usually remain largely
unknown.

A conceptual representation of the development flow, as well as the relationship
between configuration memory and configured hardware resources, is depicted in
Figure 2.1.

2.1.1 Reconfigurable Architecture

Reconfigurable Hardware architectures have evolved continuously over the last
years, as new technologies and products have been adopted and commercialized. The
current section focuses mainly on more recent families of SRAM-based hardware-
programmable devices. However, most of the concepts here reported applying to
other vendors and families too, with few differences.

12 Hardware-Reconfigurable Systems-on-Chip

Figure 2.2 Schema of the architecture of an FPGA.

2.1 Reconfigurable Hardware 13

FPGAs are composed of a large number of logic blocks, configurable inter-
connect, and hardwired blocks. These blocks can be configured for implementing
specific logical functions and connected through configurable interconnections. The
configurable interconnects allow the logic blocks to be connected together in a
variety of ways, allowing the user to create complex logic functions. The general
architecture of an FPGA device is depicted in Figure 2.2

In general, reconfigurable hardware architecture consists of a 2-D array of tiles.
Tiles are the basic elements of the FPGA architecture. An FPGA is made of different
types of tiles, and different tiles types are dedicated to different purposes. Usually,
tiles of the same type keep the same characteristic to one as the others within the
same families. Each tile type is composed of different programmable elements
based on its purpose. For instance, a logic tile includes configurable combinational
and sequential logic elements, such as Flip-Flops, Look-Up Tables (LUTs), while
interconnection tiles can be configured to route input signals to specific tile pins or
to other interconnection tiles. Finally, some tiles are not configurable at all.

FPGAs are organized into a hierarchical structure. Tiles are grouped in Clock
Regions which in turn are grouped in Super Logic Regions. Super Logic Regions
are single device die slices stacked one on the other in Stacked Silicon Interconnect
Devices. Tiles have their internal hierarchy too. A tile can contain zero, one, or
more sites, which may contain Basic Elements. A Basic Element is the smallest
configurable element in tiles. Within the device, tiles are arranged in columns and
rows and tiles belonging to the same column are typical of the same type.

There are many different types of tiles in the FPGA fabric. Even if the internal
organization of tiles of the same type is usually shared among devices of the same
family, they differ among different families. Additionally, how tiles are arranged in
the device differs among devices belonging to the same family too.

Logic Tiles

Logic tiles contain the configurable logic elements within FPGA. Each logic tile
contains several programmable hardware resources, such as Flip-Flops, Look-Up
Tables, and multiplexers. Flip-flops are used to implement sequential logic, while
LUTs store a predefined list of outputs for every combination of inputs, to implement

14 Hardware-Reconfigurable Systems-on-Chip

logical functions. Multiplexers are used to route signals internally to the tile to the
outputs, using or bypassing flip-flops.

Figure 2.3 depicts the internal structure of the logic tile of a recent programmable
hardware device. It includes eight 6-Input LUTs with 2 outputs, that support the
possibility to be used to implement 2 either input-independent or input-shared logic
functions. Two flip-flops are dedicated to each LUT. Additionally, a carry-chain is
available for each logic tile as well as several multiplexers for routing internal signals
to the logic tile output pins or flip-flops and carry-chain inputs.

Figure 2.3 The internal structure of logic tile.

2.1 Reconfigurable Hardware 15

Interconnection Matrices

Commonly, each logic tile is associated with an interconnection matrix, referred also
as a switch box or switch matrix. The interconnection matrices are used to route
signals between different pins, either internals such as pins to connect the input of
logic tiles, or external to interface the FPGA with the extern. The connections within
switch matrices are typically constructed using pass-transistors or multiplexers. The
state of the connections within the switch matrices is controlled using configuration
bits, which determine active connections. These programmable interconnections
connect two points called junctions or nodes. A junction can be associated with
one or more input or output (or both) programmable interconnections. The switch
matrices can be used to route signals between different components of a system too,
such as between a processor and a memory module or a DSP. In this case, they are
called interfacing matrices or interfacing boxes. Some junctions are connected with
long lines that span over different tiles connecting switch matrices one with the other,
forming the backbone of the device routing infrastructure.

In Figure 2.4 a representation of a switch matrix device is depicted, where
the numerous programmable interconnections of the switch matrix, as well as the
associated long lines, are highlighted.

16 Hardware-Reconfigurable Systems-on-Chip

Figure 2.4 A switch matrix of a programmable hardware device with highlighted point-to-
point interconnections and long lines.

Figure 2.5 shows the detail of a single junction in a switch matrix and its point-
to-point programmable interconnection. The junction in the figure is characterized
by both inner and outer connections.

2.1 Reconfigurable Hardware 17

Figure 2.5 Overview of programmable segments associated with a junction in an intercon-
nection box.

The programmbale interconnections are the most numerous programmable ele-
ments in an FPGA device and the vast majority of the cells of the CRAM are
dedicated to programming routing. A single switch matrix of a modern device is
characterized by more than 1,000 junctions and 4,000 PIPs, and a device can include
more than hundreds of millions of configurable connections.

Input-Output Blocks (IOBs)

The IOB is a configurable block that is dedicated to interfacing the device with the
extern allowing for the control of the device’s I/O pins. They are programmable to
be used either as input or output and can be programmed to meet the specific needs
of the application, using different standards and voltages.

Hardwired Elements

Modern programmable hardware devices include hardwired elements directly in the
fabric of the FPGA. They range from simple memories and DSPs to microprocessors
and engines dedicated to parallel computation. These systems are usually not
configurable. However, it is possible to route signals to their inputs in the same way
as with any other element. While less recent families include only simple hardwired

18 Hardware-Reconfigurable Systems-on-Chip

circuits such as DSP and BRAMs, more recent devices, include peripherals and
multiprocessor systems, that are accessible from the programmable hardware.

2.1.2 All-Programmable Systems-on-Chip

A System-on-Chip (SoC) is an Integrated Circuit that implements a full system in a
single chip. As usual for new technologies, SoCs have progressed from very simple
architectures based on a limited number of modules, such as a small microcontroller,
limited memory, and few peripherals to high-performance systems provided with
multiple microprocessors, on-chip memories, accelerators, such as DSPs, GPUs and
FPGAs, controllers, network-on-chip and more.

Hardware-Reconfigurable Systems-on-Chip devices are provided with an FPGA-
like part integrated with processor systems and memory on the same chip, usually
used as hardware accelerators and coprocessors.

The first Zynq device has been released in 2011 by Xilinx, Inc., currently,
AMD-Xilinx, which already invented and commercialized the first cost-friendly
FPGA in 1985. Zynq presented an innovative architecture based on a new/old
paradigm. Indeed, while processor plus accelerator architecture was a well-known
architecture, Zynq proposes a performant System-on-chip that provides processor
and reconfiguration capability, creating the first device of its kind. Many applications
took advantage of this kind of system during the last years.

Reconfigurable Systems-on-chip, and in particular Zynq, are heterogenous sys-
tems that allow to easily combine together hardware acceleration and software. A
typical architecture on these platforms involves a hardware accelerator implemented
into programmable hardware that is used by the processor system to perform the
most demanding computations. The interface between the processor system and
accelerators is usually implemented using high-performance port and communication
protocols. This architecture paved the way for developers toward easy use of high-
level synthesis approaches and hardware-software co-design. Nowadays, a board
equipped with a system-on-chip embedding one of the most recent programmable
hardware technology, general-purpose, and real-time multi-core processors on a
unique chip is available for a few hundred dollars.

Chapter 3

Radiation Effects on Electronics

3.1 An Introduction to Radiation Effects

Radiation effects are a major concern when designing and deploying safety-critical
systems and applications since they may cause malfunctions or destructive events
in electronic devices. This is a major concern for safety critical systems that must
remain operational and reliable in extreme conditions. Even if rad-hardened devices
are designed to have higher robustness against radiation effects, they are usually char-
acterized by reduced performance and high costs compared to commercial solutions.
For this reason, modern COTS (Commercial Off-the-Shelf) components can provide
significantly better performance compared to radiation-hardened solutions when used
for space applications since they are typically more cost-effective than rad-hardened
components. This makes them very appealing for many mission-critical applications.
However, the sensitivity of these devices to radiation effects is a major obstacle to
the adoption of these devices in safety-critical applications.

Radiation impacts the performance, accuracy, and durability of electronic systems
[3]. The interaction of particles with the matter of the electronic device is the origin
of many phenomena, including transient, permanent, or even destructive effects. The
criticality and frequency of these effects are functions of many factors. The type,
energy, and flux of interacting particles, which differ among radiation environments,
as well as the device’s materials, technology, and architecture, contribute to defining
the severity, frequency, and typology of these events.

20 Radiation Effects on Electronics

Due to this, radiation effects are a major concern for many electronic applica-
tions, particularly those that operate in radiation-heavy environments such as space
missions or particle physic experiment monitoring. These systems must take into
account the potential faults that radiation exposure can cause in the device. Even
ground-level safety-critical systems cannot ignore the disturbances that terrestrial
radiation can cause if they want to meet the high-reliability constraints required in
applications such as autonomous vehicles.

Radiations can cause damage to electronic devices influencing the electrical
properties of a component or system. This can include changes in the electrical
characteristics, such as decreased performance, increased noise, and even complete
failure. There are two major families of effects that radiation has on electronics: total
dose effects and single event effects. The former is caused by modification of the
atoms that compose the semiconductor that become ionized or displaced as a result
of extended radiation exposure, while the latter is a transitory effect induced by a
single radiation event.

3.1.1 Dose Effects

The dose effects are one of the main factors that limit the operational lifetime
of electronics working in radiation environments. Permanent damages caused to
electronics by radiation are caused by two different dose effects briefly summarized
below.

Total Ionizing Dose is the sum of various physical interactions affecting the
device exposed to radiation, which results in a degradation of the device’s perform-
ance, such as threshold voltage modification leakage and others, that eventually lead
to permanent failure. This phenomenon is a result of ionizing radiation.

Differently, non-ionizing radiation causes Displacement Damage. A particle with
sufficient energy can displace an atom in the silicon lattice, leading to imperfections
that degrade performance changing the electrical properties of the silicon.

3.1 An Introduction to Radiation Effects 21

3.1.2 Single Event Effects (SEEs)

SEEs include a wide range of effects that can be caused by the interaction between the
matter of semiconductor devices and particles. These effects can be either destructive
or nondestructive.

In general, SEEs are the result of the charge carriers generated in the silicon
from an ionized particle traversing the device. These carriers are subjected to
recombination or transport leading to a current, named Single Event Transient, that
causes circuit response to this undesired signal.

Destructive SEE is usually caused by a low-impedance path triggered by the
ion-generated charge that remains until the device is powered off or eventually
permanently damaged. Single Event Lacthup and Single Event Burnout are examples
of destructive SEEs.

Single Event Transient (SET)

A SET is a spurious signal that propagates in the same manner as a proper signal in
the electronic circuit. A SET can propagate through different paths of the electronic
circuit while being broadened or filtered by the logic. In a digital circuit, it will
eventually reach a memory element, causing a Single Event Upset if latched or
simply not causing any effect. The probability of SET being latched is dependent on
many factors such as width, amplitude, and arriving time.

Single Event Upset (SEU)

An SEU is an error generated in a memory element. Even if the underlying mech-
anism is different for different memory cells, an SEU results in a change in the
bi-stable element. It results in data corruption that can affect the system functioning
in different ways based on the role of the affected memory cell. It is important to
note that the functionality of the circuit is not damaged, so the memory element will
continue to work properly after the event.

22 Radiation Effects on Electronics

SEU affecting Programmable Hardware

SRAM memory cells have an essential role in reconfigurable systems. Other than
being used as memory elements, that are fundamental in any modern sequential
computing system, they are also the basis of reconfigurable hardware. SRAM-based
memory can be found in modern hardware-reconfigurable systems-on-chip both as
on-chip memory in the processor system or as BRAMs in the programmable logic,
but more importantly as the basic block of the configuration memory.

However, SRAM memory is very sensitive to SEEs. This is due to the high
density of transistors and their characteristic of being sequential elements, thus
capable of capturing radiation-induced transient pulses. The fact that the physical
layout for the embedded system is dominated by area and power constraints, leads
to a minimum device geometry that exacerbates sensitivity to radiation due to the
reduction of the critical charge.

Programmable hardware offers the possibility to implement custom hardware
circuits in the fabric. Logic elements and interconnections are programmed by the
content of SRAM cells of the configuration memory (CRAM). Each cell of the
CRAM is dedicated to programming a specific resource in programmable hardware,
thus the whole configuration memory defines the architecture of the hardware that is
implemented on the programmable hardware.

Data corruption in the CRAM due to the radiation effect can interfere with how
a resource is programmed leading to unexpected behavior and catastrophic failure.
The fact that how the content of the CRAM is related to the resources composing the
programmable hardware is usually undocumented exacerbates the problem making
it hard to propose mitigation methodologies and approaches aware of the possible
faults and the sensitivity of a specific circuit.

Additionally, this issue is worsened by the fact that the configuration memory
of programmable hardware is often written at boot time and rarely rewritten. As a
result, SEUs affecting the CRAM accumulate eventually causing multiple faults that
can lead to system failure.

3.2 Radiation Environments 23

3.2 Radiation Environments

The type of radiation-induced effects affecting the electronic systems depends on
the radiation environment to which the electronic device is exposed. In particular,
electronic devices operating on Earth or in space are subjected to undesired effects
that mine their reliability. However, the sources, effects, and frequency of these
events can vary significantly among different environments where the system will
operate.

3.2.1 Electronics operating in Space

The space environment is characterized by different sources of radiation. During
space missions, electronics are exposed to different fluxes, energies, and types of
particles. The characteristics of the orbit, especially Earth’s distance, and orbit
inclination, heavily impact the shielding effect introduced by Earth’s magnetic field.
Finally, solar activity is a main factor that determines the frequency of harmful
radiation events that can affect electronics operating in the solar system.

As main sources of radiation in the solar systems, Galactic Cosmic Rays (GCR),
Solar radiation, and radiation belts are the main cause of both SEEs and permanent
effects affecting electronic systems.

Space Radiation Sources

Galactic Cosmic Rays are an isotropic flux of high-energy protons that originated
outside the solar system. They mostly consist of protons and include also alpha
particles and a few ratios of electrons and heavy ions (1%). GCR flux is mitigated by
the shielding effect of the heliosphere that protects the planet from part of incoming
GCR flux. About 75% of the particles are shielded by this phenomenon, which
allows only particles with the highest energies to penetrate the heliosphere [3].

Solar activity has a strong influence on the solar system’s radiation environment.
It is characterized by an 11-year cycle, divided into four years of quiescence and
seven years of activity. In the years of activity, the number of sunspots increases,
influencing and increasing the frequency of solar events. Sun activity is the source
of the solar wind, a flux of ionizing particles, composed of electrons, protons, and

24 Radiation Effects on Electronics

alpha particles. The energies of these particles range from 0.5 to 10 KeV. The impact
of solar wind on electronic components operating in space is limited but has an
important role in shielding the effects of Cosmic Rays. Differently, solar flare events
and coronal mass ejections are more dangerous events, emitting bursts of radiation
rays at very high energies that can seriously impair the functionality of electronic
systems [3].

Finally, particles that have been confined in Earth’s radiation belts, in particular,
protons (about 10 MeV) and electrons (ranging from 1 to 5 MeV), interest altitudes
between about 1,200km and 6,000 km (inner belts) and from 13,000 km to 60,000
km (outer belts). In these zones, the radiation exposure is much higher due to the
high flux. Additionally, the asymmetry in the magnetic field of Earth results in the
named South Atlantic Anomaly, which brings Van Allen’s belt closer to the surface
of the planet (up to 200 km). Radiation exposure in this area is much higher than
elsewhere on earth at this altitude and becomes of significant importance for LEOs
missions [3].

Operating Orbits

Operating orbit is another factor that strongly influences the radiation characterizing
the environment of specific space applications. Low Earth Orbit (LEO), Medium
Earth Orbit (MEO), Geosynchronous (GEO), and High Earth Orbit (HEO) are
influenced in different ways by the shielding effect of the magnetic field of Earth
and by particles trapped in Van Allen’s belt.

Low Earth Orbit is the closest to the Earth, with an orbital period between one
and two hours and an altitude lower than 2,000 km. The low altitude ensures several
advantages such as faster communication compared to higher orbits. Due to its
proximity to the land, LEO can benefit the most from the shielding effects of the
magnetic field of Earth against radiation, since it is located under the belts that
strongly shield cosmic rays.

Medium Earth Orbit, with an orbital period that can range from 2 to almost
24 hours, is located between 5,000 and 10,000km from Earth’s surface. At these
altitudes, the shielding effect of Earth is much weaker.

3.2 Radiation Environments 25

GSOs are adopted mainly by missions that need to minimize the disturbance
introduced by Earth’s magnetic field, but as a result, they are the most susceptible to
radiation effects. They operate at a constant altitude of 35,786 km.

Finally, HEO and interplanetary or deep space missions are heavily exposed to a
high flux of high-energy particles.

Figure 3.1 Conceptual schema of common Earth orbits for space applications, with the
approximated location of the radiation belts

3.2.2 Electronics operating on Earth

On Earth (from sea level to about 22 km of altitude), SEEs are the main concern to
electronic systems reliability, since particle flux is too low for causing significant
damage due to dose accumulation. High-energy Cosmic-Ray neutron radiation and
Low-Energy Cosmic-Ray neutrons are the main sources of radiation-induced faults
in this environment together with alpha particles.

Earth Radiation Sources

Alpha particles are generated by the natural decay of radioactive impurities that may
be present in the materials used in the production process of electronic devices. At
ground level, they are the main source of SEE and they indeed have been the first
hint of the existence of soft errors in the 1970s. Positively charged Alpha particles
can create disturbances leading to spurious accumulation of charge carriers and so
soft errors [3].

26 Radiation Effects on Electronics

High-energy (>1 MeV) cosmic-ray neutron radiation is the cause of radiation
showers, cascades of secondary particles resulting from high-energy protons of GCR
that interact with the atmosphere. Usually, particles reaching Earth’s surface are
mostly neutrons and secondarily protons and pions. In this case, neutrons are the main
source of soft errors. The flux of neutrons is dependent on three factors (in decreasing
order of importance): Altitude, Longitude, and Solar Activity. The neutron flux is
much higher at higher altitudes, so neutrons become the main concern for events in
avionics since the SEE rate increase with flux and so altitude. Contribution to neutron
flux due to latitude is related to the shielding effects of Earth’s magnetic fields that
are stronger near the equator. Shielding of high energy cosmic rays decreases the
frequency of particle showers, so flux is higher near Earth’s poles. Solar activity,
and in the particular solar wind, provide additional shielding against cosmic rays,
decreasing the probability that high energy protons reach the atmosphere generating
shower events. So during the 7-year solar activity radiation flux at ground level is
lower compared to Sun’s inactivity period.

A significant difference when considering neutrons flux compared to proton flux
is that neutrons are not charged particles and silicon ionization is the only result of
nuclear reactions. Practically, for silicon, a single SEE is expected for every 1,000
to 10,000 neutrons. Due to the same reason, shielding from neutrons is not always
viable, since it requires meters of concrete, which is often unfeasible for embedded
and avionics applications.

Lastly, thermal neutrons can be captured by Boron-10 isotopes producing both
Alpha and Lithium-7 particles that can be sources of SEEs. Since Boron-10 is
commonly used in the fabrication of intermetal layers for semiconductors, it has
contributed to increasing the SEEs rate[3].

Part II

Physical-Level Radiation Analysis of
Reconfigurable SoCs

Chapter 4

Analysis of Single Event Transient

4.1 Overview on Single Event Transient Analysis

A Single Event Transient (SET) results from a particle, such as a proton or a heavy
ion, traversing an active node of a circuit. It results in a transient voltage disturbance
pulse that propagates in the circuit like normal signals. A SET is characterized by
many features such as amplitude, duration, shape, and polarity. The characteristics
of the produced SET are a function of many parameters related to the particle, the
device, the angle and location of the incident path, and more.

A SET generated within a node of an electronic device will propagate the logic
elements of the circuit. During the propagation in the circuit, the SET can be masked,
attenuated, or broadened. As a result of the propagation, it can also propagate from
the single node where it has been generated to several nodes through different paths.
Eventually, it may reach a sampling element. If when it arrives in the proximity
of a clock edge to the sampling element with enough amplitude and width, it can
be sampled leading to data corruption or an erroneous system state. Due to its
transient feature will produce a soft error in digital circuits only if sampled or if it is
propagated until the system output.

The miniaturization of new devices, the lowering in operating voltages, and the
increase in operating frequency made the issue more severe, increasing the probability
of erroneous strong radiation-induced pulses being generated and eventually sampled
[4].

30 Analysis of Single Event Transient

While many works focused on SETs propagation and analysis in the application
layer for Flash-based FPGA, works addressing this issue for SRAM-based devices
are limited. Indeed, due to the fact that Flash-based FPGAs are intrinsically im-
mune to SEUs in CRAM, SET represents one of the main contributions to error
for Flash-based FPGAs, which led to a strong interest in their study. Differently,
SEU in configuration memory is a significant concern in SRAM-based program-
mable hardware and is the most investigated soft error for these devices. However,
the increase in operating frequency and the continuous transistor miniaturization
that is characterizing modern SRAM-based programmable hardware devices are
exacerbating SETs effects that cannot be furtherly ignored in these devices.

Additionally, the SET happening during the reconfiguration process for Flash-
based FPGA represents a negligible source of errors. Indeed, Flash-based FPGAs
do not provide partial or dynamic reconfiguration capability. Differently, SRAM-
based programmable devices offer Dynamic Partial Reconfiguration features. This
feature offers a number of advantages, such as a lower utilization of resources on
the FPGA and a lower consumption of power. In addition, the DPR could be used
in several areas, such as fault tolerance systems or systems for self-repair, thereby
increasing the flexibility and reliability of the application. For instance, it is also
widely exploited for mitigating the accumulation of errors in configuration memory,
refreshing the configuration memory with the correct values. The impacts of SETs
happening while writing the CRAM, such as during a partial reconfiguration, have
not previously been studied in the literature.

4.2 SETs Propagation in the Programmable Logic

4.2.1 State of the Art of the Analysis of SET Propagation in
Programmable Devices

Even though Single Event Transients are a fundamental mechanism of the interaction
between radiation and microelectronics, analyzing them is a challenging task. In
FPGA logic, when a SET introduces an observable error, it usually behaves like a
SEUs in user flip-flops. Propagation-induced Pulse Broadening (PIPB) is a mechan-
ism that causes a propagating SET to be broadened (or compressed) while traversing
logic gates. For instance, a SET with an initial width of 200 ps can be broadened to

4.2 SETs Propagation in the Programmable Logic 31

a few nanoseconds when it propagates through several logic gates [5]. Since SET
sampling is strongly dependent on the width and amplitude of the pulse when it
reaches latching elements, it is of crucial importance to estimate SET sensitivity. A
representation of this phenomenon is depicted in Figure 4.1.

Figure 4.1 Conceptual representation of PIPB effect.

Many research works have been conducted to evaluate the sensitivity and charac-
terize Single Event Transients [6–9]. Most of these studies focus on simulating the
radiation-induced pulse and propagating it through the combinational logic without
considering pulse broadening or attenuation, which depends on the specific techno-
logy. Radiation testing and electrical injection approaches have been proposed to
produce more realistic results [10]. Although radiation testing is the most realistic
method of testing, it is a demanding approach and requires specialized facilities.
Device-external pulse injection and measurement are not recommended due to the
high levels of distortion they introduce. Device-internal fault injection is a better
option as it provides good control of the pulse characteristics and measurement
accuracy. However, it requires modifying the implemented circuit for inserting the
fault injection module and it can require high development efforts.

In [11], and further in [12], we proposed a flow for statistically assessing the
sensitivity of a netlist to Single Event Transients by evaluating propagation and
broadening of transients in the combinational and sequential logic of the device.
The analysis of a group of benchmark circuits has been conducted to assess their
susceptibility to Single Event Transients (SETs). The results of this evaluation were
then compared to the outcomes of fault injection electrical experiments that had been
previously conducted on a physical device [13].

32 Analysis of Single Event Transient

4.2.2 A Static Analyzer for PIPB effect

The proposed methodology is based on an architectural model of function generators
(i.e., LUT) used in the target SRAM-based FPGA family. The architectural model
has been analyzed using 3D physical simulation to provide a realistic characterization
of induced Single Event Transients, in terms of amplitude, widths, and source node.
Additionally, the electrical characterization of the function generator model has
been evaluated using electrical simulations. The characteristics of the Single Event
Transient population generated by the physical analysis have been used together with
the Function generator electrical model for instrumenting the propagation analyzer.

The main advantage of the proposed methodology is to be generally fast and
simple to apply and integrate into the development flow compared to other validation
and error detection techniques. Even if the detection of flaws through static analysis
is usually not comprehensive due to its intrinsic static nature, it still allows for
solving a significant number of issues during the early phases of the development
flow in a relatively short time. SET and logic function generator characterization can
be performed independently on the netlist under test, making the approach easily
extendable to other devices. For this reason, it can be performed once per device or
technology, significantly speeding up the evaluation process by reducing iteration
time.

4.2.3 Modeling Function Generators and SETs Characteristics

An FPGA is characterized by programmable function generators that can be con-
figured and connected together, as well as combined with sequential elements, for
implementing practically any logic function. Implementation details of these ele-
ments, such as the physical layout, are usually not publicly available for Xilinx
devices. However, a model has been proposed using open libraries resembling the
functional description provided by Xilinx. Nevertheless, when it comes to open-
source programmable hardware architectures, the availability of detailed information
on layout and technology can make analysis even more realistic and trustworthy.

The Function Generator model proposed is depicted in Figure 4.2. We proposed a
model for Function Generators based on 6-input LUTs architecture which is adopted
in Xilinx Series 7 devices, as it is reported in [1] and [14]. The proposed architecture

4.2 SETs Propagation in the Programmable Logic 33

consists of two 5-inputs LUTs with shared inputs (A1-A5). The outputs of the
two LUT are the inputs of a multiplexer controlled by a sixth input (A6). The
multiplexer forwards one of the two LUT outputs to the function generator output
(O6) accordingly with the selector signal (A6). The secondary output of the Function
Generator (O5) is driven by the output of the first LUT (with the output connected to
the 0 port of the multiplexer).

Figure 4.2 Conceptual schema of proposed Function Generator Model

We assumed the 5-input LUTs composing the function Generator to be imple-
mented by 5 stages of the multiplexer, as represented in Figure 4.3. Functions are
implemented by writing the truth table of the LUTs in the configuration memory
cells associated with the Function Generator instance.

It has been shown in [13] and [15], that LUTs have different effects on the SET
pulses, based on specific logic function implemented, output line considered, and
pulse characteristics. In order to obtain a detailed characterization of the Func-
tion Generator’s electrical behavior to be integrated into the propagation analysis
algorithm, we performed an electrical simulation of the model.

34 Analysis of Single Event Transient

Figure 4.3 Conceptual schema of proposed LUT architecture used in the Function Generator
Model

In order to perform physical and electrical simulations of the Function Generator,
a physical layout for the 5-input LUT is needed. Therefore, a physical implement-
ation for the LUT has been implemented using an open-source gate library with
the same technology as the target device (i.e. 28nm CMOS), using the following
cell types: 2-input MUX, input buffer, and 2SRAM cell. The generated layout is
illustrated in Figure 4.4, and information about total cells and area are reported in
Table 4.1

4.2 SETs Propagation in the Programmable Logic 35

Figure 4.4 GDS layout of 28 nm CMOS LUT.

Table 4.1 Cells information for proposed LUT Physical Layout.

Cell Number [#] Area [µm2]
SRAM2 X1 16 29.97
MUX2 X1 31 79.68
INBUF X1 5 4.17

The proposed layout geometry has been then used both in the physical simulation
aiming to predict generated SET characteristics and in the electrical simulation to
obtain a realistic characterization induced by function generators.

Single Event Transient and PIPB effect Characterization

The characteristics, such as amplitude, width, and generating node, of the SETs
that can affect the device are crucial for evaluating circuit sensitivity. Indeed, they
strongly affect both the propagation-induced effects on the pulse, such as compres-

36 Analysis of Single Event Transient

sion or broadening, and as a consequence the probability of the pulse being sampled
becoming a soft error.

For this reason, the analysis includes a Single Event Transient characterization.
It is based on RadRay, the physical simulation tool presented in [16]. It takes
into account the parameters of a specific radiation environment and considers how
radiation particles interact with the device under test, simulating particles traversing
the device. In the simulation, parameters such as incident angles, LET, and type of
particle are considered for predicting SET pulse characteristics, such as amplitude,
widths, and node when it has been generated. The tool provides a report of generated
SETs characteristics. The purpose of this analysis is to provide a comprehensive
characterization of the Single Event Transient pulses that can be generated in the
technology.

The proposed layout geometry for 5-input LUT, including cells, their routing,
and the routing between cells and VCC and GND rails, has been provided to the tool
for 3D physical simulation in order to obtain a realistic SET characterization to be
used during static analysis.

The analysis involved six heavy ions commonly used in radiation testing: Carbon,
Neon, Aluminium, Chromium, Nickel, and Xenon. 1000 particles have been evalu-
ated for each element, generating an equal number of SETs. Weakest SETs (< 0.4
V) have been filtered based on the technology sensitivity of the target device while
the remaining pulses have been categorized by duration. Distribution is reported in
Figure 4.5

4.2 SETs Propagation in the Programmable Logic 37

Figure 4.5 SET Characterization resulting from physical simulation of 1,000 particles for
each heavy ion.

Most of the critical SETs (i.e., with amplitude higher than 0.4 V) are in the range
of 200 ps and 600 ps. For this reason, we performed an electrical simulation for
evaluating PIPB effect introduced by the Function Generator for these groups of
SETs. Characterization has been conducted for different logic functions, considering
pulse width, amplitude, and generating node. Electrical simulation behavior has
been further polished using experimental data obtained through the method reported
in [13].

4.2.4 Analyzing PIPB on Placed-and-Routed Netlists

The PREDA framework has been developed to model the logical and physical
architectures of a routed design. PREDA is coded in Python and interfaces with
Vivado, and Xilinx commercial design suite, through the Tcl language, and can be
extended to other programs that provide post-layout design information.

PREDA can build a graph structure from the post-implemented design, exploited
later in propagation static analysis. The graph includes characteristics of the logic

38 Analysis of Single Event Transient

cells such as primitive type and location. Additionally, PREDA can analyze the
graph structure to build a subgraph describing the logic cone of a flip-flop in the
circuit. It is further used for evaluating the SET propagation since when SETs will
reach a sampling element they will be filtered or sampled becoming an error, anyway
stopping its propagation. Thus SETs impacting a memory element can be evaluated
by analyzing the logic bordered by the sequential element itself and another memory
element.

To study the impact of LUTs on SETs propagation within the circuit, we de-
veloped a SET propagation analyzer, APES (Analyzer of PIPB effect on SETs)
that has been integrated with PREDA. With APES, it is possible to evaluate how
many SETs, injected with specific locations and widths, can be broadened when
they propagate through distinct LUTs along a specific design route. The method
aggregates the various contributions made by the LUTs while it propagates along the
path after considering the width of the SET and the physical pins of the LUTs via
which they propagate.

APES can evaluate what and how much memory elements are impacted by SETs
happening in a specific logic node, as well as what is the worst broadening effects
that may affect SETs that reach a memory element.

The worst PIPB affecting a memory element is evaluated by computing as SETs
propagate through the levels of logic gates in the logic cone. The worst PIPB
affecting each logic cell is calculated in an iteration if PIPB affecting its parent
cells has been computed. The process is repeated until the worst PIPB effect on the
flip-flop input is identified. A conceptual schema of the algorithm is represented in
Figure 4.6.

4.2 SETs Propagation in the Programmable Logic 39

Figure 4.6 Conceptual schema of SET propagation procedure.

4.2.5 Validating PIPB Analysis on Benchmark Circuits

For validating the proposed approach, four benchmarks have been selected from
the ITC’99 benchmark collection [17]. Selected circuits were B05, B12, B14, and
B15. The overview of the post-layout characteristics of the four benchmark circuits
implemented on a Xilinx Kintex7 is reported in Table 4.2.

40 Analysis of Single Event Transient

Table 4.2 Implementation Details for the Benchmark Designs.

Circuits
Flip-Flop Cells

[#]
Logic Cells

[#]

Max. Logic
Cone Depth

[levels]

Avg. Logic
Cone Depth

[levels]
B05 34 91 6 3.2
B12 119 251 6 4.1
B14 215 1,071 14 11.1
B15 416 1,390 14 9.2

The proposed evaluation workflow resumed in Figure i4.7 has then been applied
to the four benchmarks for evaluating SET sensitivity. SET and Function Generator
characterization, already presented in the previous subsections, have been provided
to the framework.

Figure 4.7 Workflow for evaluating PIPB effect.

4.2 SETs Propagation in the Programmable Logic 41

The B14 and B15 circuits are characterized by higher complexity and longer
combinational logic paths. The results obtained by the proposed static analysis
method have been compared with the electrical fault injection approach applied to
B12 and B15 designs [13]. The comparison is reported in Table 4.3, resulting in
coherent results.

The framework allowed us to statically evaluate prediction for all the Flip-flops
within benchmark circuits. The resulting categorization of the flip-flops of the
benchmark circuit is reported in Figure 4.8

Figure 4.8 Sensitivity of the flip-flops in the analyzed benchmark designs.

Even if the prediction could result in a sensitivity assessment slightly less accur-
ate than the one provided by internal fault injection, it should be considered that,
after the characterization which is required only once per device, the framework
is able to analyze the benchmark circuits in minutes. Differently, the development
of an internal fault injection infrastructure usually requires significant efforts for
implementing a generator and meter for each flip-flop in the design.

42 Analysis of Single Event Transient

Table 4.3 Max PIPB effect predicted

Circuit Electrical Fault Injection APES Analysis
B05 - 1.60
B12 2 1.86
B14 - 2.24
B15 3 3.12

A fast categorization of sensitivity for flip-flops that can be integrated directly into
the design flow offers a valuable resource for identifying flip-flops more impacted
by the long SET, allowing the designer to apply fine-grained mitigation techniques
to the most sensitive elements.

4.3 Effects of SETs during FPGA Reconfiguration

4.3.1 State-of-the-Art on the Evaluation of SETs during Hard-
ware Reconfiguration

Partial Reconfiguration is a technique for improving the performance and utilization
of SRAM-based FPGA. The basic idea is to use the same hardware resources to
deploy two mutually exclusive functions or circuits. During the application develop-
ment flow, the designer can select part of the fabric to be partially reconfigurable. As
a result, a partial bitstream can be downloaded in the configuration memory section
associated with that resources, changing the implemented circuit. This operation can
happen while the remaining part of the device works normally.

Applying partial reconfiguration, it is possible to improve power consumption
and device utilization. Partial reconfiguration can also be exploited for refreshing
specifically part of the configuration memory where an error has been detected, both
through configuration memory content inspection or application layer detection,
improving the reliability and robustness of the application.

Even if Single Event Transients investigation usually focuses on Flash-based
FPGA systems and the FPGA user logic, the reconfiguration task of SRAM-based
FPGA has the characteristics to be very sensitive to SET. Indeed, Reconfiguration
is based on SRAM cells written at high frequency during configuration, making

4.3 Effects of SETs during Hardware Reconfiguration 43

spurious pulses easy to be sampled. If FPGA programming happens in a controlled
environment, it is reasonable to consider errors induced by SET during reconfigura-
tion negligible. Anyway, when these systems are used in a radiation environment the
number of events and their impact on the application should be investigated.

However, no methodology or analysis is proposed to address or evaluate this
issue. For this reason, we proposed in [18] an evaluation flow for assessing SET’s
impact when SRAM-based FPGAs are reconfigured. A Monte Carlo analysis is
used to assess the SET characteristics produced by heavy ions. The analysis predicts
parameters such as the amplitude and length of the pulses in relation to the layout
characteristics. The SET pulses are then used in an electrical analysis simulation
for generating fault models that are then emulated on the actual hardware during
reconfiguration to determine the Dynamic Error Rate.

4.3.2 Modeling Reconfiguration Circuitry

Resources on the FPGAs are programmed by the content of the CRAM. The CRAM
defines how these resources are used and connected. To load the bitstream into the
configuration memory, the control logic makes use of a serpentine shift register where
data transit before being stored in the configuration memory [19]. An overview of
the architecture involved in downloading configuration data in configuration memory
is reported in Figure 4.9

Figure 4.9 An example of Configuration Memory control circuitry.

In order to propose a realistic SET characterization, a model for the serpentine
shift register has been proposed based on the technology used in Xilinx Series 7

44 Analysis of Single Event Transient

devices, since no details are provided on his characteristics from the vendor, except
for what is reported in [19].

The shift register is a circuit very sensitive to SET for its intrinsic characteristics.
Indeed, it is characterized by a high density of sampling elements and high frequency.
The proposed physical layout has been reported as GDS-II data, and a visual repres-
entation of a part of it, in particular three flip-flops chained together, are reported in
Figure 4.10. For developing the model, an open-source technology library has been
used [20] resized to 28 nm. A spice model has also been proposed to evaluate the
electrical effects of the transient pulses on the circuit and evaluate the fault models
for the configuration memory.

Figure 4.10 A representation, based on GDS-II description, of three 28 nm flip-flops of the
shift-register.

4.3.3 Fault Model: From Transient Pulse to Soft Error

To comprehensively model the faults that may affect the content of the frames com-
posing the CRAM due to SETs affecting the shift register, a Monte Carlo radiation
particle analysis has been performed based on the RadRay tool [16]. The tools
simulate the radiation particles that traverse the electronic component generating the
transient pulses. The approach is based on the proposed physical level description of
the serpentine shift register. The resulting cross-section is reported in Figure 4.11

4.3 Effects of SETs during Hardware Reconfiguration 45

Figure 4.11 SET cross-section of a 28 nm Flip-Flop of the shift-register

The electrical SPICE model of the serpentine shift register has been used for
electrical simulation. The SETs generated by the physical analysis are injected
during electrical simulation in the shift register model at a random time while the
configuration data pass through the circuit. Then the results of the simulation have
been analyzed to extract the fault model.

An example of the electrical simulation output, where a 600 ps SET is injected
and sampled is illustrated in Figure 4.12

Three different behavior have been observed:

• Single: A bit in the frame has been modified. The result is an SEU in a frame
of the CRAM.

• Burst: A sequence of bits is modified. The result is an MBU affecting up to
eight sequential bits of a frame.

• Multiple: Multiple bits in the frame are affected, but they are interleaved with
unaffected bits.

4.3.4 Evaluating Errors due to SETs during Reconfiguration

The evaluation flow has been applied to a benchmark design. The analysis is based
on a SET analysis for the proposed model of the shift register. The effects of

46 Analysis of Single Event Transient

Figure 4.12 SET sampling as reported by the electrical simulation tool.

4.3 Effects of SETs during Hardware Reconfiguration 47

SET observed have been used as fault models. Faults have been emulated in the
configuration memory content through manipulation of the configuration data. Since
fault occurs during reconfiguration, the injection of fault is performed at configuration
time.

The device under test is a Zynq 7020 SoC. The purpose of the analysis is to
assess the dynamic error rate caused by faults that arise during reconfiguration in the
given design, and evaluate if SET-induced faults can lead to a significant error rate
during the reconfiguration process.

A DRPM has been selected as the design under test. The design comprises a
processor system, ARM Cortex-A9, and four reconfigurable modules, consisting
of a couple of CORDIC IP Cores and of a couple of BRAMs controllers. An AXI
Infrastructure connects the modules to the processor system, which communicates
with an experiment manager via a serial connection with a host computer. A test
program running on the processor system stimulates the core in programmable logic.
A schematized view of the platform is illustrated in Figure 4.13

Figure 4.13 DRPM System Architecture

The software routine on the processor evaluates the functionality of the modules
of the DRPM with test routines. BRAMs are evaluated via MATS tests, while
CORDIC modules compute trigonometric operations. The MATS test implements a
sequence of memory read/write operations to detect any malfunctions [21]. The test
results are provided to the experimental manager platform through the UART, which
checks whether the MATS tests and CORDIC operations were successful or not.

48 Analysis of Single Event Transient

PyXEL [22] has been used as a fault injection and analysis platform for emulating
fault models in the configuration memory of the device. A first fault injection has
been carried out based on a single-bit fault model. During electrical simulation,
Single bit fault model was the most observed fault model among the three.

The injection space has been reduced using PyXEL and is limited to the used
parts of the device. A first evaluation campaign has been carried out with 10,000
fault injection experiments. This campaign resulted in a dynamic error rate of 3.86%.
Furthermore, the frames with the highest error have been selected to be exhaustively
tested, yielding an error rate of up to 15%.

Additional investigation has been carried out considering the characteristics of
specific data in frames. Frames have been categorized accordingly with the number
of bits having logic value 1. Even if configuration data of used resources are not only
encoded using 1 bit, since some data such as the truth table of the LUTs can use also
0 values, it is still a reasonable indication of the use of a frame.

We performed a second fault injection campaign, in which we injected a fixed
number of faults into each subset of frames. This enabled us to accurately evaluate
the dynamic error rate associated with frames with a specific number of one-bits.
As the number of one-bits in a frame increases, the number of faults introduced by
random injections decreases, as faults injected on bits with a value of ’1’ is masked.
Indeed, we observed during electrical simulation that transitions from 0 to 1 were
much more common. However, the number of one-bits in a frame indicates that
more resources have been programmed, which increases the probability that faults in
that frame will lead to errors in the output. The dynamic error rate, as well as frame
distribution, for each selected category, is reported in Figure 4.14

4.4 Research Advancements on the Analysis of Single Event Transients 49

Figure 4.14 Dynamic Error Rate for different categories of frames, frames are divided into
categories accordingly to the number of bits of value 1.

The error rate obtained for the design under test is not negligible, particularly
when considering that only a single-bit fault model has been tested, while other fault
models could be also more critical since they involve more bits in the frame. The
dynamic error rate of reconfiguration tasks involving critical frames (i.e., the one
with a high utilization) reaches approximately 15% when a single-bit fault model
occurs. Critical applications that want to exploit DPRM features, as well as scrubbing
techniques. should take into account that SETs during reconfiguration processes can
have an impact on reliability.

4.4 Research Advancements on the Analysis of Single
Event Transients

We proposed and developed new flows for evaluating the sensitivity of the design
to Single Event Transients propagating in the combinational logic and in the con-

50 Analysis of Single Event Transient

figuration circuitry of programmable devices based on the characterization of SET
generation by physical simulation and of SET propagation through electrical simula-
tion.

This approach has been adopted in the development of a static flow for the
analysis of SETs propagation in the netlist of placed-and-routed FPGA designs. The
flow based on the characterization of SETs and their propagation in the function
generators of FPGA devices provided results comparable to the ones obtained in
radiation test experiments. The PREDA and APES tools have been developed to
support the proposed methodology by extracting place-and-route information and
performing propagation analysis. The approach represents a valuable methodology
for performing preliminary reliability analysis of FPGA design that can ease the
evaluation of robustness during development and before accelerated radiation testing.

An analysis of the contribution of SETs during the configuration memory recon-
figuration has been proposed for the first time. The analysis based on the electrical
model of a configuration circuitry has been carried out through fault injection, emu-
lating the fault model obtained by physical SET generation and electrical simulation.

Chapter 5

Analysis of Single Event Upset

5.1 Overview on Single Event Upset Analysis

An SEU is a transient error that can occur in sequential logic when a particle, such as
a proton or a neutron, passes through the device. While the underlying mechanism
involves many physical phenomena, it can be modeled as a bit to be flipped from a 0
to a 1 or vice versa, resulting in a logic error at a higher abstraction level. SEUs can
be caused by radiation from cosmic rays, nuclear reactors, particle accelerators, and
other sources. SEUs can significantly impact an electronic system’s operation, as
they can cause incorrect operation of the device or even cause the device to fail.

Nowadays, no electronic system is totally immune to SEU, and that is becoming
a major concern for systems with high-reliability requirements, such as automotive
or space applications. However, for SRAM-based programmable-hardware systems,
the problem is even more severe. Indeed, Programmable hardware is configurable in
the sense that the content of configuration memory defines the hardware architecture
of the system. The configuration memory space is made of millions (even billions
for the largest devices) of bits dedicated to programming with millions of logical and
sequential elements[2, 1].

The high-transistor density of configuration memory makes it very sensitive
to SEUs. Additionally, since configuration memory is rarely written, errors can
accumulate in the memory space, leading to architectural errors that can affect the
system execution, eventually leading to failure.

52 Analysis of Single Event Upset

Even if mitigation solutions and analysis methodologies for dealing with SEUs
in configuration memory have been proposed, it is still a hot topic since device
complexity is rising up rapidly, increasing logic resources and on-chip elements such
as microprocessors, memories, DSPs, and networks-on-chip. Mitigation techniques
such as Triple Modular Redundancy and scrubbing are effective but may introduce
significant overheads in area, availability time, power consumption, and development
efforts.

Further complicating the question is the absence of detailed information from
the vendors on the characteristics of the configuration memory. Indeed, no official
notions of how the circuit is encoded in configuration memory are available, limiting
the ability of industry and researchers to develop static and dynamic methodologies
for analysis, reliability evaluation, or mitigation that could benefit from low-level
knowledge of how the circuit can be modified by SEUs occurring in the configuration
memory.

When it comes to third-party tools to support FPGA design analysis, they are
mostly used to facilitate and automate design placement and routing or partial
reconfiguration [23–26]. Some tools have attempted to reverse engineer bitstreams,
with only partial success, and most are targeting FPGA families that are three
generations or more out of date [27–29]. Additionally, these tools are based on the
Xilinx Design Language (XDL) supported by ISE, which is no longer supported in
the more recent Vivado Design Suite, the provided vendor tool for development on
Xilinx programmable devices. This lack of support for XDL and the lack of APIs for
interfacing with the Vivado framework poses an additional challenge to interfacing
third-party tools with the vendor’s tool in order to perform tasks, extract information,
and create custom place-and-route solutions for fault mitigation.

5.2 PyXEL: A framework for Easing Bitstream Ana-
lysis and Experiments

PyXEL is a Python-based framework initially created to simplify the analysis of
fault effects in FPGA routing. PyXEL has been originally designed to work with
Artix-7 FPGAs from Xilinx, but it has been widely extended further to support
additional devices, families, and fault models. The current version of PyXEL

5.2 PyXEL: A framework for Easing Bitstream Analysis and Experiments 53

underlies much of the research work that is presented in this dissertation. The
software has developed gradually from the earliest versions to the current one and is
still expanding. PyXEL is a Python-based tool created to make it easier to measure
the resilience of programmable hardware designs and integration with the vendor’s
tools for enabling custom implementation and automatized solutions. It offers
comprehensive support for the automation of radiation testing and fault injection
experiments and includes the ability to visualize, decode and analyze configuration
data of programmable hardware devices. PyXEL can also map CRAM to hardware,
enabling comprehensive reliability analysis techniques such as fine-grained fault
injection, specific fault emulation (e.g. open routing, LUT corruption), and fault
localization in radiation testing. Furthermore, PyXEL provides a mechanism for
automating and integrating fault injection tasks, bitstream analysis, and custom
placement and routing solutions.

Since PyXEL and its use are integral to much of the work presented below, this
chapter introduces and explains the capabilities and architecture of the framework
and how it has evolved from what was presented in [22].

5.2.1 Bitstream Analysis, Visualization, and Manipulation

PyXEL inherits and extends the basic idea proposed in [30]. PyXEL has been origin-
ally designed to assist in the analysis of the organization of FPGAs configuration
memory. PyXEL is able to parse the bitstream, identifying configuration memory
content, header, and configuration commands.

The software can identify frames and bits of the configuration memory associated
with any tile in the device fabric. It supports bitstream manipulation to inject fault
models both at the memory-content level, such as Single Event Upsets or Multiple
Bit Upsets, and at netlist-level, such as open-fault interconnections or LUT table
modifications.

Additionally, it implements a methodology for the visualization of the configura-
tion memory of a given design. Since each frame of the bitstream is associated with
a column of hardware elements in the FPGA fabrics, PyXEL provides a visualization
feature for the bitstream based on a 2-D bitmap. The 2-D bitmap enables easy visual
inspections of the bitstream to correlate sections of the bitstream and parts of the
programmable-hardware fabric.

54 Analysis of Single Event Upset

To provide an example, a view of the visualization feature of PyXEL is reported
in Figure 5.1. Thanks to the visualization feature, the part of the bitstream associated
with an AXI IP Core has been identified. On the left is the view of the circuit as it
is provided by Vivado, while on the right is the bitmap provided by PyXEL. The
yellow rectangle highlights the part of the design as shown in Vivado with the part of
the bitmap associated with it by visual inspection.

Additionally, PyXEL can be used to manipulate the bitstream in order to make
PyXEL able to support fault injection tasks on specific elements and perform netlist
manipulation.

Figure 5.1 Visualization feature offered by PyXEL.

5.2.2 Vivado Integration

One of the issues that have held back development in the analysis and decoding
of the bitstream of the latest devices is the migration from the ISE environment to
Vivado Design Suite. Vivado is superior in functionality, usability, and performance
to ISE but does not support XDL and intermediate format files such as NCD, which
were useful resources for working at the layout level. Most of the information
that previously was possible to obtain from ISE is still embedded in the Vivado
environment but is complex to access since they are embedded in the environment
or in files with an undisclosed format. Additionally, Vivado relies on Tcl, which is
de facto the standard language for commercial CAD tools. However, programming
in the Tcl language can be complex and the language is slow even compared to
other interpreted languages such as Python, as well as weak in the support for
object-oriented programming.

For these reasons, PyXEL has been implemented in Python in order to be easy
to learn, extend and integrate into other projects. However, it still needs to rely
on Vivado for extracting information, generating bitstream, and reading or creating

5.2 PyXEL: A framework for Easing Bitstream Analysis and Experiments 55

design checkpoints. Thus, interfacing PyXEL with Vivado is necessary to automatize
steps such as extraction of layout and device information, place-and-route solutions,
netlist modification, and so on. As a solution, a Tcl server that runs directly in Vivado
transparently to the user has been developed. In this way, Pyxel can interface with
Vivado, but limits Vivado’s tasks to extract the information to be used on the Python
side. Additionally, this mechanism made it possible to provide APIs for the user to
simplify and automate complex operations, such as routing, analysis, or placement
algorithms.

5.2.3 Bitstream Decoding

Bitstream decoding is important to support fault injection and analysis methodology
for programmable hardware. Many of PyXEL’s features rely on the relation between
configuration memory content and resources in the programmable hardware fabric.
Bitstream decoding process has been automatized to be easily applied to any FPGA
family. It consists of two parts.

Firstly, a coarse mapping is performed that maps any tile to the configuration
memory bits associated. This part requires extracting a few pieces of information
for a device family using visual inspections or simple analysis of the bitstream.
Most of the information is common to all the devices of a family. In particular,
the rules of ordering for the clock regions and the width in frames of tiles types
are needed. This information is provided to the tile mapper. Additionally, the tile
mapper can autonomously extract from Vivado the information on the architecture
of the programmable hardware. These notions are enough to build a comprehensive
function that maps any tile to the correspondent configuration memory section.

Secondly, the encoding and decoding functions for each tile are a more complex
task, due to the unique characteristics of each tile typology. Considering that tiles of
the same type are configured in the same way regardless of their position in the FGPA
fabric, a mixed methodology was adopted based on the correlation between the bits
used to program a tile type in different designs, which was then refined by hand
by visual inspection. Currently, the method has been used to decode only the most
important tiles, such as the switch boxes and CLBs. The method takes any number
of designs as input. It extracts information about the configuration of each tile used
from these designs and associates this configuration state with the bitmap related to

56 Analysis of Single Event Upset

this tile in the configuration memory using the tile mapper. By correlating all tiles
of the same type and their bitmaps with each other, it associates the individual bits
of the tile bitmap with the resources used. In this way, it incrementally reduces the
number of bits associated with a specific configuration of a specific resource within
a tile. The approach is incremental and refines, iteration after iteration, the set of
bits associated with a resource with good accuracy. The advantage of the approach
is that it is not necessary to create specific designs to decode part of the resources
in a tile with good accuracy. Further refinement of the results can still be achieved
with designs that use specific resources. The methodology allowed full decoding of
CLBs to the vast majority of PIPs in interconnection tiles. Particularly for Ultrascale
devices, already with 10 input designs we previously used for other purposes, which
the framework analyzes in the order of minutes per design, 99% of the PIPs could be
decoded without any user intervention.

The approach for switch matrices decoding is schematized in Figure 5.2

Figure 5.2 Bitstream Decoding Flow.

As a validation experiment, two bitstreams were analyzed by PyXEL with the
purpose of inferring from the bitstream alone the PIPs used in each tile of the design.
The first benchmark was B12, taken from the ITC’99 benchmarks and featured 4,149
PIPs, while the second, which cannot be revealed because it is protected by a non-
disclosure agreement, featured 113,332 PIPs. PyXEL was able to predict enabled
and disabled PIPs with an accuracy of 99.3%, a recall of 100%, and a precision of
78% for both designs.

5.2 PyXEL: A framework for Easing Bitstream Analysis and Experiments 57

5.2.4 Automation Support for Fault Injection and Radiation Test-
ing Experiments

Configuration memory corruption due to radiation effects is one of the most critical
issues affecting programmable hardware reliability. Evaluating applications against
the SEU fault model in configuration memory is mandatory for programmable
hardware devices operating in radiation environments or adopted in mission-critical
applications.

However, since the vendors do not provide information about how resources
in the programmable hardware fabric are mapped and configurated by bits of the
configuration memory, fault injection evaluation approaches are subjected to some
limitations. Firstly, the huge number of resources and, consequently, the large
memory space of the new devices makes fault injection in random locations useless
if evaluating the robustness of single modules is desired. Secondly, when a circuit
is implemented on programmable hardware, only a small part (usually empirically
estimated as around 10% of the whole configuration memory) produces errors. It
is due to the high number of resources in FPGA that stay unused even with high
utilization. This results in many bits that can be selected for fault injection but will
likely not produce any error since they are not used by the application. Thus, time is
wasted in evaluating bits that cannot be a source of errors for the system.

Essential bits tried to overcome this issue, providing a subset of bits of the
configuration memory that are more likely to produce errors. Even if essential bits
reduce the injection space, they still do not provide any information on which module
has been targeted by a fault. Furthermore, essential bits are provided with a file
format that is not open-source, making it usable only with SEM IP Core provided by
Xilinx. Finally, they provide a coarse-grained selection of used bits based on used
tiles instead of basic elements and PIPs, significantly overestimating the subset.

Pyxel offers several features to support the fault injection analysis for program-
mable hardware.

PyXEL can be used as as a fault generation platform instrumented to inject
faults with a high degree of customization. Methods are provided for injecting
specific fault models, such as SEUs, and MBUs. The inner knowledge of the
relation between FPGA fabric tiles and bitstream structure allows for targeting
specific modules implemented in the FPGA fabric. The information on how specific

58 Analysis of Single Event Upset

resources, especially PIPs, and LUTs, are programmed enables the emulation of
topological faults for routing, such as conflicts and ope fault models or logic function
corruption. This feature is valuable also for ASIC prototyping, where specific
faults at the hardware level can be quickly emulated. Please note that this approach
is partially prevented by modern commercial tools where faulty netlist prevents
bitstream generation without the possibility of forcing the process.

As an experiment manager, PyXEL provides methods for fully automatizing
experimental flow both during radiation testing and fault injection campaign. In
particular, PyXEL can be used for programming both processor systems and program-
mable logic of Xilinx devices, collecting data from the serial ports, and performing
configuration memory readback and error detection. PyXEL also provides an em-
bedded logging mechanism.

5.3 Analysis of Electrical Behaviour of Faulty Inter-
connections

About 80% of the bits in the configuration memory of modern programmable hard-
ware are used for programming routing resources. Routing resources are especially
critical for several reasons. Other than being a significant part of the used resources
of circuits mapped on programmable hardware, they can be a source of failures
that can propagate along different paths or create interference and conflicts between
different modules and nets as a result of SEU in the configuration memory.

FPGAs programmable interconnection structure is based on Programmable In-
terconnection Points (PIPs). These PIPs connect longlines to create specific paths
for signals to be propagated through combinational and sequential elements on the
fabric.

Various studies have been conducted on the impact of Single Event Upsets on
the FPGAs routing structure and the electrical effects that these faults can produce.
Most of the research on this topic are dedicated to simulating the SEU effect on
routing or emulating faults in the physical device. Considering that the CRAMs
can consist of billions of bits, and test routines for evaluating faults effect can be
time-demanding or not comprehensive, these approaches give a general overview of
the design reliability while requiring a significant amount of time.

5.3 Analysis of Electrical Behaviour of Faulty Interconnections 59

Indeed, due to the lack of information provided by FPGA vendors, it is difficult
to accurately map routing resources into bitstreams. This lack of information makes
it difficult to inject specific fault configurations into FPGAs and to decode and
manipulate bitstreams.

5.3.1 Methodology for Interconnection Faults Analysis

The version of PyXEL used to support this work has been published in [22]. It auto-
mates the process of carrying out experiments in FPGAs, making it more research-
friendly and reducing the possibility of errors.

In particular, PyXEL offers APIs to control the place-and-route of a circuit within
FPGA fabric to select which routing resources to test, generate the placed-and-routed
design, and evaluate the electrical effects produced as a Boolean logic function of
the input data.

An SEU affecting the configuration memory section associated with a switch
matrix can generate many different faulty configurations. Topological modification
can be categorized into topological models. Common examples are:

• Open: a PIP is deactivated interrupting connection in the net.

• Conflict: a PIP is activated connecting two used junctions, as a result, a node
is now driven by two drivers.

• Antenna: a PIP is activated between an unused and used junction.

• Bridge: a PIP is modified driving another junction

The listed fault models are visualized in Figure 5.3. However, this is only a
subset of the possible faulty configuration that is variegated due to the high number
of allowed configurations.

60 Analysis of Single Event Upset

Figure 5.3 Example of possible faulty configurations of the connection that can be caused by
SEUs in configuration memory

Previous works were based on XDL methodologies for generating faulty bit-
streams. However, we found during our experiment that this approach presents some
limitations in the new bitstream generator tool, and produce unreliable configura-
tion file. In order to produce the faulty configuration a mixed approach has been
proposed.

Initially, a benchmark design is implemented by using the vendor tool in the
FPGA fabric. Through automatized place-and-routing manipulation bitstream files
are generated using different PIP elements. These files are then analyzed by PyXEL
for extracting bitmaps embedding the information for enabling or disabling specific
PIPS.

The benchmark design consists of a UART receiver, a UART transmitter, and
two registers. A byte is sent on the serial connection from the experiment manager
on the host computer, stored in a register, forwarded to the second register by using
the routing and the PIPs on the FPGA fabric, and then transmitted by the UART
module to the host computer. PyXEL methods are used to route two nets that will be
used for connecting two FF of the registers using specific PIPs under the test of an
interconnection matrix. A conceptual schema of the platform, the benchmark circuit,
and the evaluation methodology is exposed in Figure 5.4

5.3 Analysis of Electrical Behaviour of Faulty Interconnections 61

Figure 5.4 Conceptual schema of the system architecture, the design benchmark, and meth-
odology for electrical characterization of faulty programmable interconnections

During each experimental evaluation, we want to modify the circuit programmed
by the bitstream in order to produce specific topological faults we want to observe.
This is achieved by bitstream manipulation without the support of the vendor tool-
chain. Indeed, the vendor’s tool prevents the generation of faulty configurations
during application design.

The proposed approach for manipulating the circuit through bitstream manipula-
tion has been validated by generating two versions of the same valid configuration
of the circuit, having no faults and using specific PIPs for routing the nets. The
first version has been generated using the vendor CAD tools, while the second one
uses PyXEL. We compared the bitstream of PyXEL-generated and Vivado-generated

62 Analysis of Single Event Upset

sections of the manipulated interconnection matrix, as well as the result of the bench-
mark design to check the consistency. We routed the input bits to different output
bits successfully.

5.3.2 Faulty Interconnection Electrical Characterization

Experiments are based on the benchmark design. The design is modified at the bit-
stream level using PyXEL. Indeed, differently from the traditional XDL approaches,
Vivado Design Suite does not allow a bitstream for faulty netlist to be generated.

We evaluated different topological fault behavior. Experiments have been auto-
matized using PyXEL. A list of PIP pairs under test is provided to the framework,
as well as a description of the faulty configuration to generate. The framework
produces a golden design using the desired PIPs and then manipulates the bitstream
for inducing the target topological fault models. At this point, it programs the device,
stimulates the circuit through the serial port, waits for the outputs, and analyzes
the relation between the inputs and the outputs for inferring the logical behavior
observed as a result of the topological faults.

Additionally, modifying the circuit through bitstream manipulation means that
it is not necessary to implement a new design using Vivado Desing Suite, saving a
significant amount of time.

The device selected for the experimental analysis was a Xilinx Kintex-7. Antenna,
Bridge, Open, and Conflict fault models have been selected to be evaluated.

The Antenna did not show faulty behavior. Junctions seem to be robust against
disturbance introduced by the antenna topological fault model. However, only
single antennas have been tested. It is possible that multiple antennas may produce
unexpected behavior, but this possibility needs to be investigated further.

A bridge fault has the same behavior as a conflict fault on the multi-driven
junction plus an open fault on the junction that is not driven anymore.

Open Faults always have produced a stuck-at-1 bit. This could mean that unused
junctions use pull-up resistors.

Finally, the conflict shows interesting results. Indeed, conflict faults have pro-
duced different kinds of electrical behaviors. A few hundred PIP pairs have been
tested and common patterns relating to electrical behavior and the encoding in the

5.4 Research Advancements on the Analysis of Single Event Upsets 63

Table 5.1 Conflict Electrical Characterization Resume

Logical Fault Ratio [%]
Wired-AND 57.45
Wired-OR 39.71
Driven-By 2.94

bitstream of the PIPs have been found. In particular, the three behavior observed for
the junction driven by the two PIPs was:

• Wired-AND: The logical value on the output junction is a logical AND
between the logical values expected on the junctions of the two PIPs that are
driving the output junction.

• Wired-OR: The logical value on the output junction is a logical OR between
the logical values expected on the junctions of the two PIPs that are driving
the output junction.

• Driven-by: The junction behaves like it is driven by only one of the two source
junctions, named the Predominant Junction.

However driven-by behavior was much rarer than the others two, while AND
was slightly more common than OR. Occurrences have been reported in Table 5.1

Additionally, some recurring patterns have been identified in how PIP pairs
were encoded in configuration memory and the electrical characterization. It is
difficult to identify the occurrence of a Forced-by behavior that occurred rarely.
Nevertheless, our research revealed that when two Programmable Interconnect
Points (PIPs) are encoded with a bit having the 1 value in the same position of the
configuration memory and no Forced-by behavior is present, it behaves as a Wired-
AND. Conversely, if the condition is not met, a Wired-OR behavior is observed.

5.4 Research Advancements on the Analysis of Single
Event Upsets

The PyXEL tool has been developed for easing configuration memory analysis
and understanding, as well as fault injection experiments and campaigns. PyXEL

64 Analysis of Single Event Upset

to offer comprehensive reliability analysis techniques, which include fine-grained
fault injection, specific fault emulation (such as open routing and LUT corruption),
and fault localization in radiation testing. These techniques are not currently avail-
able from vendors or third-party tools and assist in solving the mapping between
CRAM and hardware. Additionally, using PyXEL, it has been possible to evaluate
electrical behaviour of faulty interconnections, that can provide a more accurate
model of the faults produced by Single Event Upsets in the configuration memory of
programmable hardware.

Chapter 6

Radiation Test Analysis

6.1 Overview on Radiation Test Analysis

Accelerated radiation testing is an important methodology for evaluating the reliabil-
ity of electronic components and systems. In a much shorter period, it simulates the
effects of exposure to radiation that can be experienced in space or other radiation
environments. This allows us to quickly identify, evaluate and address potential
issues of the system before they are deployed in the field. This is especially important
for safety-critical applications that involve the use of costly equipment, such as those
used in satellite and space exploration, or are responsible for preventing natural
disasters or preserving human life.

Radiation testing presents some unique advantages with respect to other tech-
niques such as simulation or fault injection. Even if at higher fluxes for speeding
up evaluation, it emulates the real physical phenomenon on the actual device, thus
usually providing more accurate results.

Radiation testing can be adopted for evaluating the sensitivity of systems either
to Total Ionizing Dose (TID) or Single Event Effects (SEEs). The tests that will be
presented in the following chapter are dedicated to testing SEEs. These tests evaluate
how the device under test will operate while it is bombarded with accelerated high-
energy particles, such as protons or heavy ions. SEE evaluation can involve either
static characterization, which can be used for evaluating the sensitivity of components
and modules, for instance, the SEU rate in memory, or dynamic characterization
where the system’s functionality is evaluated.

66 Radiation Test Analysis

However, radiation testing also presents some challenges. Testing is becoming
more difficult as devices grow much more complex. It is usually hard to isolate
completely which component, especially in the system-level experiments is exposed
or failing. Additionally, it requires specialized facilities provided with particle
accelerators. This can make device testing costly and slow down time-to-market
based on facility availability. Moreover, exposure to accelerated radiation testing can
permanently destroy the device’s functionality.

Finally, radiation testing requires significant efforts in developing the experi-
mental setup and data acquisition system for ensuring the accuracy of the results and
preventing device destructive events.

Due to the high performance characterizing commercial reconfigurable-hardware
SoCs, and their appeal for state-of-the-art applications, including in fields such
as space exploration and high-energy particle experiments, the evaluation of these
systems against ionizing radiation is a hot topic.

The complexity of system-level analysis is further compounded by the integration
of various components, such as programmable logic, processors, and memories, onto
a single chip. Various studies have been conducted to investigate the characteristics
and reliability of SRAM memories, hard and soft microprocessors, and hardware
acceleration when exposed to ionizing radiation. However, much of the research
work on programmable hardware only focuses on the configuration memory, which
is a very sensitive component, leaving in the background, processor systems, system
memory, or system-level dynamic evaluation.

6.2 Testing the Zynq On-Chip-Memory with Protons

6.2.1 State of the Art of Radiation Analysis of SoC Memory

In the past decade, system-on-chip solutions integrating into the same chip general-
purpose processors and application-dedicated processors have been widely adopted.
In particular, hardware-reconfigurable SoC has proven to be an attractive solution
since it offers the possibility to implement custom hardware architecture for accel-
erating the most demanding tasks. However, before these devices can be adopted
in mission-critical applications, their reliability must be thoroughly evaluated, as

6.2 Testing the Zynq On-Chip-Memory with Protons 67

the increasing operating frequency, decreasing operating voltages and transistor size
have made them more susceptible to soft errors.

Many studies examined the characterization and radiation tolerance of SRAM
memories, processors, as well as SoC. The majority of investigations into the memor-
ies of Zynq devices have only focused on the CRAM programming the FPGA,
without taking into account the microprocessor and memory. However, SRAM
memories are particularly sensitive to radiations such that they are also used as
detectors for particles after a comprehensive characterization [31]. Due to the com-
plexity of modern systems, a comprehensive analysis of the characteristics of the
memory in these systems is required in order to properly consider the effect of faults
on the overall reliability of the system.

Only a few studies have explored the On-Chip Memory (OCM) of SoC un-
der radiation. In [32], the author presents a heavy-ion irradiation of a low-cost
Commercial-Off-the-Shelf microcontroller, including an SRAM dynamic analysis,
but the analyzed events are limited to SEU cross-section. [33] and [34] studied the
memories of a Zynq System-on-Chip, such as Block RAMs, CRAM, and OCM,
under heavy-ion and proton radiation, respectively. Finally, [35] presented an attempt
to relate OCM errors to other components of the SoC.

The Zynq devices lacked an accurate analysis taking into account the integrated
nature of the SoC, the interface and connection of the memory with other components,
as well as the usage of the memory by other modules. Such an approach will provide
a more accurate assessment of the radiation sensitivity of a memory component and
its contribution to the reliability of the system.

To address this problem, we provided a comprehensive evaluation of the events
that occurred in the OCM of an ARM Cortex-A9 processor system exposed to proton
radiation[36]. The fault resulting from the radiation campaign, as observed from the
processor side, has been described and categorized. The advantage of such analysis
is to provide a realistic fault model to be adopted in reliability analysis such as fault
injection, simulation, and emulation. Such a fault model can be a valuable resource
for preliminary robustness analysis or when a radiation test is not a viable solution.

68 Radiation Test Analysis

6.2.2 Proton Radiation Testing Setup

At the Paul Scherrer Institute (PSI) Proton Facility, a proton test analysis was
conducted by irradiating a Zynq-7020 system-on-chip with energies ranging from 16
to 200 MeV. The goal was a static analysis of the proton-induced SEE in the OCM
of a Zynq 7020. A dynamic analysis approach has been adopted for evaluating errors
occurring during the use of the OCM memory by the system processor.

A PYNQ-Z2 board has been utilized in this test. It incorporates a Zynq-7020
system-on-chip, which is equipped with an ARM Cortex-A9 MPCore processor and
a 256 KB SRAM memory interconnected through a Snoop Control Unit (SCU). The
on-board DDR memory, which was not directly exposed to the radiation source, was
selected as the storage location for the test program so as to minimize the potential
for external errors such as processor halting and code corruption. Caching was
disabled to ensure that any events occurring directly in the SRAM memory could be
observed through reading and writing of the memory content.

To ensure continuous monitoring of the on-chip SRAM memory, a software
routine was implemented to run on the ARM Cortex A9 processor. The software
continuously writes new values into the memory, verifying that the value written
during the previous test loop has not been corrupted, and verifying that the current
value has been written and read correctly.

The system under test was placed in the irradiation room and connected to a host
computer in the control room using a USB-screened cable with 3 signal repeaters
(1 every 5 meters), for a total of 20 m connection. In the event of an error being
detected, the processor of the SoC notifies the host computer that logs the event.
Furthermore, the software routine is equipped to identify both SEFI errors, such as
a memory cell not being able to be written or read correctly, while the experiment
manager is able to detect system halting and send software reset or notify the need
for a power reset, to be manually executed from the control room via a power switch.

The board in the irradiation chamber was docked to a flexible support structure.
The design was tested with a variety of energies and fluxes, the conditions of which
are detailed in Table 6.1

6.2 Testing the Zynq On-Chip-Memory with Protons 69

Table 6.1 Proton Test Conditions: Energy, Flux and Fluence

Energy [MeV] Flux [cm−2 s−1] Fluence [cm−2]
16.04 1.89 × 107 2.17 × 1010

29.31 4.12 × 107 1.70 × 1011

50.80 4.02 × 107 1.94 × 1011

69.71 4.11 × 107 6.70 × 1010

101.34 4.32 × 107 1.86 × 1011

151.18 4.09 × 107 1.23 × 1010

200.00 4.14 × 107 1.97 × 1011

6.2.3 Proton Test Results and Fault Models

We evaluated events affecting the OCM of a Zynq-7020. A detailed classification of
the observed events and their respective cross-sections is proposed. The events cross-
section and the bits cross-section have been evaluated and the results are reported in
Figure 6.1. In the SEE cross-section, each event contributes as a single event to the
cross-section computation, while in the bits cross-section the number of faulty bits
contributes to the total bits cross-section.

Figure 6.1 SEEs and Bits Cross-Sections for OCM of a Zynq-7020.

A comprehensive assessment of the events observed on the on-chip SRAM
memory from the processor system during radiation tests allowed us to propose a set
of fault models. These fault models provide a description of the events impacting
the on-chip memory from the processor perspective that can be valuable in reliab-
ility analyses which can benefit from a precise fault model to perform preliminary
analysis.

70 Radiation Test Analysis

SEUs have been identified as the most common event. The SEU cross-section is
reported in Figure 6.2 for the evaluated energies. The SEU cross-section has been
computed for both 0-to-1 and 1-to-0 transitions but no significant differences have
been observed

Figure 6.2 SEUs Cross-Section for OCM of Zynq-7020.

SEMU have been observed during the radiation test, with a moderate frequency.
They turned out to be more common and characterized by a higher number of bits
when testing at higher energies. Again, 0-to-1 and 1-to-0 transitions were evaluated
but without noticing significant variation. A pattern was noted that can probably be
associated with the physical layout of the memory. In fact, the bit flips associated
with the same event always affected the same significant bit in memory words at
recurrent logical distances, the distribution of which is shown in Table 6.2, while
size distribution is reported in Table 6.3.

6.2 Testing the Zynq On-Chip-Memory with Protons 71

Figure 6.3 SEMUs Cross-Section for OCM of Zynq-7020.

Table 6.2 Normalized Occurrence of Logical Distance of SEMU in OCM.

Logical Distance [bytes] Occurrence
128 61%
4 12%

124 6%
132 3%
16 1%

256 1%
others less than 1% (total 16%)

72 Radiation Test Analysis

Table 6.3 Normalized Occurrence of SEMU Size.

Size [# bit] Occurrence
2 64.57%
3 20.15%
4 7.96%
5 3.47%
6 1.28%
7 1.03%
8 0.51%

10 0.51%
11 0.26%
12 0.13%
15 0.13%

Finally, Burst Events were observed to occur at a much lower rate than SEUs and
SEMUs. However, the Burst Events had a much more significant effect, affecting
numerous memory locations and cells simultaneously. In some cases, this type of
event, called Burst Stuck-at, caused the memory to be inaccessible, leading to Single
Event Functional Interrupts. In order to return to nominal behavior, a power cycle
was required.

Table 6.4 Normalized Occurrence of Memory Locations Number affected by a Single Burst
Events.

Number of Affected Locations Occurrence
Less than 1,000 16%

Between 1,000 and 10,000 62%
More than 10,000 22%

Burst Events occurred with different characteristics. A clear/set event cause the
content of a large part of the on-chip memory to be cleared (0 value) or set (1 value),
while a burst error causes the corruption of a large number of bits. Finally, Stuck-at
events force the results of reading operations to a fixed value. The distribution of
different burst events size is further detailed in Table 6.4. Although no burst events
were detected at 150 MeV during our experiments, we theorize that these events
could still occur at this energy, however, due to the lack of statistical evidence, we

6.2 Testing the Zynq On-Chip-Memory with Protons 73

are unable to estimate a cross-section. The burst events cross-section is reported in
Figure 6.4

Figure 6.4 Burst Events Cross-Section for OCM of Zynq-7020.

6.2.4 On-Chip Memory Fault Emulation

The identified fault models enable the possibility to evaluate the impact on software
applications emulating the fault affecting the OCM from the processor point-of-view.
Four bare-metal software programs have been evaluated, each with a distinct fault
injection campaign and the proposed fault models previously discussed.

The same system-on-chip has been used in the fault injection campaigns. The
ARM core is utilized to execute the software benchmarks, while faults are emulated
in the OCM. As an experiment manager and fault injection platform, we used PyXEL.
The manager runs on a host computer and orchestrates the fault emulation process
and collects results using a serial connection.

The analyzed benchmark MatMul, which multiplies a series of matrices and
provides the resulting matrix; Sobel, which applies an edge detection algorithm to a
picture and generates the resulting picture; Dijkstra, which uses Dijkstra’s algorithm
to find the shortest paths between two nodes in a graph and sends the paths and their
costs through an output channel; and Dhrystone, a synthetic computing benchmark
that performs string processing tasks and sends the results through an output channel.

74 Radiation Test Analysis

Each software benchmark has been evaluated against the fault model presented,
such as SEU, SEMU, and Burst events. Each campaign consists of 10,000 injections,
fault locations have been generated randomly and fault model characteristics are
based on the statistical results obtained during radiation testing.

Figure 6.5 Overall Error Rate of the Software against Evaluated Fault Models

The error rate of the applications is reported in Figure 6.5 and categorized in
Figure 6.6. Even if there is a slight variation in the errors among evaluated software,
the behaviors are consistent. Compared to SEU, the errors only marginally rise
for SEMUs and experience much higher values for burst events. Interestingly, the
ratio of Silent Data Corruption increases only marginally for burst events, in spite of
the considerable rise in the number of errors, mainly due to halt errors. Due to the
alarming nature of SDCs passing silently, it is important to be aware that burst events
mainly lead to halting errors, which, combined with their lower cross-section, will
result in a lower rate of silent errors compared to what could have been anticipated for
such an impacting event. Nevertheless, they should still be taken into consideration
due to their great impact on system availability. Furthermore, the percentage of
halt outcomes to which applications appear to be vulnerable for all fault models
should prompt designers to consider the necessity of finding solutions to reduce the

6.3 A CRAM Technology Analysis: CMOS vs FinFET 75

occurrence of these effects, which, although easy to detect at run time (unlike SDCs),
contribute significantly to the system total error rate.

Figure 6.6 Results categorization for different software and fault models

6.3 A CRAM Technology Analysis: CMOS vs FinFET

The release of new programmable hardware devices has followed the common
trend of Moore’s Law. New families and devices have been released over the years
exploiting new technologies, moving toward miniaturization of the transistor size.

In particular, Xilinx SRAM-based programmable hardware migrated from 28
nm CMOS technology adopted in Series 7 devices toward the FinFet multigate
technology. Indeed UltraScale and UltraScale+ devices make use of 20 nm, 16 nm,
and 7 nm manufacturing technology. Since these transistors are based on different
gate structures, they have different electrical characteristics, thus different sensitivity
to ionizing radiation. Many factors have a role in radiation sensitivity, including
operational voltages and the physical structure of the component.

Many works are dedicated to evaluating and characterizing the FinFet and CMOS
transistors against radiations. However, despite the abundance of research that has
been conducted to compare the radiation sensitivity of FinFET and CMOS-based AS-
ICs, there has been a lack of evaluation into the radiation sensitivity of reconfigurable
FPGAs, which are currently undergoing a technological transformation.

For this reason, we evaluated the radiation sensitivity of two Xilinx FPGAs
based on different fabrication technologies: 28 nm CMOS Zynq and 16 nm FinFET
UltraScale+. The experimental analysis is based on two proton radiation tests
conducted at the PSI facility. The dynamic test was based on evaluating the reliability

76 Radiation Test Analysis

of a hardware-accelerated multi-core engine implemented on each FPGA. During the
test, the static content of the CRAMs has been evaluated as well. The results of the
experiments demonstrate that 16 nm FinFET is one order of magnitude less sensitive
to Single Event Upsets (SEUs) compared to 28 nm CMOS, but more prone to a
critical event, such as Single Event Latch-Up. Additionally, a comprehensive analysis
of the occurrence of Single Event Multiple Upsets (SEMUs) for each technology has
been conducted [37].

6.3.1 Proton Test Experiment Setup

In order to conduct an accurate comparison, the same benchmark was developed
and deployed on two different FPGAs using configuration memories based on the
CMOS and FinFet technology. The selected devices are two Zynq SoC.

As the first device, based on CMOS technology, we selected a PYNQ-Z2 Board
that embeds a Zynq-7020 based on a 28 nm CMOS programmable logic and a
dual-core ARM Cortex-A9 processor. As a FinFet-based device, we used a Xilinx
UltraScale+ ZCU104 board that embeds a ZU7ev. ZU7ev is based on a 16 nm
FinFET programmable logic and includes a quad-core ARM Cortex-A53 application
processor and a dual-core ARM Cortex-R5 processor on the same chip.

A benchmark circuit replicating the hardware computing architecture of an AI-
oriented hardware accelerator has been implemented on both platforms. It consists
of a parallel computing unit connected with the processor that is present on both
SoCs. The chosen computing cores are COordinate Rotation DIgital Computer
(CORDIC) IP Cores. The benchmark is based on both the programmable logic
and the microprocessor system. The microprocessor system is connected to the
Zynq High-Performance ports via a Master Advanced eXtensible Interface (AXI),
connected with two different AXI Direct Memory Access (DMA) IP Blocks. Each
DMA IP Block can manage multiple channels and transfer data between the 16-core
hardware accelerator situated in the programmable logic, resulting in a total of 32
CORDIC cores.

The general schema of the architecture of the application design is depicted in
Figure 6.7, while device utilizations are resumed in Table 6.5.

6.3 A CRAM Technology Analysis: CMOS vs FinFET 77

Table 6.5 FPGA utilization for the Benchmark Circuits

Device 28nm CMOS Zynq (7 Series) 16nm FinFet Zynq (US+)
Resources Available Used Available Used

LUTs 53,200 28,413 (53.41%) 230,400 30,633 (13.30%)
Flip-Flops 106,400 33,317 (31.31%) 460,800 34,031 (7.39%)

BRAM 140 14 (4.39%) 312 10 (4.39%)

Figure 6.7 Architecture of the application running on the platforms during the proton test.

Two proton-radiation campaigns were conducted at the Paul Scherrer Institute
(PSI) Proton Facility in Switzerland. Test conditions used for evaluating both the
devices are reported in Table 6.6.

The PyXEL experiment manager on a dedicated host computer in the control
room has been used to monitor and configure the devices via a serial link. The
framework has been used to acquire the output data of the application benchmark
running on the devices under test and a periodic readback of the configuration
memory contents. This platform has enabled the calculation of the number of SEU

78 Radiation Test Analysis

Table 6.6 Proton Test Conditions: Energy, Flux and Fluence

Energy [MeV] Flux [cm−2 s−1] Fluence [cm−2]
16.04 1.89 × 107 3.20 × 1010

29.31 4.12 × 107 9.17 × 1010

50.80 4.02 × 107 6.06 × 1010

69.71 4.11 × 107 2.12 × 1010

101.34 4.32 × 107 2.41 × 1010

151.18 4.09 × 107 1.23 × 1010

(Single Event Upset) events that have occurred in the configuration memory in
real-time by comparing the original (without fault) bitstream and the readback file.

6.3.2 Proton Test Results, Analysis, and Comparison

The SEU cross-section for both 16 nm FinFET and 28 nm CMOS technologies
is reported in Figure 6.8. It is noteworthy that for 16 nm FinFET, no SEU events
were detected for energies below 50 MeV. Therefore, the cross-section value only
applies to energies of 50 MeV or greater. As seen from Figure 6.8, the 16 nm
FinFET technology has a lower SEU cross-section and a decreased susceptibility to
radiation compared to the 28 nm CMOS technology in terms of events per bit in the
configuration memory.

Figure 6.8 Comparison between SEU cross-section of Zynq UltraScale+ and Zynq7.

6.3 A CRAM Technology Analysis: CMOS vs FinFET 79

The readback process of the configuration memory content was conducted with a
duration of approximately 5 s and 12 s for the Zynq-7020 and ZU7EV, respectively,
over the entire irradiation period. By adjusting the particle flux to detect only a few
bit flips in the configuration memory between two consecutive readbacks, it was
feasible to identify groups of SEUs with a strong correlation in both time and space.
The large size of the configuration memory (over 108 for the Zynq-7020 and more
than 109 for the ZU7EV) and the ability to continuously evaluate the content of the
configuration memory allowed us to detect clusters of bits with a high likelihood of
being caused by a Single Event Multiple Upsets (SEMUs).

The SEMU patterns found from the configuration memory readback data analysis
have been studied. The recurring shapes and sizes resulting from the research are
represented in Figure 6.9. Figure 6.10 presents the cross-section for different cluster
sizes for both technologies. It is evident that the size and pattern of the clusters vary
depending on the technology being studied.

Figure 6.9 Cluster shapes and sizes resulting from proton tests in 28 nm CMOS and 16 nm
FinFET.

Single Event Latch-ups (SELs) and Single Event Functional Interrupts (SEFIs)
have been observed in the ZU7EV and Zynq-7020, respectively. SELs can cause
a high current to flow through the device, potentially resulting in either a loss of
functionality or device destruction, depending on the magnitude of the current. A
power cycle is necessary to restore the device to its nominal state if the event is not
destructive. Differently, SEFIs can halt the system requiring a soft reset or a power
cycle to restore the normal function, but it is not destructive for the device. However,
if the configuration memory is reset or corrupted, the device will malfunction, and
reconfiguring the device is the only way to restore the device to its normal state. So
it is essential to consider that even if more resistant to SEUs, the SEL sensitivity of

80 Radiation Test Analysis

Figure 6.10 Comparison of Cross-Sections for different cluster sizes

the UltraScale device can lead to severe repercussions. In contrast, SEFI that occurs
in 7-Series devices is much less concerning.

In detail, during the radiation tests, the ZU7EV and Zynq-7020 recorded up to
18 SEL and 7 SEFI, respectively. Interestingly, we did not detect any SEL events on
the Zynq-7020 or any SEFI events on the ZU7EV.

The comparative study of FPGAs manufactured with 16 nm FinFET and 28
nm CMOS technology conducted through Proton radiation testing to determine the
sensitivity cross-section of the SRAM cell-based configuration memory has led to
interesting considerations. SEUs and SEMUs cross-sections for the two technologies
showed how the 28 nm CMOS technology was more sensitive to radiation-induced
soft errors in configuration memory than the 16 nm FinFET technology. However,
the 16 nm FinFET had a higher SEL rate than the 28 nm CMOS during the radiation
test, which could raise numerous concerns for application in radiation environments.

6.4 Research Advancements in Proton Testing of Re-
configurable SoCs

The two proton testing presented in the current chapter produced interesting data on
the memories of reconfigurable system-on-chips, considering both on-chip memory
and configuration memory.

6.4 Research Advancements in Proton Testing of Reconfigurable SoCs 81

A set of fault models deriving for 28 nm CMOS on-chip memory of a Zynq-7020
SoC is proposed. Comprehensive statistics and analysis of observed events affecting
the on-chip memory as they manifest from the processor side are also provided.
Such fault models are valuable to enable realistic fault emulation, fault injection, and
simulation analyses useful for preliminary reliability evaluation or when a radiation
test is not a viable solution. Indeed, while significant numbers of works are dedicated
to the study of memories used by embedded processors, very few works provide an
analysis of the SEE effects in the integrated on-chip SRAM of embedded processors
taking into account the fault models observed by applications running on the system
rather than on SEUs and bit event cross-section only.

An evaluation of the configuration memory of two different technologies has also
been carried out. The 28 nm CMOS Zynq and the 16 nm FinFET UltraScale+ have
been evaluated in accelerated proton test experiments. A comprehensive analysis of
SEMUs has been provided for both devices. Significant differences in the sensitivity
of the two devices to faults in configuration memory and Single Event Latch-up have
been highlighted.

Part III

Reliability Analysis of Reconfigurable
Hardware-Accelerated SoCs

Chapter 7

Evaluating Reliability of Embedded
Processor Systems

7.1 Overview on Reliability of Embedded Processor

In recent years, embedded processors have been subject to increasing interest. Em-
bedded devices, pushed by the mobile market, have been able to leverage large
investments that have led to increasingly cutting-edge systems. Year after year,
computing power has grown in parallel with miniaturization and power consumption
reduction, and various application fields have been able to take advantage of the
achievements.

In particular, systems-on-chip have become more affordable thanks to improve-
ments in technology processes, successfully integrating more and more systems.
Reconfigurable hardware has also taken advantage of this trend. New devices began
to pair programmable logic with multi-core systems first and multiprocessor systems
later.

The advantages offered by these devices have made them attractive also for
safety-critical applications, such as the one typical of the automotive and avionics
industries. However, the high number of systems integrated on the same chip made
the evaluation of the reliability of these systems a complex task.

7.2 Evaluating Reliability of Hard Processors 85

In particular, hardware-reconfigurable systems-on-chip include different systems
in the chip along with programmable hardware, which results in a device capable of
being reconfigured, including either hard or soft microprocessors or even both.

Hard microprocessors are the typical processors implemented in the silicon, thus
not hardware reconfigurable, and are characterized by higher performance. Soft
microprocessors, on the other hand, are more flexible and can be easily reconfigured.
Soft microprocessors are usually designed with a set of instructions that can be
changed and adapted to different applications. This makes them ideal for applications
that require frequent changes or updates. The hardware architecture of these systems
can be easily adapted to new needs. It allows also to the adoption of hardware
solutions and mitigation methodologies to improve the fault tolerance of these
systems.

Reconfigurable SoCs are becoming increasingly popular in the market as they
offer the flexibility to change and adapt to new technologies and applications. These
systems are often used in embedded systems, where they offer the ability to quickly
and easily reconfigure the system to meet the changing needs of the application.

Additionally, soft processors often provide RTL descriptions of the system,
which can be valuable to implement, emulate or simulate the device for having
comprehensive reliability evaluation, while it can be more challenging for hard
processors that can be subject to trade secrets held by the vendor.

Finally, soft processors and hard processors can be subject to different kinds of
faults. Indeed, soft microprocessors are implemented in programmable hardware and
inherit all the issues about configuration memory sensitivity typical of configurable
systems. However, hard processors are not immune to faults that can happen in
memory elements due to external phenomena, such as radiation-induced SEUs and
SETs that must be evaluated as well to ensure overall reliable system-on-chips.

7.2 Evaluating Reliability of Hard Processors

7.2.1 State of the Art of Reliability Analysis of Hard Processors

Microprocessors are an appealing platform for high-performance safety-critical
applications. They allow simplified development and provide high-flexibility thanks

86 Evaluating Reliability of Embedded Processor Systems

to the software programmability feature. Embedded Commercial-off-the-Shelf
(COTS), such as reconfigurable system-on-chip, includes hardwired multi-core
microprocessors as an integrated system of modern SoC devices. Combining together
hardware and software programmability, these systems can reach even more high-
performance goals with moderate costs.

However, for mission-critical applications, radiation-induced errors, such as
single event effects (SEEs), can be a significant reliability issue, primarily if they
must operate in a radiation environment. Radiation testing is the most accurate
technique for evaluating the reliability of such a complex system as a micropro-
cessor. The application under evaluation running on the actual hardware system
while exposed to a flux of particles can provide important insight into the system’s
robustness. However, this methodology is often limited by other factors, such as
facility availability, costs, and expertise. Even if it is a usually mandatory step for a
mission-critical application, using less demanding techniques such as fault injection
or static analysis has its advantages.

The moderate costs, easy setup, as well as the possibility to apply them earlier in
the development flow, make analysis based on fault injection. emulation or simula-
tion is mandatory as well for preparing the system for a radiation test experiment.
Additionally, full control in terms of injection time and fault location provided by
these approaches is valuable for preliminary and mitigation analysis.

Many works proposed reliability analyses of microprocessors based on emulation
platforms [38–44]. They focus mainly on the SEU fault model or microarchitectural
errors, ignoring more complex fault models such as MBUs or burst events already
introduced in 6.2. Additionally, these analyses can be very time-demanding if
based on an architectural emulator or simulation. Thus, it is important to propose
methodologies that can produce fast reliability analysis while assuring support to
commonly observed fault models, such as instance, deriving by static radiation
testing analyses of the system under evaluation, but that can also be easily integrated
into the development flow.

In [45], we proposed a fault injection environment for analyzing the impact of
errors on the functionality of an ARM Cortex-A9 microprocessor. The environment
is capable of emulating radiation-induced effects within the SoC targeting memory
resources, such as main memory and registers, during the execution of software
applications. Unlike most other platforms presented in the literature, it is not limited

7.2 Evaluating Reliability of Hard Processors 87

to evaluating SEU sensitivity but supports more complex fault models, too, such as
MBU or word clearing. Such a solution does not require any modification of the
software application under evaluation and can run directly on the actual system under
test without additional effort or equipment. Please notice that the platform does not
operate at the software level, for instance, manipulating variable value, but emulates
hardware-induced errors directly on the hardware resource, such as, for instance, in
the register content.

7.2.2 Microprocessor Fault Injection Platform

We have developed a fault injection environment based on Python, which is designed
to operate within the operating system of the target hardware platform without
additional modifications to the application or to the platform. This environment is
capable of emulating radiation effects in memories and classifying the effect of the
failure by analyzing the behavior of the application and the exceptions generated at
the operating system level. The environment is also able to provide the execution
status of the application when the fault has been injected, as well as when a failure,
such as halting or exception, occurs, thereby allowing us to investigate the cause of
the application failure.

The platform is based on two different approaches targeting either the running
process or the processor system registers. The platform has been developed in
Python, and the reported evaluation flows, as well as the fault injection framework
and the application, execute on the target system, that in our implementation, is an
ARM Cortex processor system of a Zynq 7020 SoC with a Linux operating system.

Single Event Effects (SEE) can affect the memory resource of the processing
system, where the binary of the application, as well as data, is stored. The workflow
depicted in Figure 7.1 takes a golden binary file, i.e. the non-faulty executable binary
of the software application as an input, and then performs fault injection on the
system memory or binary executable. Through this injection, a random bit is selected
and modified for emulating the different SEE effects. The injection is repeated based
on the injection number selected by the user, thus generating a set of outcomes.

88 Evaluating Reliability of Embedded Processor Systems

Figure 7.1 Fault Injection Platform for SEE in processor memory

To further enhance the efficiency of the python tool, multi-processing features
have been implemented, dedicating each process to generating and executing the
faulty process. Additionally, the execution status and exit code of the process are
collected, as well as the output values, and classified by the main process in order
to observe the effect of SEU on the memory. The outputs generated by executing
the faulty processes are evaluated by comparison with the golden result to provide a
more detailed investigation of the impact of SEE on the output of the application.

The second analysis workflow is dedicated to emulating the radiation effects
within the processor registers. The fault injection environment can mimic the Single
Event Effect (SEE) effect during the runtime of the application on the Processing
System. This flow, depicted in Figure 7.2 is based on the GNU Project Debugger
(GDB) tool, integrated and instrumented within the fault injection environment.

The methodology emulates the SEE effect on the software-accessible registers
during the runtime of the application. To do so, a register among software-accessible
registers is selected randomly together with a bit among the bits of the selected re-
gisters. Our target platform is based on ARMv7 architecture, therefore, the software-
accessible registers include the floating-point status and control register (FPCR), the
64 NEON technology registers, the general-purpose registers (R1 to R13), and the
three special-purpose registers, i.e. program counter (PC), link register (LR) and
stack pointer (SP).

7.2 Evaluating Reliability of Hard Processors 89

Parallel to fault location selection, the fault injection tool computes a random
injection instruction. The injection node represents the injection time. It means the
fault will be injected before executing the instruction. If a node is executed multiple
times, the injection time includes an additional parameter that identifies after how
many times that instruction has been executed the fault will need to be emulated.
The information on how many times an instruction is executed in the golden run
is extracted during the golden run steps that are executed as the first step from the
platforms for generating the application’s golden output. Specific instruction is
selected in two steps: firstly, an instruction of the application is selected in the source
code. Secondly, exploiting GDB features, a random assembly instruction offset
starting from the selected LOC baseline is chosen. Please note that this methodology
overcomes the limitation of time-based breakpoint selections for applications with
short execution times.

Figure 7.2 Fault Injection Platform for SEE in processor registers

The injection phase is carried out by exploiting the GDB, an open-source de-
bugger that uses low-level system calls to monitor and modify the value of the core
resources as well as to control the application execution flow. Specifically, GDB
allows the platform to start the execution of the application with the golden binary,
interrupting the execution when it reaches the randomly chosen breakpoint node,
injecting bitflip by modifying the value of the selected bit of the selected register and
resuming the execution of the application until the termination.

90 Evaluating Reliability of Embedded Processor Systems

7.2.3 Fault Models

A collection of fault models was chosen to be incorporated into the fault injection
platform, based on radiation test results, relevant literature, and radiation analysis.

Single Event Upset is very common among radiation-induced effects and thus
one of the most analyzed. It is a modification of a memory cell. In our work, we
considered that they can happen either in registers or main memory. Obviously, other
elements exist in the processor system that can be affected by SEUs, such as the
flip-flop of control circuitry. However, they are hard to target also for simulation or
microarchitectural simulation environments. Indeed, often the details of micropro-
cessor architecture are not available, so their contribution needs to be evaluated later
in the development flow by radiation testing. Nevertheless, they could manifest with
different effects on the registers and main memory content. For example, they could
produce the clearing of registers. These other fault models can be emulated in order
to obtain a more comprehensive analysis of the application’s reliability.

Single Event Multiple Upset is the second fault model we considered. With the
scaling down of the size of transistors, the distance between adjacent memory cells
is significantly reduced. This means that multiple sensitive junctions can be present
in close proximity. As a result, a single incident particle can affect multiple active
regions leading to multiple upsets by a single event. Radiation tests have shown that
this phenomenon can occur in different memory cells as well. We incorporated in
our platform the characteristics of this fault model as deriving from a radiation test
on a Xilinx Kintex-7 SRAM-based FPGA, that is based on the same technological
process of the platform under test. Detail on the heavy-ion radiation experiment, that
has been performed in the CERN facility, is presented in [46]. Similar events have
also been reported in previous radiation tests with lower energy [47][48]. The most
common shapes and sizes of bit clusters are depicted in Figure 7.3, while information
on their cross-sections is exposed in Figure 7.4.

7.2 Evaluating Reliability of Hard Processors 91

Figure 7.3 Most common shapes of SEMU observed during heavy-ion irradiation

Figure 7.4 Cross-Section for different clusters of radiation-induced bit flip.

Additionally, a clear/preset fault model has been considered. The occurrence of
a particle strike can lead to a situation in which the content of one or more memory
locations, or the content of a register, is set to 0, known as clear content in memory
resources or in a register, respectively. This effect is usually due to a failure in the
control logic resources, which is a significant part of the memory responsible for

92 Evaluating Reliability of Embedded Processor Systems

managing and decoding signals from the processor. Additionally, a single event
transient (SET) can be produced as a result of a particle incident in the clock signal
of the memory element, causing a clock glitch and resulting in an erroneous data
value or clear content in memory.

The fault models listed in this subsection are considered to may happen either in
the register of the processor or main memory.

7.2.4 Software Benchmark Reliability Evaluation

A reliability analysis based on the developed evaluation flow has been conducted
in order to validate the proposed platform and evaluate some common outcome
resulting from radiation-induced faults for benchmark software running on an em-
bedded processor. Three software applications have been selected from MiBench
benchmark suite. An ARM Cortex-A9 Processor embedded within the Zynq-7020
AP-SoC has been chosen as the hardware platform under test. The three chosen
software are the basicmath, bitcount, and FFT applications. The characteristics
of the chosen benchmarks are as follows: basicmath performs basic mathematical
operations, such as cubic functions solving and angles conversions; bitcount is ded-
icated to bit manipulation; FFT performs Fast Fourier Transforms, composed of
pseudorandom sinusoidal components with variable amplitude and frequency. Four
groups of instructions have been identified in each software: control (unconditional
and conditional branch), integer, floating-point, and memory (load and store). An
overview of the type of instruction used by each software is reported in Figure 7.5

Figure 7.5 Overview of the type of the instruction characterizing the evaluated software
applications.

7.2 Evaluating Reliability of Hard Processors 93

The software is evaluated while running on the target hardware platform, a dual-
core ARM Cortex-A9 Processor where Ubuntu 18.04, based on version 5.4 of Linux
Kernel, an operating system is running. Both the evaluation platform and the target
software execute on the device.

The fault injection platform is responsible for monitoring each process running
the application under evaluation. After evaluating the application’s execution, any
faults that have been injected are classified into various groups according to the
software outcome. If the fault does not disrupt the normal operation of the software
and the program finishes without any exceptions, and the result matches the expected
one, the fault is considered masked. Differently, if the program finishes without
any exceptions but the output does not match the expected result, it is labeled as
Silent Data Corruption. If the fault model that has been implemented causes the
operating system to throw exceptions when the program is running, the program
will be terminated before it can finish and the termination status will reflect the
exceptions that were generated by the OS and used for classifying the outcome.

After conducting a thorough investigation into the causes of each raised exception,
we classified them as follows:

• Segmentation Fault: it occurs when the injected fault modifies the address
provided to the instruction operand or modifies the content of registers such as
PC and SP or a memory location storing an address.

• Illegal Instruction: it is the result of the injected fault corrupting the OPCODE
of instructions;

• Bus Error: it is the result of the process executing the application requesting
to access a memory location that is not physically accessible;

• Abort: it occurs when the injected fault leads to the interruption of the execu-
tion of the application, not due to an exception risen by the operating system
but due to an exception risen by the process executing it;

• Breakpoint Trap; it is the result of the injected fault causing the process to
enter the debug state and execute the breakpoint hook instructions;

• Arithmetic Operation Error: it occurs when the injected fault corrupts one of
the operands, resulting in the process trying to execute an arithmetic operation
that rise an exception, for instance, dividing by zero;

94 Evaluating Reliability of Embedded Processor Systems

• Hang: as a result of the injected fault the execution of the application does not
terminate, for instance, due to an infinite loop or a deadlock situation.

In order to investigate the radiation sensitivity of the selected applications, we
conducted different fault injection campaigns using the proposed platform. The
campaigns consist of 10,000 fault injections, targeting both the memory and registers
of the processing system. Evaluated fault models are SEU, SEMU, clear content
(i.e., all the bits of a word are set to 0), and preset content (i.e., all the bits of a word
are set to 1).

Figure 7.6 reports the error rates resulting from the fault injection campaigns,
while Figures 7.7 and Figure 7.8 report the occurrence of each termination status and
risen exception in the total error rate, dedicated to the faults occurring in memory
and to the faults happening in registers, respectively. As can be observed, most
of the errors are SDC, Using the proposed platform, for performing 10,000 fault
injections on memory resources, approximately 10 minutes is required, while this
value increases to three hours for the fault injection campaign in register resources.

Figure 7.6 Error Rates resulting from fault injection campaign on ARM A9 embedded
processor.

7.2 Evaluating Reliability of Hard Processors 95

Figure 7.7 Overview of the type of the instruction characterizing the evaluated software
applications.

Figure 7.8 Overview of the type of the instruction characterizing the evaluated software
applications.

It is important to note different applications are characterized by different as-
sembly instructions, leading to different levels of sensitivity to faults that may occur
during execution, accordingly to used registers, memory footprint, and other factors.
For instance, if an application is more focused on bit manipulation instructions, then
it is more likely to be vulnerable to register injection, as registers are often used

96 Evaluating Reliability of Embedded Processor Systems

throughout the execution and a single single-event upset (SEU) in the registers can
have a serious impact on the output. Additionally, this can be used to compare the
fault tolerance of different implementations of the same application, by examining
how different instructions and data structures can affect the system’s resilience to
faults.

7.3 Evaluating Software Reliability in Soft Processors

7.3.1 State of the Art of Reliability Analysis of Soft Processors

A soft microprocessor is one of the cores frequently implemented using program-
mable hardware to support hardware acceleration with software flexibility. Even
when the SoC is already equipped with a hard microprocessor, a soft processor can
be useful for offloading the computation demands from the hard processor, or for
redundancy. Among the available solutions, RISC-V soft microprocessors have
become increasingly popular due to their open license and wide community support.

For mission-critical applications that use a soft microprocessor, Single Event
Upsets must be taken into account as a possible source of malfunctions. Many
strategies have been proposed to improve reliability against SEUs, the most reliable
being hardware redundancy. Nevertheless, this approach is expensive in terms
of design time, area overhead, and power consumption. Approaches based on
software, however, are easier to apply and less demanding. These strategies involve
replicating data in memory, executing redundant code, and verifying consistency
during execution. Software approaches are not as efficient as hardware redundancy,
but they provide a cost-effective way to increase reliability against SEUs.

Soft processors implemented in programmable hardware have an additional
vulnerability compared to hard microprocessors due to the configuration memory,
which stores the data that programs the circuit implemented on programmable
hardware. Configuration memory can be corrupted by Single Event Upsets like the
processor memory, but resulting in hardware faults. Software approaches based on
replication could be less effective on soft processors than on hard processors due to
the architectural faults that are much less common in fixed-hardware processors.

7.3 Evaluating Software Reliability in Soft Processors 97

In [49], we proposed a comprehensive evaluation of the impact of soft errors, and
in particular SEU in the memories of a RISC-V soft microprocessor implemented in
programmable hardware. The experiments were designed to evaluate the effective-
ness of hardening-by-replication software techniques against Single Event Upsets
in the CRAM and processor memory. The fault injection campaigns revealed that
while these techniques marginally improved the robustness against Single Event
Upsets targeting processor memory, they had a much more significant impact against
hardware faults.

In recent years, a variety of hardware and software techniques have been explored
in order to meet the high-reliability requirements of critical systems. One of the first
approaches proposed to enhance the fault tolerance of these systems was software
hardening-by-replication, which has been found to be less effective than the more
complicated hardware techniques like TMR. Despite this, its simple implementation
has made it popular; for example, NASA advised the use of software techniques to
improve the fault tolerance of mission-critical applications as far back as the 2000s
[50].

Previous research has addressed the resilience of software and hardware plat-
forms. In [32], a strategy for identifying soft errors in code and data was suggested,
which employed a software replication technique. [33] . Additionally, [34] presented
a software method that provided both detection and correction based on data and code
replication. [35] evaluated hardware and software techniques through fault injection
campaigns against SEUs that affected microprocessors. FPGAs were included in the
analysis, though the authors only evaluated faults that impacted storage elements,
without taking into account configuration memory elements or other components.

Previous studies have considered the robustness of software and hardware plat-
forms. In [51], a strategy for identifying soft errors in code and data was suggested,
which employed a software replication technique. [52] proposed SWIFT, proposed
SWIFT, a software fault detection approach based on exploiting instruction-level par-
allelism through unused instructions. Additionally, [53] presented a software method
that provided both detection and correction based on data and code replication. In
[54], authors evaluated hardware and software techniques through fault injection
campaigns against SEUs that affected microprocessors. FPGAs were included in the
analysis, though the authors only evaluated faults that impacted storage elements,
without taking into account configuration memory elements or other components.

98 Evaluating Reliability of Embedded Processor Systems

Software hardening-by-replication is based on the redundancy of data and/or
computations. To protect against SEUs, input data may be replicated in the memory
and the software may be written so that computations are run multiple times using
the same input data (or replicated copies if they are available in memory) of the same
inputs. Depending on the desired level of granularity and acceptable overhead, a
number of detection and correction checkpoints are inserted into the code. At these
checkpoints, the values of the temporary results are compared to one another in order
to detect errors in the computations; any erroneous values are then corrected through
majority voting either during the checkpoint or on the final output. An overview of
this approach is shown in Figure 7.9.

Figure 7.9 Schematic view of a baseline software and its hardened version.

7.3.2 Soft Processor Reliability Analysis Flow

A RISC-V soft processor is being used in the experiment as the basis for reliability
evaluations. In order to do this, a set of software applications have been chosen
as the benchmark suite. These applications have both an unhardened, or baseline,
and a hardened-by-replication version. To carry out the reliability analyses, a fault
injection platform has been used. The fault models are being simulated in the CRAM
and in the memory of the processor while the software runs on the platform.

7.3 Evaluating Software Reliability in Soft Processors 99

Table 7.1 FPGA utilization for the PULPissimo Soft Processor implemented on Nexys Video
Artix-7

Resources Available [#] Used [#]
Logic Slices 33,650 14,150 (42.05%)
Flip-Flops 106,400 21,531 (8.00%)
BRAMs 140 128 (35.07%)
DSPs 740 12 (1.62%)

Hardware Platform

In order to assess reliability, we chose PULPissimo as the microcontroller archi-
tecture for our analysis. This single-core platform is the product of a joint venture
between ETH Zurich and the University of Bologna known as the PULP project [55].
As the programmable hardware device, we selected a Nexys Video Artix-7. The
device utilization in implementing PULPissimo is reported in Table 7.1.

Software Benchmark Applications

Four software applications have been adopted as benchmarks. The applications cover
different domains, such as signal and image processing. These are:

• CoreMark: it involves list processing, matrix manipulation, state machine
execution, and cyclic redundancy check.

• Dhrystone: it is a performance benchmark focusing on string processing,
without the use of any floating-point operation.

• FFT: it implements the Fast Fourier Transform, a widely used technique in
signal processing.

• Sobel: it implements the Sobel operator, used for edge detection in image
processing.

Both FFT and Sobel are part of the MiBench Benchmark Suite [56].

To evaluate the effectiveness of the hardened software, a hardened version of
every software program has been produced. According to [50], we applied single-
version software fault tolerance techniques. This required replicating the input

100 Evaluating Reliability of Embedded Processor Systems

data, variables, and functions in the memory, changing the software to perform the
repeating of the same operations on the different data copies stored in the memory,
and performing detection and correction checkpoints.

Fault Models

Soft microprocessors are particularly susceptible to Single Event Upsets (SEUs)
due to their architecture and technology. SEUs manifest as bit flips in the memory
content and can affect both the processor memory and the CRAM. This can lead to a
range of failures and errors. We evaluated the dependability of applications running
on soft processors with regard to SEUs in the memory of the processor and in the
CRAM. An SEU in the processor memory can corrupt the data or code segments
of the program in that area of memory, which could result in data value corruption
or a system crash. Differently, SEUs in configuration memory cause faults in the
hardware architecture of the soft processors. For instance, if the ALU is affected, it
can lead to errors in the calculations performed by the software applications.

Evaluation Methodology and Platform

Two different fault injection platforms have been adopted for emulating single-event
upsets (SEUs) in the main memory and configuration memory of a microprocessor.

A python-based fault injection platform has been developed to automatically
emulate SEU in the main memory of the microprocessors by acting directly on the
Executable and Linking Format (ELF). This platform performs the fault injection
process in the main memory emulating the effect of SEUS, loads the binary code
into the memory of the PULPissimo microcontroller, and collects the output of the
injected applications. To do this, it is integrated with Open On-Chip Debugger
(OpenOCD) and GDB, which communicate with the RISC-V debug module via the
JTAG interface. The platform also has a timeout mechanism to handle the halting
of the processor due to injected faults and will wait for the results of the software
computation on the serial port.

The PyXEL platform has been utilized to emulate SEUs in the configuration
memory of the Artix-7 XC7A200T FPGA. This python-based platform is capable of
manipulating FPGA bitstreams for fault injection campaigns. By corrupting a bit

7.3 Evaluating Software Reliability in Soft Processors 101

of the bitstream to be loaded in the configuration memory, PyXEL can efficiently
emulate SEUs. Moreover, it automates the steps for configuring the FPGA platform
with the bitstream implementing the RISC-V soft microprocessor, resetting the
platform in the event of a halt due to fault injection, loading and running software
applications on the soft microprocessors, and collecting the results.

7.3.3 SEUs Evaluation of Hardened Software on Soft Processor

We conducted dedicated reliability analyses to assess the advantages and disad-
vantages of utilizing hardening-by-replication software techniques for applications
running on a soft microprocessor. To this end, we evaluated the baseline and hardened
software benchmark applications against SEUs both in the soft microprocessor main
memory and in the hardware-configurable platform configuration memory. The
software benchmarks were run as bare-metal, without any operating system.

The results of the various fault injection experiments have been categorized
accordingly with the following categories:

• Correct: The task terminates correctly and the output matches the golden one.

• Silent Data Corruption: The task terminates but the output does not match
with the golden one.

• Halt: the soft microprocessor does not complete the task. It can be due to
different causes, such as infinite loops, illegal code instructions, or others.
It can be generated either by a fault in the binary code or at the hardware
architecture level.

We define error rate as the proportion of results that do not conform to the
expected behavior, i.e. the percentage of outcomes that are classified as Silent Data
Corruption (SDC) or Halting.

We conducted a first fault injection campaign to evaluate the baseline software’s
reliability against SEUs in memory. For each of the four proposed software bench-
marks, 10,000 experiments were executed, with SEU coordinates (i.e., the bit to flip
in the binary code) chosen randomly and independently for each experiment.

During a second fault injection campaign, we conducted an analysis of the
effects of an SEU in the configuration memory of the FPGA implementing the soft

102 Evaluating Reliability of Embedded Processor Systems

microprocessor. The corruption of the configuration memory content may cause
errors in the hardware architecture implemented on the programmable hardware.
Because only a subset of the resources is used and programmed, the error rate
resulting from SEUs in configuration memory is typically low, since only a limited
portion of the configuration memory bits are required for the design. Nevertheless,
since these errors can permanently affect the microprocessor operation until the
next reconfiguration or power cycle, they are of significant importance in reliability
evaluation. This fault injection campaign consists of 10,000 faults, injected singularly
and randomly in the configuration memory. Each software benchmark has been
evaluated while running on each of the faulty configurations. Since different software
utilizes different logic of the soft microprocessor, they will be characterized by
different error rates even when running on the same faulty configurations.

A categorization of errors is reported in Table 7.2.

Table 7.2 Error categorization resulting from fault injection campaigns on baseline software.

Fault SEU in Processor Memory SEU in Configuration Memory
Error Mask [#] SDC [#] Halt [#] Mask [#] SDC [#] Halt [#]

Coremark 9,673 172 155 9,933 20 47
Dhrystone 9,861 69 70 9,946 12 42

FFT 9,813 80 107 9,926 28 46
Sobel 9,845 81 84 9,926 10 64

Table 7.3 Error categorization resulting from fault injection campaigns on hardened software.

Fault SEU in Processor Memory SEU in Configuration Memory
Error Mask [#] SDC [#] Halt [#] Mask [#] SDC [#] Halt [#]

Coremark 9,711 122 167 9,932 19 49
Dhrystone 9,878 41 81 9,942 11 47

FFT 9,836 56 108 9,909 30 61
Sobel 9,850 80 70 9,921 9 70

A figure of merit of the error rate resulting from these campaigns to evaluate the
reliability of the baseline software on the proposed platform is reported in Figure
7.10

7.3 Evaluating Software Reliability in Soft Processors 103

Figure 7.10 Figure of Merit of baseline software reliability against SEUs.

The following two campaigns are dedicated to evaluating the effects of the
hardening technique on the software benchmarks. These campaigns are the same
as the previous campaigns presented in this subsection but the software version
evaluated is the hardened one. The results of these campaigns are reported in Figure
7.11, while the occurrence of different types of errors is resumed in Table 7.3.

Figure 7.11 Figure of Merit of hardened software reliability against SEUs.

The comparison between the reliability of the baseline and hardened software
yielded some interesting results, reported in Figure 7.12. Specifically, software
hardening was found to slightly increase the reliability of all applications against
SEUs affecting processor memory. However, the same trend was not observed for
SEUs in configuration memory, which actually reported a decrease in reliability.

104 Evaluating Reliability of Embedded Processor Systems

Figure 7.12 Comparison between baseline and hardened software reliability against SEUs.

We theorized two explanations for this. Firstly, software replication techniques
are ineffective when errors affect hardware elements of the microprocessors, as
performing the same operation twice on the same faulty hardware will likely produce
the same erroneous output. There are certain exceptions to this, such as errors
generated in the reading of a specific memory cell being able to be corrected by
reading replicated data stored in different memory cells. Nevertheless, the mitigation
benefits are still reduced in comparison to faults affecting microprocessor memory.
Secondly, the introduction of the code for implementing the detection and correction
checkpoint could stimulate sections of the electronic circuit that were not used by an
unhardened version of the software, which could cause hardware faults that were
previously not propagated to the application outputs to now produce a deviation from
the software application’s nominal behavior.

7.4 Reliability of Applications running in Real-Time
Operating System on Soft Processors

7.4.1 State of the Art of Reliability Analysis of Real-Time Applic-
ations on Soft Processors

The interest in Real-Time Operating Systems to meet stringent real-time requirements
in embedded and safety-critical systems is rising. Among the different available
hardware architectures, implementing an RTOS on a soft processor embedded in a
programmable device is an efficient and flexible solution for providing programmable
hardware with software programmability or supporting a general-purpose processor

7.4 Reliability of Applications running in Real-Time Operating System on Soft
Processors 105

with a real-time system. However, radiation-induced failures pose a serious threat to
the reliability of electronic systems in space applications.

Microblaze is a well-known industry leader in FPGA-based soft processing
solutions due to its highly flexible architecture and configuration options, making
it an ideal choice for embedded applications. As the task complexity of embedded
systems has increased the use of bare-metal systems may not be sufficient, thus Real-
Time Operating Systems have emerged as a viable solution for meeting real-time
requirements. FreeRTOS is a particularly popular RTOS choice due to its ability to
execute multiple tasks in an organized and predictable fashion, with deterministic
and predictable task scheduling that allows for hard real-time execution of more
critical tasks.

As already reported in the previous Section, it is important to account for the
reliability issues that can arise from the exposure of the softcore processors to ioniz-
ing radiation, such as SEUs. Unlike hardwired microprocessors, the netlist of soft
microprocessors like Microblaze is stored in the CRAM of the FPGA. This memory
can be corrupted by SEUs, resulting in micro-architectural faults in the hardware that
can propagate to the application layer. Furthermore, additional complexity exists
when an operating system, that adds a much more complex software layer, is used.

Studies evaluating the sensitivity of embedded operating systems to SEUs typic-
ally involve modifying the original kernel of the embedded operating system, altering
the memory used by the OS, or changing the parameters of system calls. For instance,
in [57], the vulnerability of FreeRTOS was assessed using a software-based fault
injection method that targeted the most relevant variables and data structures of the
OS. Additionally, an automatic method for fault injection into program and data
memory was proposed in [58], while [59] proposed a detailed analysis and hardening
architecture based on lockstep synchronization for FreeRTOS. Nevertheless, these
software application-level methods do not take into account the effect of faults oc-
curring at the architectural level of the soft-core processor on the functionality of the
operating system.

On the other hand, works such as [60] and [61] focused on the reliability eval-
uation of soft cores, particularly RISC-V cores, implemented in programmable
hardware against radiation effects. However, these analyses do not consider real-time
operating systems such as FreeRTOS. Other approaches are based on the simulation
of the HDL description of microprocessors [62]. These methods are advantageous in

106 Evaluating Reliability of Embedded Processor Systems

that they allow the injection of upsets into any memory element at any time; however,
they are very time-consuming. As for Single Event Multiple Upset (SEMU), which
is one of the fault models on which our analysis places particular attention, there is
limited literature available, as most of the research, especially works focusing on
reconfigurable hardware reliability, is dedicated to SEU evaluation, as it is still the
main source of errors for less recent technologies. Nevertheless, due to technology
scaling and lower operating voltages, SEMUs are becoming more prominent, partly
due to their danger to redundant systems [36][63].

In order to provide a comprehensive evaluation of the effects of radiation-induced
architectural faults on the performance of applications running on the Microblaze
soft processor with FreeRTOS, we carried out an analysis in [64], and further in [65],
considering MBUs and RTOS. The fault model includes different clusters of Multiple
Bit Upset (MBU) identified through proton radiation at the Paul Scherrer Institute
(PSI) radiation facility. The analysis focused on the impact of these faults on the
execution of different software applications considering the full stack programmable
hardware, FreeRTOS, and software application. It is important to note that this
platform is not designed to target faults at the software level, but rather to focus on
hardware faults and their effects on the software running in the operating system.
Specifically, the platform emulates SEUs and MBUs by introducing bitflips into the
configuration memory of the FPGA, thus creating a hardware-level fault that can
propagate to the system’s output and result in incorrect behavior.

7.4.2 Multiple Bit Upset Fault Model

A proton radiation test was conducted at the Paul Scherrer Institute (PSI) Proton
Facility in Switzerland. A Zynq-7020 device was exposed to proton beams of varying
energies, ranging from 29 to 200 MeV. Testing parameters are reported in Table 7.4.

A host computer installed in the control room and connected to the system under
test via a serial connection was dedicated to acquiring the content of the configuration
memory by readback. The monitoring system was designed to autonomously send a
soft reset signal to the device in the irradiation room if the readback system stopped
working; however, if this was unsuccessful, a power switch was available in the
control room to perform a manual power cycle if needed. The experiment was
conducted for 8 hours in December 2022 at the PSI proton facility. To monitor the

7.4 Reliability of Applications running in Real-Time Operating System on Soft
Processors 107

Table 7.4 Proton Test Conditions: Energy, Flux and Fluence

Energy [MeV] Flux [cm−2 s−1] Fluence [cm−2]
29.31 4.12 × 107 9.17 × 1010

50.80 4.02 × 107 6.06 × 1010

69.71 4.11 × 107 2.12 × 1010

101.34 4.32 × 107 2.42 × 1010

151.18 4.09 × 107 1.23 × 1010

200.00 4.14 × 107 3.94 × 1010

configuration memory of the device, a periodic reading of the content was conducted
every about 4 seconds. The flux of the particles was adjusted to maintain a few
bitflips in the configuration memory during each snapshot in order to identify easily
multiple bit upsets.

By analyzing the data of the configuration memory content, we were able to
detect the occurrence of Multiple Bit Upsets (MBUs). Due to the large size of the
configuration memory (more than 108 bits) and the ability to observe snapshots of
the configuration memory data with higher frequency, it was feasible to evaluate
a cluster of bits with a high likelihood of having been caused by a Single Event
Multiple Upsets (SEMUs). The most common cluster shapes are depicted in Figure
7.13 for different cluster sizes.

108 Evaluating Reliability of Embedded Processor Systems

Figure 7.13 Shapes of MBU cluster detected in Zynq7020 configuration memory during
proton test

As expected, larger clusters occurred rarely. Figure 7.14 illustrates the cross-
section per particle for each cluster size, calculated by dividing the number of clusters
of a certain size by the total number of particles that have passed through the device
over the course of the entire test. It is evident that, although SEUs are the most
common effect, MBUs still represent a significant portion of the observed events,
accounting for more than 40% of the detected radiation-induced errors. This suggests
that MBUs could have a significant influence on the overall sensitivity of the system
to radiation-induced errors. Additionally, MBUs can be a threatening to systems
that relies on mitigation techniques combining TMR and scrubbing, for avoiding
multiple domain failures.

7.4 Reliability of Applications running in Real-Time Operating System on Soft
Processors 109

Figure 7.14 Cross-Sections for MBU clusters detected in Zynq7020 configuration memory
during proton test

7.4.3 Soft Processor under Test: Device, Hardware, Operating
System and Application

The Xilinx 28 nm CMOS Zynq-7020 FPGA was chosen as the target hardware
device to port the Microblaze embedded soft processor. This processor is highly
configurable, allowing for the selection of a specific set of features required by
the design, and is thus suitable for supporting FreeRTOS, a Real-time operating
system that enables concurrency among several tasks with different priority levels
and supports a preemption mechanism. Additionally, the system is implemented
with an exception handler to cope with the standard exception conditions defined
by the Microblaze soft-core. A overview of the elements composing the hardware
platform used in the reliability analysis is depicted in Figure 7.15, while Table 7.5
reports the used resources in the programmable hardware.

110 Evaluating Reliability of Embedded Processor Systems

Figure 7.15 Hardware Platform under Evaluation

A set of software applications have been selected to be evaluated, each of which
is composed of three tasks with the same priority that run in the FreeRTOs. Each
of these tasks is running the same program code, but with different input data, and
producing different results. This means that the three tasks share the same binary
code in their instruction memory, but are operating on distinct input data, and are
sharing the processor’s execution time. The three applications are:

• matmul: multiple matrix multiplications between a series of matrices of in-
tegers.

• matconv: convolution between large matrices of integers and a different ker-
nels.

• dijkstra: finding of shortest path in graph using the Dijkstra algorithm.

7.4.4 Reliability Analysis for Soft Processor running RTOS

Reliability analysis involved the reported fault model and platform under test. Reli-
ability evaluation is conducted through fault injection campaigns. To support this

7.4 Reliability of Applications running in Real-Time Operating System on Soft
Processors 111

Table 7.5 Programmable-hardware utilization of the Microblaze Soft Processor implemented
on Zynq-7020

Resources Available Used
Logic Slices 13,300 966 (7.26%)

LUTs 53,200 2,596 (4.88%)
Flip-Flops 106,400 2,668 (2.51%)
BRAMs 140 32 (22.86%)

campaign, the PyXEL platform was instrumented to inject MBU patterns identified
from the proton radiation test into the configuration memory of the FPGA. The
fault injection has been conducted targeting only the tiles used by the hardware
implemented on the programmable logic. This allowed to speed up the evaluation
time. Indeed, as reported in Table 7.5, the utilization of the hardware is low and
a random fault injection could require a much higher number of faults to obtain
statistically significant results. As a reference, a 10,000-fault injection campaign
requires approximately 20 hours. To further speed up the experiments, we used
multiple fault injection platforms in parallel.

The PyXEL experiment manager, which is running on the host computer, was
connected to the device under test via a serial connection. This connection is used to
manage experiments on the device, configuring and starting the platform, and collect
results. In the event of the processor halting or entering an endless loop due to the
injected faults, a timeout mechanism is used to manage the situation.

The fault injection platform is designed to emulate the effects of MBUs by
altering the content of the configuration memory. Through the JTAG interface, the
faulty configuration data are loaded into the configuration memory. The benchmark
software utilizes the serial connection to transmit the results of the computation,
which are then logged by the experiment manager alongside the injected fault model
and fault location.

The outcomes of the experiments are classified in the following categories:

• Correct: application produced an output that matches the golden one.

• Silent Data Corruption: the task terminates succesfully but the produced output
data does not match the golden one.

112 Evaluating Reliability of Embedded Processor Systems

• Halt: the task cannot complete and the system is unresponsive. It can be due
to different causes, such as infinite loops and application timeout.

• Exceptions: an exception in the FreeRTOS (i.e., at the software level) is detec-
ted. Since fault injection targets only reconfigurable hardware, it is resulting
from a fault affecting Microblaze architecture (i.e., netlist modification due to
configuration memory corruption).

Moreover, exceptions are further evaluated and classified as follows:

• FSL_EXCEPTION: an error on the data bus generated the exception.

• UNALIGNED_ACCESS: systems tried to perform access to memory with
unsupported unaligned access.

• ILLEGAL_OPCODE: fault caused the system to try to execute an illegal
opcode.

• AXI_D_EXCEPTION: data system bus timeout occurred.

Two fault injection experiments have been conducted. The first was conducted
based on the distribution of SEUs and MBUs shown in Figure 7.14. The second was
dedicated to testing each group of clusters in order to assess the vulnerability and the
effect on the application. As discussed above, only a portion of the total configuration
memory of the circuit under test was targeted by the fault injection process, in order
to reduce the injection area to the resources utilized by the implemented netlist.

We conducted 10,000 fault injections in the first campaign, using the cluster
distribution. Figure 7.16 shows the resulting error rate, which is defined as the
percentage of results that deviate from the nominal behavior, for each cluster.

The results revealed that the three applications were affected in slight different
way by the faults. Specifically, matconv registered the highest number of errors
(including all four categories) at 2,179 out of 10,000 injections, followed by matmul
and dijkstra with 1028 and 1026 errors respectively.

For all the applications, the vast majority of the errors can be attributed to cluster
injection of sizes 1 and 2. It is evident that the distribution of errors closely follows
the distribution of the clusters, as Figure 7.14 shows.

7.4 Reliability of Applications running in Real-Time Operating System on Soft
Processors 113

Figure 7.16 Error Rate for software application resulting from MBU fault injection weighted
on cluster cross-section.

The second fault campaign has been dedicated to evaluating the effects induced
by different clusters of errors. Each cluster characterization is based on a 5000-fault
injection campaign, for a total of 40,000 experiments. The results are illustrated in
Figure 7.17, where the outcomes have been classified. The Halt label consistently has
the highest value, which is likely caused by the malfunction of the communication
components in the design.

114 Evaluating Reliability of Embedded Processor Systems

Figure 7.17 Classification of the Effects caused by Cluster with different size.

Finally, a comprehensive classification of the exceptions observed in the two
fault injection campaigns was conducted, with the results shown in Figure 7.18.
This chart indicates the relative frequency of each exception type. All of the ex-
ceptions encountered were related to reading from system memory, except for
ILLEGAL_OPCODE, which was the least frequent of the observed errors.

Figure 7.18 Classification of Exceptions observed during the two fault injection campaigns.

In order to gain further insight into the sensitivity of the analyzed software
and platform, the mean-time-to-failure (MTTF) and the mean-executions-to-failure

7.5 Research Advancements in Reliability Evaluation of Embedded Processors 115

(METF) have been evaluated based on the cross-sections of different cluster sizes at
different energies, and the error rate of the applications against the specific clusters
resulting from the second fault injection campaign. Specifically, the MTTF, which is
the mean time between two faulty outcomes of the application, is reported in Figure
7.19. Additionally, the METF has been computed using the average execution time
of the software applications. Generally, it is expected that as the particles move
toward higher energies, the failure rate increases, leading to a smaller value for
MTTF and METF.

Figure 7.19 METF and MTTF for the applications based on cross-sections and error rate for
different energies and fluxes reported in Table 7.4.

7.5 Research Advancements in Reliability Evaluation
of Embedded Processors

Novel methodologies, techniques, and tools for analyzing the robustness of hard and
soft processor systems have been proposed. The analysis involved both software-
level and architectural-level faults. Proposed fault models included faults affecting
software and hardware implementation. The analysis produced interesting results that
highlighted the criticality of Single and Multiple Event Upsets in the configuration
memory producing architectural hardware faults. Preliminary results show how
software mechanisms, such as the operating system exception mechanism, can
provide support in identifying hardware faults induced by configuration memory
corruption.

Chapter 8

Evaluating Reliability of
Host-Accelerator Interfacing

8.1 Overview on Reliability of Host-Accelerator Inter-
facing

Reconfigurable Systems-on-chip has become increasingly popular in various do-
mains due to their feature to integrate a microprocessor and programmable hardware
on a single chip. This integration has made it easier for these devices to meet the
requirements for high-performance systems, thanks to the possibility to enhance the
system with dedicated hardware acceleration implemented on the on-chip program-
mable hardware, making them attractive even for fields such as avionics, aerospace,
and automotive. Indeed, these devices allow designers to move computationally
demanding tasks to be executed by the custom hardware. However, to ensure high
performance, the communication interface between the host and the accelerator must
be proper to prevent it from becoming the system’s main bottleneck or point of
failure.

The Advanced Microcontroller Bus Architecture (AMBA) is a standard ARM
developed to facilitate the interconnection of blocks in a system-on-chip. This stand-
ard supports high-performance and high-frequency communication and includes the
specification for AXI4 interfaces. Xilinx has adopted AXI4, AXI4-Stream, and AXI4-
Lite for IP blocks interfacing and on-chip communication. The AXI modules are

8.2 Analysis of the AXI Interconnect Module 117

essential for designs that employ programmable hardware to improve performance.
This module is responsible for mediating the communication between the processor
system and the modules implemented in the hardware or the access to shared memory
space. Consequently, the IP Cores dedicated to processor-accelerator interfacing are
crucial for solutions that use programmable logic in the high-performance domain.

Despite the benefits of the AP-SoCs architecture, when the programmable hard-
ware of these systems is exposed to ionized particles, soft errors can affect the
programmable logic of the SoC, leading to incorrect computation or even to the
modification of the hardware architecture implemented in the programmable logic.
This issue is a major concern for safety-critical systems that must be investigated to
ensure that failure of the interfacing module will not compromise the reliability of
the whole system.

8.2 Analysis of the AXI Interconnect Module

8.2.1 State of the Art on the Evaluation of Robustness of AXI
Interconnection Core

Reconfigurable SoCs are integrated circuits that consist of a processor system and
programmable logic which can be customized by the user. The vendor typically
provides the AXI Interconnect module for the developers to enable communication
between the processor system and the modules implemented on programmable
hardware. This module facilitates the exchange of data between the two components,
allowing the processor system to access the hardware modules and vice versa.

The AXI Interconnect module is an essential component for designs implemented
in programmable logic, acting as a bridge between processor systems and modules
that support AXI Interface. The Xilinx IP catalog provides the AXI Interconnect
IP Core to enable the implementation of a 1-to-N communication model in pro-
grammable logic. This core allows the connection of a single master to multiple
slaves, with the master being able to access the slaves transparently according to
the interface characteristics of each IP block. In this way, the processor system can
demand computationally expensive tasks to the hardware modules (slaves), which
can perform different operations in the case of different tasks needing to be acceler-

118 Evaluating Reliability of Host-Accelerator Interfacing

ated, or the same operation on different data vectors in the case of a highly parallel
computing application. The architecture can also be used for the same function on
the same data to use mitigation techniques based on replication and compare the
results obtained from the hardware modules to detect and eventually correct errors.

However, AXI IP Core is not immune to SEUs in the configuration memory.
Several research studies have been conducted to assess the effects of SEUs on
the configuration memory of programmable devices. However, only a few have
examined the AXI Interconnect module, which is used for communication between
the processor system and the programmable logic. In [66] and [67], the authors
evaluate the reliability of various AXI interfaces connected to the AXI Interconnect
core by accumulating faults in the configuration memory through fault injection.
Specifically, they tested the AXI Interconnect along with the AXI-DMA IP Cores
as a single module and found that it is a weak link for the design, even with the
hardening of the AXI DMA module. Nevertheless, the characteristics of errors and
experienced misbehaviors have not been evaluated.

In [68] and further in [69], we investigated the implications of radiation-induced
SEUs on the AXI Interconnect module. SEUs are injected into the CRAM of a Zynq-
7000 AP-SoC programmable logic, targeting only the specific module under test and
the unused resources in its vicinity. The experimental analysis results demonstrate
numerous effects on the communication architectures, such as the unavailability and
incorrect computation of the modules connected via the AXI Interconnect module.

8.2.2 The Reliability Evaluation Flow for AXI interconnect Core

We propose a reliability evaluation platform and flow for evaluating AXI Interconnect
Core against SEU. The platform is based on PyXEL framework to support fault
injection in the programmable logic of a Zynq-7000 device. This platform consists
of a fault injection framework and a test platform. The structure of the reliability
evaluation environment is depicted in Figure 8.1.

Beginning with the bitstream and the netlist generated by the standard FPGA
design process, we exploited the PyXELframework to analyze the bitstream structure
and identify the subset of the bitstream related to the AXI Interconnect module. This
step allows us to reduce the injection space to a subset of the entire space, so that only
faults affecting the module being tested can be injected, separating the cross-section

8.2 Analysis of the AXI Interconnect Module 119

Figure 8.1 A conceptual view of the reliability evaluation environment for AXI Interconnect
IP Core

of the AXI Interconnect IP core from the cross-section of the whole design. The
chosen subset of bits is limited to the hardware resources allocated to the module
under test and the unused resources adjacent to it. The fault injector, instrumented
with the information obtained from the bitstream analyzer, can be used to generate
a set of faulty bitstreams with specific characteristics. These characteristics can
include the subspace of the configuration data where the injection should be done
and the type of fault to inject, such as single or multiple bit corruption, or a desired
bit transition (set, reset, or flip).

The experiment controller is capable of automatically detecting errors by compar-
ing the obtained results with the expected results, in order to determine if any faults
injected into the design have caused any errors. Specifically, the controller configures
the programmable logic, launches the software to detect errors in the design being
tested, and produces a report indicating the accuracy and availability of the data
obtained from the computing units integrated into the hardware and connected to the
processor system through the module under test.

120 Evaluating Reliability of Host-Accelerator Interfacing

Figure 8.2 A schema of the architecture of the benchmark design

8.2.3 Hardware and Software Benchmark

A benchmark design based on the hardware accelerator and redundant paradigm has
been proposed for analyzing the reliability of the AXI Interconnect IP Core. The
design implements a dual-with-comparison approach on a replicated core imple-
mented in programmable logic. A test routine executing on the processor system
stimulates the hardware accelerators with a randomly generated test vector. The
outputs are then compared by the processor system with the expected results, and
the execution report is sent to the host computer.

Hardware Platform

The benchmark design features a hardware accelerator duplicated and connected to
the processor system with the AXI Interconnect IP Core. The hardware accelerator
was developed with Vivado HLS and is capable of computing a non-linear signature
from four 32 bit fixed-point parameters (22 bits for the integer part and 10 bit for
the decimal part). Moreover, it offers an AXI4-Lite interface that provides access to
six memory-mapped registers, four for the inputs, one for the output, and a control
register. A schematic of the system under test is provided in Figure 8.2.

The two hardware accelerators and the AXI Interconnect IP Core, which is
configured as a single master and multiple slaves, connecting the processor system
to both instances of the hardware accelerator, are implemented on the programmable
hardware. Furthermore, the system-on-chip is connected to the host computer, which
can configure the FPGA through the JTAG interface, initiate the test routine running

8.2 Analysis of the AXI Interconnect Module 121

on the processor system over a serial connection, and receive the report generated by
the test routine on the same channel.

Software Test Routine

The test routine running on the processor system is composed of three distinct parts:
a preamble, a body, and an epilogue. At the beginning, the preamble initializes the
software data structures necessary to use the hardware accelerator IPs and verifies
that they are in a correct state. During the body of the routine, each hardware is
stimulated with 1000 different inputs. For each input, the result is collected and
verified for correctness or to detect if the IP under test hangs. The epilogue of the
routine reports the status of the IP cores to the fault injection platform and signals
the end of the test routine. Throughout all phases, the processor system reports the
status of the test routine and IP cores executions results to the host computer, which
stores them for future analysis.

8.2.4 Reliability Analysis for AXI Interconnect IP Core

The platform runs on the host computer and is responsible for managing the experi-
mental workflow. In particular, it controls the generation of the injection locations
and injected bitstreams, the download of the faulty bitstreams into the configuration
memory, the triggering of the test routine, and the collection of results. All injection
steps are automated and executed by the platform without requiring user interaction.

A fault injection campaign has been executed on the Zynq-7000 AP-SoC, using
the reliability evaluation environment exposed, to evaluate the errors induced by
SEUs on the AXI Interconnect module. We generated 10,000 faulty bitstreams
through randomly corrupting a single bit in each of them, allowing for both 0 to 1
and 1 to 0 transitions.

A representation of the described analysis flow is provided in Figure 8.3.

122 Evaluating Reliability of Host-Accelerator Interfacing

Figure 8.3 A schema of the experimental flow for evaluating errors on the AXI Interconnect
IP Core

8.2.5 Results of Reliability Analysis of AXI Interconnect IP Core

The resulting errors have been divided into four categories based on the effects they
produced. These categories are: unavailability, silent data corruption, detectable data
corruption, and unavailability and data corruption.

Unavailability error is caused when the communication core fails completely,
resulting in a loss of data and commands from the master to the slaves or vice versa
due to injected faults. Detectable data corruption occurs when the cores which are
implementing the same computation and stimulated with the same input vector logic
generate different outputs In this case, the master is able to detect the malfunction
through comparison. Silent data corruption occurs when the outputs of the modules
subjected to the same input return the same faulty output, making it detectable only
through comparison with the expected results. Unavailability and data corruption
includes a mix of unreachable and faulty cores. There has not been any case of a
mix of unreachable and correctly working cores.

8.2 Analysis of the AXI Interconnect Module 123

Out of the errors identified in the flawed configurations, 50.66% caused the
hardware cores in the programmable logic to become completely inaccessible. 4.90%
of the errors led to partial unavailability, with one core being unreachable by the
master and the communication, while the other core experienced errors including
unavailability and data corruption.

The remaining errors were related to data transferred between the master and
the slave, with 11.76% generating detectable data corruption and 32.68% leading to
silent data corruption. Figure 8.4 illustrates the types of faults and their respective
percentages.

Figure 8.4 Categorization of SEU-induced Errors on AXI Interconnection Core

Further analysis of the categories reporting errors on transferred data has been
conducted. It has been found that 78.80% of the errors introduced by the communic-
ation core over exchanged data are stuck-at faults. These faults always have an effect
on the communication between hardware cores and, particularly, the same bits of the
data words are affected for both cores. It is important to note that if the hardware
cores are connected to the master system through the same AXI Interconnect, as is
usually the case, then stuck-at faults introduced by the AXI Interconnect Module
can lead to silent data corruption, even when the cores are duplicated.

124 Evaluating Reliability of Host-Accelerator Interfacing

8.3 Research Advancements in Reliability Evaluation
of AXI Interconnections Module

A comprehensive analysis of the AXI interconnect module has been presented. The
role of the AXI interconnection module, in charge of managing data transfer between
processor system and hardware-accelerated modules, in producing common mode
failures has been analyzed. In particular, the fact that AXI Interconnection has been
identified as a single point of failure that can introduce errors affecting replicated
modules, leading to silent data corruption.

Chapter 9

Evaluating Reliability of
Hardware-Acceleration for Neural
Networks

9.1 Overview on Reliability of Hardware-Accelerated
Neural Networks

Neural Networks are becoming the state-of-the-art solution for solving a multitude of
different and complex problems. They have proven to be suitable for being adopted
in different industries such as automotive, computer vision, and healthcare. This
has caused an increase in interest in studying the resilience and tolerance of neural
networks against faults.

In addition, advances in computer hardware and software have made Deep
Neural Networks (DNNs) more accessible and easier to use, making them even more
attractive to researchers and developers. Novel DNNs architecture is characterized
by a high number of layers and parameters, as well as by a higher computational
complexity.

GPUs are generally the best choice for training neural networks, as they offer
high-performance and parallel computing capabilities. However, CPUs are often
used in inference when the required computational power is not too high. For large-

126 Evaluating Reliability of Hardware-Acceleration for Neural Networks

scale applications, specialized hardware accelerators can offer more remarkable
performance.

Programmable Hardware has emerged as a contender for high-performance
neural network inference tasks. Indeed, programmable hardware systems are par-
ticularly attractive as they are highly configurable and can be programmed to meet
the specific requirements of a neural network, adapting to the specific architecture.
Furthermore, they offer low-latency and high-throughput operations, making them
ideal for applications that require real-time processing.

In particular, Hardware-reconfigurable Systems-on-chips (SoCs) are becoming
increasingly popular for neural network inference due to their heterogeneous ar-
chitecture. By using reconfigurable SoCs, neural networks can be easily adapted
to different tasks, and integrated with other systems, and the applications can take
advantage of hardware accelerators and dedicated processors for computationally
demanding tasks while relying on the flexibility and ease of use provided by the
software part.

The architecture of DNNs is composed of layers with a few to hundreds of
millions of parameters that are used to perform computations such as convolution
and pooling. These parameters, inputs, and outputs of each layer are all potential
sources of errors in the network. Additionally, the hardware and its fault models can
affect the parameters and nodes at the application, topology, or algorithmic level.

However, reliability analysis of deep neural networks typically ignores the actual
implementation of the hardware. It is based solely on the corruption of data and
parameters of the layers, or topological modifications of the net. Even though the
large amount of memory required by neural networks makes storage one of the main
sources of error, soft errors in the storage elements are only a subset of the real faults
that can affect a device. As a result, the reliability and resilience evaluation of deep
neural networks should not overlook errors in data paths and hardware architecture.

9.2 Effects of SEUs on Reconfigurable Accelerated Quantized Neural Network127

9.2 Effects of SEUs on Reconfigurable Accelerated
Quantized Neural Network

9.2.1 State of the Art of Reliability Analysis of Quantized Neural
Network implemented on Reconfigurable Hardware

In recent years, researchers have demonstrated that Convolutional Neural Networks
(CNN) can produce accurate results even when using reduced precision data types.
For example, [70] and [71] presented CNN implementations using fixed-point data
types; [72] and [73] presented extreme cases of reduced precision, where weights
and activations are constrained to single-bit values. The Quantized CNN and Binary
Neural Network implementations offer new possibilities for applications where
hardware resources are limited, as the redundancy induced by floating point data is
removed. Nevertheless, the impact on the reliability of such implementations must
be studied, particularly when safety-critical applications are involved.

Due to the fact that the configuration memory containing the configuration data
of the design mapped to the device is composed of SRAM cells, which are highly
vulnerable to radiation effects, it is important to analyze the system’s reliability
when an SRAM-based FPGA is used, and possible fault-tolerant strategies must
be implemented to meet the reliability requirements, particularly in safety-critical
applications.

In [74], we present the results of a reliability analysis of a CNN implementation
on a Pynq-Z1 board, as reported in [75], conducted via a fault injection platform
that utilizes multiple boards for acceleration. The analysis presents a preliminary
evaluation of the effects of Single Event Upsets (SEUs) and MBUs on a Quantized
CNN implementation with 1-bit weights and activations, in the configuration memory.
Additionally, we observed that the fault injection results for SEUs in the configuration
memory have different impacts on correctness and performance, although a more
detailed analysis is needed.

128 Evaluating Reliability of Hardware-Acceleration for Neural Networks

9.2.2 Fault Injection Platform

In order to assess the impact of SEU in configuration memory on SRAM-based
FPGA, a fault injection platform has been created. The fault injection methodology
is based on flipping bits in the configuration memory frame data to emulate SEU
in the configuration memory. In order to speed up the reliability evaluation, the
platform has been parallelized to utilize multiple boards. Additionally, it supports
MBU fault injection in the configuration memory. Figure 9.1 provides an overview
of the platform’s overall architecture.

Figure 9.1 1Architectural Schema of the Fault Injection Platform

The Pynq-Z1 boards, which are used in the platform, are equipped with a Xilinx
Zynq-7000 SRAM-based FPGA device that has an ARM dual-core processor em-
bedded. The Pynq environment provides PetaLinux as its operating system, with a
Python environment integrated, making the platform’s implementation much easier,
especially for managing communication with the host PC. On the Pynq board side,
a server has been implemented using Python, enabling it to accept fault injection
requests from the host PC. This server performs a variety of tasks upon receiving
requests:

9.2 Effects of SEUs on Reconfigurable Accelerated Quantized Neural Network129

• Fault Bitstream Acquisition: the host PC generates a faulty bitstream and sends
it to the server on Pynq via a request, as this is more efficient than generating
it on Pynq itself.

• FPGA Configuration: in order to carry out the fault injection run with the
uploaded faulty bitstream, the Python library provided for using FINN BNN
was modified to ensure that the faulty bitstream is downloaded each time an
object recognition workload is initiated. This modification enabled the FPGA
to be configured correctly, ensuring that the faulty bitstream was always used
during the fault injection run.

• Inference: the server runs a new process in order to perform object recognition
using the implemented CNN implementation. The same image will be used
and loaded from the SD card for all the fault injection runs.

• Result Report: the inference result, even if it failed or timed out, is sent to the
host computer.

In order to prevent the server from becoming unresponsive due to a fault injection,
the PetaLinux device tree and boot image have been recompiled to enable a watchdog
reset-on-timeout feature. In the event of a functional interruption, the watchdog will
reset the board after 10 seconds, causing the server to reboot and return to an online
state.

A Fault Injection Manager is present on the host PC. It is in charge for:

• Fault Injection Location: depending on the type of fault model chosen, a list
of faults is generated and stored.

• Faulty Bitstream Selection: the fault from the list which has not been processed
yet is selected, and the bitstream associated is generated. t

• Faulty Run: Once a faulty bitstream has been generated, a Pynq board is
checked for availability, and if found, the faulty bitstream is provided along
with the fault injection request.

• Result Report: Once the fault injection request has been sent, the thread waits
for a response from the server, with a timeout set to five seconds. This time
frame is much longer than the expected duration of the object recognition

130 Evaluating Reliability of Hardware-Acceleration for Neural Networks

Table 9.1 Programmable-hardware utilization of the cnvw1a1 network implemented in
Zynq-7020

Resources Available [#] Used [#]
LUTs 53,200 25,447 (47.83%)

Flip-Flops 106,400 42,090 (39.56%)
BRAMs 140 124 (88.57%)

DSPs 220 24 (10.91%)

workload. If the server does not respond, the thread will report the server as
dead and wait for it to be revived through a watchdog reset.

These steps are performed continuously until all the elements in the fault list
have been processed.

This fault injection platform enables us to conduct a fault injection campaign
involving a large number of faults in a relatively brief period of time, depending on
the number of boards employed. In our case, by using 4 boards, the average time for
each fault injection run is 1 second.

9.2.3 Reliability Evaluation Analysis of the Binarized Network

The cnvW1A1 network from the CNN implementations presented in [75] utilizes
only 1 bit of weight and 1 bit of activation. The hardware utilization of this particular
network, when implemented on the Pynq board, is reported in Table 9.1. We then
selected the road signs classifier, one of the three classifiers already provided, to
recognize road signs from the input image, which was used as the workload executed
by the fault injection server on the Pynq board. This workload produced two results:
the classification index and the recognition duration.

For estimating the nominal recognition duration, 10,000 runs were conducted
with fault-free bitstreams. Indeed, timing can cause the recognition duration to vary
within a certain margin. This margin was used to determine whether a run had been
impacted by the injected fault, leading to a decrease in performance. Although this
margin is not completely accurate, it gives an indication of how the performance of
the CNN can be negatively impacted by SEUs in the configuration memory.

The recognition duration in the configuration memory when there are no errors
present resulted to be around 1580 µs for most of the runs, while a few of them are

9.2 Effects of SEUs on Reconfigurable Accelerated Quantized Neural Network131

slightly slower with a duration of fewer than 1700 µs. However, there are a few
cases in which the duration can exceed 1800 µs.

We generated three different fault lists associated with that many fault injection
campaigns. They are:

• single bit fault model, random bits selected from Logic Location file generated
along with the bitstream;

• single bit fault model, random bits selected in the remaining configuration
memory;

• multiple bits fault model, 4 bits randomly selected as a cluster to emulate the
MBU as reported in [46];

The results of the fault injections are then categorized based on classification
results and timing as follows:

• Masked: the classification result is correct and the inference time is lower than
2 ms;

• Performance Degradation: the classification result is correct, but the inference
time is over 2 ms;

• Misclassification: the object the classification result is not correct;

• Timeout: the object classification did not finish within 5 seconds.

Random SEU in Logic Locations

The first fault list has been generated from the Logic Location file, which controls
the resources such as latches, FFs, LUTs, and Block RAMs used in the design. More
than 500,000 faults have been generated and injected. As a result, 99.30% of the
faults have been masked, while in the remaining 0.7% of runs, no Misclassification
was observed. Additionally, 99.7% of runs suffered from Performance Degradation
which could reach up to more than 21 ms.

It is worth noting that the lack of Misclassification can be attributed to the fact that
the bits from the Logic Location file are mainly related to registers and Block RAMs

132 Evaluating Reliability of Hardware-Acceleration for Neural Networks

used in the CNN implementation. Furthermore, due to the multilayer nature and
the training process of the CNN implementation [75], the likelihood of a corrupted
node in the network causing a wrong final classification may be quite low, given that
the weights and activations are limited to single bit values in the selected cnvW1A1
network. Nonetheless, the Performance Degradation effects observed in the results
are also critical in safety-critical applications, as they could compromise the correct
execution of some real-time tasks, as well as a few runs with Timeout.

Random SEU in Configuration Memory

When considering SRAM-based FPGAs, the design implemented and mapped to
the FPGA typically involves multiple types of resources, such as registers and
Block RAMs specified in the Logic Location file. In addition to logic resources,
configuration memory configure also Digital Signal Processing (DSP) units and
routing resources that are not present in the logic location file. However, bits in the
configuration memory controlling the DSP units, LUTs, and configurable routing
resources connecting the nodes in the network could also be affected. Therefore, a
second fault injection campaign was conducted with randomly selected bits in the
configuration memory, which did not overlap with the Logic Location file.

The results of the fault injection campaign, consisting of more than 14,000 fault
injections, revealed that the percentage of not-masked results is significantly higher
than the results seen previous fault injection campaign, around 4.29%. Additionally,
more than 80% of the not-masked categories are Misclassifications (41.94 %) and
Timeout (40.00%), which could be attributed to the corruption of the CNN structure
caused by the SEU injected into the configuration memory, while the remaining
18.06% is classified as Performance Degradation. The Recognition Duration of
the Misclassification is mostly within the nominal execution time range, making it
hard to detect, similar to Silent Data Corruption errors. This suggests that proper
fault-tolerant techniques should be employed to improve the reliability of CNN
implementation, not just for user registers and Block RAMs, but especially for the
others element in the configuration memory to protect the integrity of the CNN.

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 133

Random Multiple Bit Upset in Configuration Memory

Due to the scaling of technology, transistors are becoming increasingly smaller and
their threshold voltage is decreasing, making them more vulnerable to radiation
particles even at lower energy levels. In space environments, the energy of radiation
particles that may strike the device could reach the GeV scale, which means that
SEU in the configuration memory may not be enough to model the radiation effects
of a single particle [46, 36]. Thus, another fault injection campaign was carried out
with randomly selected 4-bit clusters following the patterns reported in [46].

The fault injection consisted of more than 14,000 fault injections. Results re-
vealed that some of the Performance Degradation has worsened into Misclassification
or Timeout, and the rate of not-masked has increased in comparison to the SEU
scenario. This is due to the fact that more bits can be corrupted, while the resiliency
against SEU is less effective against MBU.

9.3 Emulating Architectural Faults on Hardware Ac-
celerated Neural Networks

9.3.1 State of the Art of Robustness Analysis of Hardware Accel-
erated Neural Networks

How much a neural network can be considered robust against faults is mainly
related to its inference phase, as the training phase is typically run in a controlled
environment. Possible causes of hardware faults include physical manufacturing
defects or radiation damage. If such faults occur, and electrical or logical mechanisms
do not mask them, they may both reach the system’s outputs, causing an erroneous
output or even leading to system failure. To study the robustness of neural networks,
proposed state-of-the-art approaches can work on various levels of abstraction.

To simulate extreme radiation environments and extended periods of operation,
the hardware can be exposed to a flux of particles. This type of testing necessitates
the use of highly specialized equipment and is limited in terms of visibility and
control, meaning that often multiple components are irradiated and may fail at once.

134 Evaluating Reliability of Hardware-Acceleration for Neural Networks

In cases where radiation testing is not feasible, alternative methods of emulating
the system and its potential faults are used in order to assess its reliability. Software-
based fault injection techniques are often used in conjunction with radiation testing to
evaluate the reliability of neural network systems. This approach involves simulating
particular fault models in the application-level model of the network, allowing for
experiments to be conducted in a fully controlled environment. However, as the
actual hardware is not being taken into account, this method can result in inaccurate
evaluations. Software-level simulation is the most abstracted method from the
hardware, as it involves an application-level analysis that is not aware of the hardware
actually implementing the neural network. It offers many advantages, such as high
controllability and inherent simplicity and flexibility, but it also has the limitation of
complete abstraction from the hardware. Some faults, such as bit flips in memory
cells containing data, can be easily emulated in the software-level model, but errors
in hardware microarchitectural components, such as those affecting communication
interfaces, interconnection lines, timing, specific computational units, and other
elements related to the accelerator hardware architecture, are much harder to emulate.

For achieving a more precise evaluation, a hardware-level simulation that is
based on a model of the underlying hardware platform may be conducted. This
simulation is typically done at the RT- or Gate-level and involves injecting faults
into the simulated hardware architecture. By doing so, the behavior of the hardware
components can be accurately represented, making the analysis more reliable. The
downside of this method is that simulation-based approaches to analyzing modern
and complex architectures can be extremely costly in terms of execution time and
computational power, making them unaffordable in many cases. Additionally, they
cannot always access the low-level description of the hardware, meaning they are
limited to a higher level of abstraction.

The increasing need for neural networks that are highly reliable for mission-
critical applications, coupled with the miniaturization of device technology, which
makes their hardware accelerators more fragile, has pushed research into the reli-
ability assessment of neural network systems. As a result, several methodologies,
approaches, and platforms for reliability analysis have been developed. In [76],
the authors present a lightweight framework for empirical analysis based on a
software-based approach working at the algorithmic level. It allows users to per-
form preliminary analyses to gain insight into where to conduct more detailed fault
analysis at the microarchitectural level. However, microarchitecture faults them-

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 135

selves are not covered. In [77], an application-level fault injection environment is
proposed for evaluating hardware-accelerated systems, which is built on the Tiny-
CNN framework. This approach enables faults to be injected into the data path and
buffer without considering combinational logic and control logic units. As the RTL
implementation of the accelerators was not available, the authors mapped each line
of code in the software simulator to the respective hardware element to measure the
impact of each fault injection location in terms of the hardware microarchitecture.
Additionally, in [78] and [79], the fault injectors are based on a torch-based frame-
work but are implemented at the application level. However, they are often based on
application-level software-based fault injection approaches, without considering the
underlying hardware platform. In [80], the authors proposed CLASSES a framework
to evaluate the reliability of CNN executing on GPUs against SEUs taking into
account the hardware platform. Other studies, which do not focus on the application
level, mainly utilize radiation testing. For example, [81] analyzes the reliability of
NVIDIA’s Kepler, Maxwell, and Pascal GPU architectures by using YOLO, Faster
R-CNN, and ResNet. This analysis is conducted through both architecture-level fault
injection, with NVIDIA SASSIFI fault injector, and radiation testing.

Different from previous approaches, we proposed, in [82] and further in [83], a
methodology for evaluating the resilience of neural network systems based on the
use of heterogenous System-on-Chip. This approach exploits the reconfigurability
of the platform to emulate the target hardware accelerator and inject faults in its
microarchitectural hardware elements by manipulating the configuration memory
data. The method allows a comprehensive and controlled analysis based on full
control over the models and locations of the faults injected into the hardware com-
ponents, without the need for radiation-based approaches and working at a lower
level of abstraction than traditional software-based approaches. Taking into account
the microarchitectural faults of the hardware platform, which cannot be done in a
software-level simulation approach that is oblivious to the underlying hardware. Fur-
thermore, the use of an actual hardware platform instead of a simulation environment
for the analysis yields much faster results than software simulation of the hardware
level. Lastly, this approach can be used to perform microarchitectural analysis when
radiation tests are not possible or as a pre-test before actual radiation tests.

136 Evaluating Reliability of Hardware-Acceleration for Neural Networks

9.3.2 Hybrid-based Approach to Neural Network Reliability

The proposed methodology is suitable for evaluating the robustness of neural network
architectures implemented on FPGA-like platforms. Additionally, it is exploitable
to target other hardware architectures by emulating the target hardware using pro-
grammable hardware. The methodology relies on heterogeneous devices to perform
reliability analyses that are not limited to the high abstraction level of software
implementation of the neural network architecture but consider the effects of faults
affecting the hardware. The programmable hardware can be used to emulate the hard-
ware architecture of the used hardware accelerator and is also exploited for emulating
faults involving the hardware through configuration memory manipulation.

The proposed flow is schematized in Figure 9.2. The hardware accelerator to
be emulated is implemented in the programmable hardware. It means that HDL
files, and HLS methodology, as ready-to-be-used IPs can be adopted to generate
the hardware to evaluate. An experiment manager is instrumented with the target
neural network model, as well as the information about the experimental analysis
to be performed. This module manages the use of the emulated accelerators in the
network model, controls the fault injector, and collects the results.

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 137

Figure 9.2 Conceptual schema for the proposed approach.

The hybrid devices, due to their programmable logic, provide the opportunity
to assess the impact of faults on the hardware in a direct manner. Furthermore,
the ability to inject faults into specific hardware components and resources grants
a high level of control and visibility. Additionally, emulation-based analysis of
hardware not yet produced can be conducted, which provides valuable insight into
the resiliency of neural network architectures and hardware accelerators (ASICs and
FPGAs in particular) even during the design process. Particularly when the solution
for hardware acceleration is programmable logic, the actual hardware accelerator
can be implemented on the programmable hardware without the need for emulation
of the target accelerator.

The proposed platform enables the manipulation of configuration data of pro-
grammable hardware, allowing for the injection of fault models such as stuck-at,

138 Evaluating Reliability of Hardware-Acceleration for Neural Networks

conflict, couplings, and others. To do this, specific bits of the bitstream are modified,
although the role of each bit is not provided by the vendors. Nonetheless, research
works have demonstrated that it is possible to modify the implemented netlist without
relying on vendor tools [22, 25, 84].

9.3.3 FireNN Platform

FireNN is the first platform that provides the capability to analyze the resilience of
neural networks at both the application and hardware levels by means of emulation.
We have selected the Zynq family as the target hybrid platform, in particular, the
Zynq-7020. This SoC is equipped with two ARM dual-core Cortex-A9 processors
and a programmable logic, which is manufactured using a 28 nm process.

The FireNN platform is composed of two distinct environments: the Machine
and the Engine. Figure 4 illustrates the modules and frameworks that make up the
FireNN platform. The Machine, which runs on the host computer, provides a means
of defining and customizing the neural network model by building on the PyTorch
framework [85]. It acts as a controller, is responsible for the overall flow of the
experiment, and is capable of communicating with the FireNN Engine on the Zynq
platform in order to deploy the emulated accelerator and initiate the fault injection
process. An architectural view of the platform is reported in Figure 9.3

Figure 9.3 Architectural view of the FireNN platform and its modules.

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 139

The primary objective of the Machine on the host computer is to transfer the
computational demands of the entire neural network away from the Zynq. However,
if the performance of the hybrid device is adequate, the Machine and the Engine can
also be used as two processes on the same device. The FireNN Machine offers APIs
to move the computation of a PyTorch module (i.g. one or more software layers) to
the programmable logic. These relocation APIs provided by the Machine mimic the
interface provided by PyTorch to move the computation from the CPU to the GPUs.
To achieve this, an appropriate hardware-implemented layer is instantiated on the
programmable logic to perform the same mathematical operation that the software
layer was intended to do. The hardware layer is designed to emulate or implement
the target hardware to be evaluated.

The Machine extends the PyTorch model of the network by providing a mechan-
ism that allows a PyTorch module to be replaced with an analogous hardware module
running on programmable hardware, thus managing the neural network architec-
ture and experimental execution in a transparent way. The Engine is responsible
for instantiating and managing a specific hardware module on the programmable
hardware side. To facilitate the relocation of this module, a container called a Shell
is encapsulated in the module class of PyTorch. The Shell is then integrated into the
neural network model and serves as a mechanism to switch the execution from the
original module to the hardware module and back. When a Shell is instantiated on
the Machine side, an associated object is instantiated by the Engine in its domain,
referred to as a Gear. The Gear is a hardware implementable module emulating the
hardware accelerator.

The Shell implements a routine for determining the dimensions of the input and
output data. Some PyTorch modules are not specific to the I/O data dimensions,
meaning they can accept tensors of any size as input, but the architecture of the
network determines the univocal I/O data dimensions (e.g. modules that work with
fixed tensor sizes such as fully connected). Therefore, the Shell is necessary to obtain
the information on the input and output dimensionality in order to create the hardware
module. Additionally, the Shell has methods to easily switch between the original
data path using the PyTorch original layer and the new data path using the hardware
module implemented on the Zynq. This allows the inference to be executed using the
original network or the relocated version with a part of the network implemented in
hardware. The deployment, execution, and emulation of faults on the programmable
hardware are all handled by the Engine but are triggered by the Machine through

140 Evaluating Reliability of Hardware-Acceleration for Neural Networks

the Shell since the Gear is not accessible to the user. The Machine also implements
methods for executing the injection of different kinds of fault models at the software
level, which does not require hardware emulation. Finally, the Shell has a tracking
mechanism for storing the input and output data of the Shell itself to enable post hoc
analysis.

The Engine of the Zynq processor system is responsible for managing the pro-
grammable hardware and the fault injection process. The Engine’s primary functions
are the deployment, execution, and fault injection of the Gears. Whenever a Shell is
instantiated on the Machine side, the Engine instantiates the corresponding Gear. It
takes advantage of the PYNQ project, which is an open-source project supported by
Xilinx, to facilitate the exploitation of programmable hardware. The PYNQ project
provides the Application Program Interfaces (APIs) for configuring the program-
mable hardware of the Zynq, as well as the APIs for managing Input/Output (I/O)
and communication between the programmable hardware and the processor system
[86].

A Gear is a computational module that can be implemented on programmable
hardware and emulates a target hardware accelerator. It is composed of three ele-
ments: an interface, a driver, and an implementation file (i.e., a bitstream). The
interface is common to all Gears and allows the Engine to manage them independ-
ently of their particular hardware implementations. The driver provides the APIs for
using the specific hardware module through the interface, while the implementation
file is the bitstream containing the configuration data for programming the program-
mable hardware with the hardware module. If necessary, when a Gear object is
created, the Shell must transmit the characterizing parameters of the original neural
network layer it is replacing (e.g., weights, bias, etc.) during the relocation process.

When a Shell requests a computation to be carried out on a particular Gear, the
Engine configures the programmable hardware accordingly, receives the input data,
initiates the computation on the hardware, and then sends back the results. Thus,
each Gear is linked to a particular computational layer on the software model of
the network and simulates a particular hardware accelerator. The development of a
Gear can be completed using the customary development flow for programmable
hardware (e.g., by creating an HDL or HLS description), or it can be based on IPs
provided by external entities.

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 141

The Engine is responsible for the process of fault injection, which is enabled
by the PyXEL framework. PyXEL handles the manipulation of the configuration
bitstream of the programmable hardware, enabling the injection of specific fault
models, such as soft errors that affect the truth table of a look-up table (LUT) or
the open-interconnection fault model. The Gear common interface is equipped with
a configurable timeout mechanism to prevent endless waits due to faults injected
during the injection operation. When the Shell requests injection of a specific fault
model, a faulty version of the Gear is created and used for the computation. The
Engine can be instructed to inject faults into a specific entity (e.g. the AXI Interface),
specific resources (e.g. BRAMs interconnections, LUTs truth tables) or induce
specific faults (e.g. open interconnections).

For clarity, an example of the evaluation flow of the FireNN platform is reported
in Figure 9.4

142 Evaluating Reliability of Hardware-Acceleration for Neural Networks

Figure 9.4 Example of the evaluation flow of the FireNN platform.

9.3.4 Reliability Analysis of an AlexNet Layer

We used the FireNN platform to evaluate the reliability of a layer of the AlexNet
neural network. The 2D-convolution computation executed by the fifth convolutional
layer of AlexNet was implemented as a hardware accelerator using Vivado HLS
[87]. We evaluated the network layer with fault injection campaigns, using both
commonly used software-level analysis and the proposed approach which emulates
accelerators and fault models using hybrid devices. We evaluated various parameters
such as error rates, failure rates, ratios between failures and errors, timeout events,
and distributions of degradation and misclassification errors on an evaluation set.

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 143

The experimental analysis in this paper used the version of AlexNet provided
by torchvision, a popular deep-learning library [88]. This version of the network
was trained on the ImageNet dataset, a collection of 1,000 classes of objects. The
architecture of the network consists of multiple layers implementing convolution,
pooling, and ReLU operations.

The input to the platform is a 3-dimensional tensor of size 224x224x3 represent-
ing an RGB image. The last convolutional layer of the network is selected for the
reliability analysis, as it has been identified as the most sensitive of the convolutional
layers in [77]. This layer is composed of 590,080 parameters (also referred to as
weights), in particular, 256 bias and 256 kernels, each with a size of 256x3x3.

The output of the last fully connected layer of the neural network is an array
of values, each of which corresponds to a particular class. This value evaluates
the likelihood of the input belonging to that particular class. To normalize and
reduce these values to a probabilistic distribution over all the labels, a normalized
exponential function (commonly referred to as softmax) is applied. As a result, the
final output of the neural network is a list of labels with a corresponding degree of
confidence for each one. The label with the highest confidence is the one that is
selected as the classification output.

Fault Models

We considered the impact of distinct fault models on the system. Firstly, Single
Event Upset affecting weights data have been evaluated at the software level. SEUs
are emulated by directly modifying the value of the variables at the bit level, and
errors are injected in the value of weights and layer inputs during the runtime of
the execution. The purpose of these evaluation campaigns is to compare the results
obtained by this analysis, which is commonly adopted in literature, with the results
obtained by hardware-based evaluation.

SEUs affecting the configuration memory of programmable hardware must be
treated differently, as they can have more serious consequences than other SEUs.
In particular, due to the nature of programmable hardware, SEUs affecting the
configuration memory can result in a permanent fault that impacts the hardware
architecture of the circuit implemented on the programmable hardware, until the
hardware is reprogrammed with a new circuit. As a second evaluation, we present

144 Evaluating Reliability of Hardware-Acceleration for Neural Networks

a reliability analysis of the convolutional layer based on SEUs in the configuration
memory. Depending on which bit is randomly corrupted, various actual faults can
occur in the circuit implemented in the hardware. For instance, if a memory cell
programming a LUT is affected, it may cause a logical fault, while if the memory
cell is related to a programmable interconnection, it may cause an open fault or an
antenna fault.

To conclude, the effects of open faults were evaluated exclusively. These faults
can be caused by a variety of factors, including fabrication defects, aging, and SEUs
(Single Event Upsets) in programmable hardware. To model the effect of open faults
in the hardware accelerator architecture, the specific bits of the implemented circuit
have been modified for manipulating the implemented netlist in order to emulate the
desired fault model in the programmable hardware.

Hardware Accelerator

A hardware-accelerated version of the convolutional layer of the network to serve as
a hardware module for the fifth convolutional layer of the AlexNet network has been
developed.

Table 9.2 Resources used by the convolutional layer in Programmable Hardware.

Resource AXI Core [#] Convolutional Core [#] Total [#]
Slice LUTs 4,452 31,746 36,198

Slice Registers 5,795 25,476 31,271
Block RAMs 16 67 83
DSP Slices 0 48 48

Muxes 25 87 102

The accelerator was created using Vivado HLS and is capable of computing 2-D
multichannel convolution between inputs with dimension 13×13 and a 3×3 kernel,
with 256 input channels and 256 output channels. To ensure compatibility with the
PyTorch model of the overall network, the data are represented with a 32-bit floating-
point representation. Data transfer between the processor system and programmable
hardware is achieved through FPGA direct memory access. The IP Core is pipelined
and performs convolution using an algorithm based on two buffers and a shifting

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 145

window, with an AXI4-Lite control register interface. The resources used by the
convolutional core and the AXI Core are reported in Table 9.2.

Dataset and Analysis Outcome

A set of 50 images from the ImageNet collection on fauna has been chosen as the
evaluation set [89]. The input was preprocessed (i.e. cropped and normalized) to be
suitable as inputs of the network, and they represent objects belonging to the set of
1,000 labels used in the training phase. Our goal is to identify if an injected fault will
produce a modification in the confidence associated with each label, or eventually
cause a change with respect to the original classification. Thus, the original model is
initially used to obtain the results of an unfaulty run, which are then compared with
the output obtained by a fault-injected model of the network. Any errors detected by
this procedure are classified into three groups:

• Misclassification: the classification output has changed due to the injected
fault.

• Degradation: the confidences of one or more labels have changed due to the
injected fault.

• Timeout: the injected fault prevents the network from completing the classific-
ation

We considered misclassification as a critical failure, rather than an error because
it drastically altered the expected results. To calculate the failure rate, we determined
the number of injections that caused misclassification out of the total. The error
rate was determined by counting the number of injections that caused at least one
degradation, regardless of whether or not it led to misclassification, out of the total.

The evaluation set is composed of different images with heterogeneous char-
acteristics, which could lead to a mixed outcome as a result of fault injection. to
clarify further, a fault could produce different outcomes on different input images.
This could include misclassifications, errors, and correct results assigned to different
inputs of the evaluation set.

In our analysis, if at least one input has been misclassified, the error is categorized
as a misclassification. Degradations follow the same rule. Anyway, we have addi-

146 Evaluating Reliability of Hardware-Acceleration for Neural Networks

tionally considered a deviation of less than 10−4 in the confidence percentage to be
negligible since this could be caused, and undistinguishable by the errors introduced
by using the IEEE-754 standard for data representation and computation. Therefore,
a deviation of less than 10−4 percentage points is not classified as an error.

9.3.5 Results of Software-based Reliability Evaluation of an AlexNet
Layer

We conducted two fault injection campaigns at software-level. The first campaign
focused on faults affecting the weights and bias of the fifth convolutional layer of
the AlexNet model. For the second fault injection campaign, we focused on faults
affecting the input and output data of the layer. We used a traditional software
fault injection approach to emulate SEUs, which are single-bit flips in the 32-bit
floating-point representations of the parameters. The fault injection campaigns were
executed using the software-level fault injector embedded in the FireNN platform.

We conducted 10,000 experiments for each fault injection campaign, in which
we ran a classification task on the entire evaluation set with a randomly generated
fault location (parameter and bit to inject) in each experiment. The first reliability
analysis resulted in an error rate of 40.57%, a failure rate of 2.10%, and 5.18% of
the detected degradations led to misclassification.

We conducted a second fault injection campaign using the same fault model,
but this time affecting the inputs or outputs of the module instead of its parameters.
For each experiment, we injected the fault in the same location for all the inputs of
the module (e.g. on the same word of the input or output tensor and the same bit).
The results showed an error rate of 46.16%, a failure rate of 15.48%, and a ratio of
failures to errors of 33.53%.

Even if, as we already discussed, a single misclassified image of the evaluation
set was enough for us to classify a fault as causing misclassification, the impact of the
fault on the overall evaluation set may differ, since it can affect anywhere from one
to all of the images. To gain insight into this, we examined the distribution of faults
leading to misclassification over the number of outputs on which the misclassification
occurred.

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 147

Figure 9.5 Distribution of the degradation (a,c) and misclassification (b,d) outcomes resulting
from SEU in the weights (a,b) and SEU in input and output data (c,d) fault models.

Figure 9.5 presented the observed distributions. When evaluating SEU in weights,
our findings suggest that faults causing misclassifications often exhibit one of two
behaviors. The first is misclassification on a very small number of outputs, which
may be due to certain elements of the evaluation set being more sensitive to variations
caused by faults than others, and thus misclassifying even with slight deviations from
the unfaulty behavior. The second is to affect a large portion of the evaluation set,
which could be caused by stimulating highly critical bits of the parameters of the
neural network layer. About SEUs in data, the results demonstrate that the probability
of detecting multiple errors and failures decreases both for misclassifications and
degradations as the multiplicity increases. This is reasonable behavior, since a
specific feature extracted by the current and previous layers may be critical for the
classification of a specific input or class, but less important for other inputs or classes.

148 Evaluating Reliability of Hardware-Acceleration for Neural Networks

9.3.6 Results of Hybrid-based Reliability Evaluation of an AlexNet
Layer

By performing a hybrid fault injection campaign, we are able to analyze the behavior
of the platform and address the reliability of the hardware accelerator when it is
physically implemented on programmable hardware.

Firstly, we carried out a reliability analysis against SEUs in the configuration
memory of a Zynq device. SEUs in configuration memory can induce hardware-
architectural faults that may potentially change the structure of the accelerator that has
been implemented on the programmable logic. The fault injection campaign targets a
hardware-accelerated version of the software convolutional layer that was previously
analyzed in the software-based reliability analysis. The campaign consisted of 10,000
fault injection affecting randomly selected bits of the configuration memory.

We found an error rate of 11.05%, a failure rate of 5.12%, and a ratio between
failures and errors of 46.33%. Additionally, 0.40% of the injections caused a timeout.

By utilizing the PyXEL framework embedded in FireNN, we gained insight
into the randomly selected location for the injection and the error and failure rates
associated with them. The results are presented in Table 9.3

Table 9.3 Result of Fault injection campaign of SEUs in CRAM

Resource
Hit

(Any)
Hit

(Used)
Err. Rate
(of Used)

Fail. Rate
(of Used)

Routing 4,577 3,584 23.94% 11.43%
LUTs 1,370 1,058 10.49% 3.11%

Block RAMs 493 384 13.54% 7.55%
DSP 432 324 14.81% 7.10%

Flip-Flops 365 286 10.38% 4.89%
Empty 2,337 - - -
Others 427 288 9.85% 9.09%

In the second fault injection campaign, we emulated the open-routing fault model.
Open faults are the most common error event that occurs in programmable logic
devices [90]. From Table 9.3, it can be seen that interconnections are a critical
resource for the accelerator under evaluation. To further investigate the issues related

9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks 149

to interconnections faults, we randomly injected open-routing faults in the routing of
the implemented hardware accelerator. The platform modified the bits related to a
specific interconnection to create an open fault in the netlist. This analysis shows
how FireNN can be used to inject various and specific fault models in hardware
accelerators, either emulated or implemented on programmable hardware.

A fault injection campaign of 10,000 injections was conducted, with the inter-
connections randomly selected among the programmable routing segments used by
design implemented on the hybrid device. This differed from the previous reliability
analysis, as it did not hit unused resources. The investigation resulted in an error rate
of 59.62% and a failure rate of 40.07%, with a ratio of failures to errors of 67.21%.
Furthermore, 2.78% of the fault injections led to timeout events.

Figure 9.6 provides more details on the distribution of detected events for mis-
classifications and degradations. The results of Figure 9.6(c) suggest that errors
induced by open-interconnection fault models are likely to affect all the outputs of
the evaluation set. Additionally, the ratio of failures and errors highlights that a very
high percentage of them led to misclassification, as shown in 9.6(d) , with a very
large part of misclassifications induced by open-interconnection faults affecting a
large portion of the outputs.

150 Evaluating Reliability of Hardware-Acceleration for Neural Networks

Figure 9.6 Distribution of the degradation (a,c) and misclassification (b,d) categories resulting
from emulating SEU in CRAM (a,b) and open-routing fault model (c,d) over the number of
outputs experiencing the effect.

FireNN has allowed us to discover that the routing interconnections are the most
used resource and the most susceptible to single-event upsets. Through analyzing
the error and failure rate associated with this resource, we have gained valuable
insight into the hardware domain, which traditional software-based fault injection
approaches could not obtain.

9.4 Research Advancements in Reliability Evaluation
of Hardware-Acceleration for Neural Networks

Novel methodologies for analyzing errors in hardware-accelerated neural networks
have been proposed. After a preliminary analysis evaluating SEU and MBU in
CRAM, providing an interesting comparison aiming to highlight how faults in

9.4 Research Advancements in Reliability Evaluation of Hardware-Acceleration for
Neural Networks 151

neural network parameters cover only partially the faults that can affect reconfigur-
able hardware-based accelerators, an evaluation platform based on a reconfigurable
system-on-chip has been presented. Based on a novel methodology, the proposed
platform exploited reconfigurability for injecting faults in the hardware configured
on the programmable logic by manipulating the configuration memory data. The
proposed methodology has advantages and characteristics that differentiate it from
state-of-the-art. The involvement of a hardware platform in the reliability enables the
study of the microarchitectural faults, which are not achievable using software-level
simulation approaches usually abstracted from the underlying hardware.

Chapter 10

Conclusions and Future Directions

10.1 Conclusions

This dissertation has proposed and explored methodologies and techniques to en-
able accurate fault analysis and reliability evaluation in Hardware-Reconfigurable
Systems-on-Chip. Through this research, a range of tools and methods have been
proposed and developed to allow the analysis, evaluation, and improvement of the
reliability of Programmable Hardware-Reconfigurable devices.

Several contributions have been made to the field of hardware-reconfigurable
System-on-chips reliability and robustness evaluation against radiation-induced
errors. Comprehensive analysis and methodologies involving different types of
computational systems, fault models, and techniques have been proposed, showing
the potential of these tools and methodologies to analyze critical applications and
modules in detail. Methodology and evaluation analysis has been conducted com-
prehensively, presenting approach and research at different levels, from physical to
logical, and using various methods such as fault injection methodologies, accelerated
radiation testing, and emulation. With the methodologies and techniques developed
in this dissertation, it has been possible to obtain significant insight into the reliability
and sensitivity of fault-tolerant systems. It aims to produce substantial steps toward
a comprehensive and detailed analysis of the elements composing heterogeneous
computational platforms, ensuring more advanced, reliable, and efficient systems.

In particular, methodologies dedicated to evaluating the sensitivity of designs
to Single Event Transients (SETs), propagating in the combinational logic and con-

10.1 Conclusions 153

figuration circuitry of programmable devices, have been proposed and supported
by developed tools such as PREDA and APES. The analysis of SEUs in configur-
ation memory has also been addressed. Research efforts led to the development
of the PyXEl tool to analyze how SEUs in configuration memory affect the design
implemented in programmable logic. Additionally, two proton tests were conducted
to evaluate the sensitivity of memories of reconfigurable system-on-chips, such as
on-chip memory of a Zynq-7020 SoC and 28 nm CMOS and 16 nm FinFET config-
uration memories. The research has also demonstrated that physical and electrical
analysis and radiation test experiments can be used for modeling and evaluating
primary radiation-induced effects, such as Single Event Transient and Single Event
Upset.

Furthermore, this research has presented methodologies and techniques for eval-
uating the elements composing a heterogeneous system based on programmable
hardware, such as soft and hard microprocessors, interconnection modules, and
accelerators, with a particular focus on hardware-accelerated neural network applic-
ations, showing the potential of these tools and methodologies to analyze critical
applications and modules in detail. Dedicated methodologies and analysis involving
actual hardware devices and fault models have been proposed for the various ele-
ments composing hardware-reconfigurable systems-on-chip. The robustness of Hard
and Soft processing systems has been evaluated considering specific fault models
typical of the specific system, such as on-chip memory faults and radiation-induced
architectural faults. In particular, radiation-induced architectural faults due to con-
figuration memory corruption highlighted how hardware faults could be propagated
from hardware to the software level. It also showed how software mechanisms, such
as the operating system exception mechanism, can support identifying hardware
faults induced by configuration memory corruption at the software level.

Specific hardware modules implemented in the programmable hardware have
been evaluated as well. The criticality of the AXI interconnection core and its
contribution to common-mode failure has been highlighted, identifying as it can be a
source of silent data corruption even with redundant modules. Finally, a platform for
analyzing the reliability of neural networks implemented in programmable hardware
has been developed. This research showed how traditional software-level methodolo-
gies for assessing neural network reliability cover only partially the faults that can
affect reconfigurable hardware-based accelerators, demanding a more comprehensive
analysis aware of the hardware on which a model will be implemented.

154 Conclusions and Future Directions

10.2 Future Directions

The approaches, methodologies, and results presented in this dissertation have
explored the potential of Hardware-Reconfigurable devices for fault-tolerant applic-
ations and the challenges associated with analyzing fault sensitivity and effects in
such systems. The results of this research provide an important foundation for further
work in this area and enable many potential directions for future research.

First, further investigations are needed to develop increasingly efficient fault
detection, diagnosis, and analysis strategies for Hardware-Reconfigurable SoCs. The
efforts in proposing robustness evaluation flow to be applied easily and early in the
development flow started in this research need to be extended in order to explore and
include more methodologies and approaches, in particular, static analysis approaches,
based on a low-level and comprehensive knowledge of the implementation of a design
in the configurable hardware of the device, able to predict the point-of-failures and
the propagation of faults induced by configuration memory modification in the
circuit implemented on programmable hardware are good candidates for a light
methodology to be applied early in the design flow.

Second, the deep knowledge of the mapping between faults affecting the config-
uration memory and the hardware resources and modules implemented on the device
developed during this research work can contribute to a more precise and efficient
evaluation and enhancement of design robustness based on custom place-and-route
solutions that can be early applied evaluated [91].

Finally, more research is needed to develop fault-tolerant systems with high
reliability and robustness using Hardware-Reconfigurable SoCs, exploring the po-
tential of using redundant systems and developing new methods for evaluating the
reliability and robustness of such systems. In particular, deep and comprehensive
fault analysis can be invaluable for increasing the robustness of redundant systems
and avoiding cross-domain errors that can significantly compromise the hardening
approach based on redundancy [92, 93]. Sensitivity to cross-domain errors can be
detected by exploiting the detailed knowledge of the radiation-induced effects on
the hardware of implemented designs, which can be reached only through a com-
prehensive knowledge of how radiation-induced modifications of the configuration
memory affect programmed resources.

10.2 Future Directions 155

The knowledge, methodologies, results, and tools developed during this research
will be a fundamental basis for future research in these areas.

Bibliography

[1] Xilinx. 7 Series FPGAs Configuration, UG470. Xilinx.

[2] Xilinx. UltraScale Architecture Configuration, UG570. Xilinx.

[3] Robert Baumann and Kirby Kruckmeyer. Radiation Handbook for Electronics.
Texas Instruments Inc., Texas Instruments, Dallas, Texas, 2020.

[4] Sarah Azimi and Luca Sterpone. Digital design techniques for dependable high
performance computing. In 2020 IEEE International Test Conference (ITC),
pages 1–10, 2020.

[5] V. Ferlet-Cavrois, V. Pouget, D. McMorrow, J. R. Schwank, N. Fel, F. Essely,
R. S. Flores, P. Paillet, M. Gaillardin, D. Kobayashi, J. S. Melinger, O. Duhamel,
P. E. Dodd, and M. R. Shaneyfelt. Investigation of the propagation induced
pulse broadening (pipb) effect on single event transients in soi and bulk inverter
chains. IEEE Transactions on Nuclear Science, 55(6):2842–2853, 2008.

[6] Alfonso Sánchez-Macián, Pedro Reviriego, Juan Antonio Maestro, and Shan-
shan Liu. Single event transient tolerant bloom filter implementations. IEEE
Transactions on Computers, 66(10):1831–1836, 2017.

[7] N. Battezzati, S. Gerardin, A. Manuzzato, D. Merodio, A. Paccagnella,
C. Poivey, L. Sterpone, and M. Violante. Methodologies to study frequency-
dependent single event effects sensitivity in flash-based fpgas. IEEE Transac-
tions on Nuclear Science, 56(6):3534–3541, 2009.

[8] L. Sterpone, N. Battezzati, and V. Ferlet-Cavrois. Analysis of set propagation
in flash-based fpgas by means of electrical pulse injection. IEEE Transactions
on Nuclear Science, 57(4):1820–1826, 2010.

[9] Sana Rezgui, J. J. Wang, Yinming Sun, Brian Cronquist, and John McCollum.
Configuration and routing effects on the set propagation in flash-based fpgas.
IEEE Transactions on Nuclear Science, 55(6):3328–3335, 2008.

[10] J. M. Benedetto, P. H. Eaton, D. G. Mavis, M. Gadlage, and T. Turflinger.
Digital single event transient trends with technology node scaling. IEEE
Transactions on Nuclear Science, 53(6):3462–3465, 2006.

Bibliography 157

[11] Corrado De Sio, Sarah Azimi, and Luca Sterpone. On the evaluation of the
pipb effect within sram-based fpgas. In 2019 IEEE European Test Symposium
(ETS), pages 1–2, 2019.

[12] C. De Sio, S. Azimi, L. Sterpone, and B. Du. Analyzing radiation-induced
transient errors on sram-based fpgas by propagation of broadening effect. IEEE
Access, 7:140182–140189, 2019.

[13] S. Azimi, L. Sterpone, B. Du, and L. Boragno. On the analysis of radiation-
induced single event transients on sram-based fpgas. Microelectronics Reliabil-
ity, 88-90:936–940, 2018.

[14] Xilinx. 7 Series FPGAs Configurable Logic Block, UG474. Xilinx.

[15] Huaguo Liang, Xiumin Xu, Zhengfeng Huang, Cuiyun Jiang, Yingchun Lu,
Aibin Yan, Tianming Ni, Yiming Ouyang, and Maoxiang Yi. A methodology
for characterization of set propagation in sram-based fpgas. IEEE Transactions
on Nuclear Science, 63(6):2985–2992, 2016.

[16] L. Sterpone, F. Luoni, S. Azimi, and B. Du. A 3-d simulation-based approach
to analyze heavy ions-induced set on digital circuits. IEEE Transactions on
Nuclear Science, 67(9):2034–2041, 2020.

[17] F. Corno, M.S. Reorda, and G. Squillero. Rt-level itc’99 benchmarks and first
atpg results. IEEE Design and Test of Computers, 17(3):44–53, 2000.

[18] C. De Sio, S. Azimi, L. Bozzoli, B. Du, and L. Sterpone. Radiation-induced
single event transient effects during the reconfiguration process of sram-based
fpgas. Microelectronics Reliability, 100-101:113342, 2019.

[19] Prasad Rau, Atul V. Ghia, and Suresh M. Menon. Configuration memory
architecture for fpga, U.S. Patent 6222757B1, Apr. 2001.

[20] Carlos H. M. Oliveira, Matheus T. Moreira, Ricardo A. Guazzelli, and Ney
L. V. Calazans. Ascend-freepdk45: An open source standard cell library for
asynchronous design. In 2016 IEEE International Conference on Electronics,
Circuits and Systems (ICECS), pages 652–655, 2016.

[21] Ludovica Bozzoli and Luca Sterpone. Mats: An on-line testing approach for
reconfigurable embedded memories. In 2018 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pages 1–6, 2018.

[22] Ludovica Bozzoli, Corrado De Sio, Luca Sterpone, and Cinzia Bernardeschi.
Pyxel: An integrated environment for the analysis of fault effects in sram-based
fpga routing. In 2018 International Symposium on Rapid System Prototyping
(RSP), pages 70–75, 2018.

158 Bibliography

[23] Travis Haroldsen, Brent Nelson, and Brad Hutchings. Rapidsmith 2: A frame-
work for bel-level cad exploration on xilinx fpgas. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’15, page 66–69, New York, NY, USA, 2015. Association for Computing
Machinery.

[24] Steve Guccione, Delon Levi, and Prasanna Sundararajan. Jbits: Java based
interface for reconfigurable computing. In Second Annual Military and
Aerospace Applications of Programmable Devices and Technologies Confer-
ence (MAPLD), 01 2000.

[25] Khoa Dang Pham, Edson Horta, and Dirk Koch. Bitman: A tool and api
for fpga bitstream manipulations. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pages 894–897, 2017.

[26] Chris Lavin and Alireza Kaviani. Rapidwright: Enabling custom crafted
implementations for fpgas. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 133–
140, 2018.

[27] Florian Benz, André Seffrin, and Sorin A. Huss. Bil: A tool-chain for bitstream
reverse-engineering. In 22nd International Conference on Field Programmable
Logic and Applications (FPL), pages 735–738, 2012.

[28] Zheng Ding, Qiang Wu, Yizhong Zhang, and Linjie Zhu. Deriving an ncd file
from an fpga bitstream: Methodology, architecture and evaluation. Micropro-
cessors and Microsystems, 37(3):299–312, 2013.

[29] Tao Zhang, Jian Wang, Shize Guo, and Zhe Chen. A comprehensive fpga
reverse engineering tool-chain: From bitstream to rtl code. IEEE Access,
7:38379–38389, 2019.

[30] Ludovica Bozzoli and Luca Sterpone. Comet: a configuration memory tool to
analyze, visualize and manipulate fpgas bitstream. In ARCS Workshop 2018;
31th International Conference on Architecture of Computing Systems, pages
1–4, 2018.

[31] S. Danzeca, G. Spiezia, M. Brugger, L. Dusseau, G. Foucard, R. Garcia Alia,
P. Mala, A. Masi, P. Peronnard, J. Soltes, A. Thornton, and L. Viererbl. Quali-
fication and characterization of sram memories used as radiation sensors in the
lhc. IEEE Transactions on Nuclear Science, 61(6):3458–3465, 2014.

[32] Felipe G. H. Leite, Roberto B. B. Santos, Nilberto H. Medina, Vitor.
A. P. Aguiar, Renato C. Giacomini, Nemitala Added, Fernando Aguirre,
Eduardo L.A. Macchione, Fabian Vargas, and Marcilei A. G. da Silveira.
Ionizing radiation effects on a cots low-cost risc microcontroller. In 2017 18th
IEEE Latin American Test Symposium (LATS), pages 1–4, 2017.

Bibliography 159

[33] Lucas Antunes Tambara, Alexey Akhmetov, Dmitriy V. Bobrovsky, and
Fernanda Lima Kastensmidt. On the characterization of embedded memories
of zynq-7000 all programmable soc under single event upsets induced by heavy
ions and protons. In 2015 15th European Conference on Radiation and Its
Effects on Components and Systems (RADECS), pages 1–4, 2015.

[34] Mehran Amrbar, Farokh Irom, Steven M. Guertin, and Greg Allen. Heavy ion
single event effects measurements of xilinx zynq-7000 fpga. In 2015 IEEE
Radiation Effects Data Workshop (REDW), pages 1–4, 2015.

[35] Wei-Tao Yang, Xue-Cheng Du, Yong-Hong Li, Gang He, Chao-Hui nad Guo,
Shu-Ting Shi, Li Cai, Sarah Azimi, Corrado De Sio, and Luca Sterpone. Single-
event-effect propagation investigation on nanoscale system on chip by applying
heavy-ion microbeam and event tree analysis. Nuclear Science and Techniques,
32(106):2210–3147, 2021.

[36] Corrado De Sio, Sarah Azimi, Luca Sterpone, and David Merodio Codinachs.
Analysis of proton-induced single event effect in the on-chip memory of em-
bedded process. In 2022 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2022.

[37] S. Azimi, C. De Sio, A. Portaluri, D. Rizzieri, and L. Sterpone. A comparative
radiation analysis of reconfigurable memory technologies: Finfet versus bulk
cmos. Microelectronics Reliability, 138:114733, 2022.

[38] Leonardo Passig Horstmann and Antônio Augusto Fröhlich. A fault injection
framework for real-time multicore embedded systems. In 2020 X Brazilian
Symposium on Computing Systems Engineering (SBESC), pages 1–8, 2020.

[39] Martin Hiller, Arshad Jhumka, and Neeraj Suri. Propane: An environment for
examining the propagation of errors in software. In Proceedings of the 2002
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA ’02, page 81–85, New York, NY, USA, 2002. Association for Computing
Machinery.

[40] Ninghan Tian, Daniel Saab, and Jacob A. Abraham. Esift: Efficient system
for error injection. In 2018 IEEE 24th International Symposium on On-Line
Testing And Robust System Design (IOLTS), pages 201–206, 2018.

[41] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik Pat-
tabiraman. Llfi: An intermediate code-level fault injection tool for hardware
faults. In 2015 IEEE International Conference on Software Quality, Reliability
and Security, pages 11–16, 2015.

[42] Daniel Oliveira, Vinicius Frattin, Philippe Navaux, Israel Koren, and Paolo
Rech. Carol-fi: An efficient fault-injection tool for vulnerability evaluation of
modern hpc parallel accelerators. In Proceedings of the Computing Frontiers
Conference, CF’17, page 295–298, New York, NY, USA, 2017. Association
for Computing Machinery.

160 Bibliography

[43] Felipe Rosa, Fernanda Kastensmidt, Ricardo Reis, and Luciano Ost. A fast and
scalable fault injection framework to evaluate multi/many-core soft error reli-
ability. In 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), pages 211–214, 2015.

[44] R. Velazco, S. Rezgui, and R. Ecoffet. Predicting error rate for microprocessor-
based digital architectures through c.e.u. (code emulating upsets) injection.
IEEE Transactions on Nuclear Science, 47(6):2405–2411, 2000.

[45] Sarah Azimi, Corrado De Sio, Daniele Rizzieri, and Luca Sterpone. Analysis
of single event effects on embedded processor. Electronics, 10(24), 2021.

[46] Boyang Du, Luca Sterpone, Sarah Azimi, David Merodio Codinachs, Véro-
nique Ferlet-Cavrois, Cesar Boatella Polo, Rubén García Alía, Maria Kastri-
otou, and Páblo Fernandez-Martínez. Ultrahigh energy heavy ion test beam
on xilinx kintex-7 sram-based fpga. IEEE Transactions on Nuclear Science,
66(7):1813–1819, 2019.

[47] Andrew M. Keller, Timothy A. Whiting, Kenneth B. Sawyer, and Michael J.
Wirthlin. Dynamic seu sensitivity of designs on two 28-nm sram-based fpga
architectures. IEEE Transactions on Nuclear Science, 65(1):280–287, 2018.

[48] Matteo Sonza Reorda, Luca Sterpone, and Anees Ullah. An error-detection
and self-repairing method for dynamically and partially reconfigurable systems.
IEEE Transactions on Computers, 66(6):1022–1033, 2017.

[49] Corrado De Sio, Sarah Azimi, Andrea Portaluri, and Luca Sterpone. Seu
evaluation of hardened-by-replication software in risc- v soft processor. In
2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pages 1–6, 2021.

[50] Wilfredo Torres-Pomales. Software Fault Tolerance: A Tutorial. NASA.

[51] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante. Soft-error
detection through software fault-tolerance techniques. In Proceedings 1999
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems
(EFT’99), pages 210–218, 1999.

[52] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. Swift:
software implemented fault tolerance. In International Symposium on Code
Generation and Optimization, pages 243–254, 2005.

[53] M. Rebaudengo, M.S. Reorda, and M. Violante. A new software-based tech-
nique for low-cost fault-tolerant application. In Annual Reliability and Main-
tainability Symposium, 2003., pages 25–28, 2003.

[54] C. Bolchini, A. Miele, M. Rebaudengo, F. Salice, D. Sciuto, L. Sterpone,
and M. Violante. Software and hardware techniques for seu detection in ip
processors. Journal of Electronic Testing, 24(1):35–44, Jun 2008.

Bibliography 161

[55] Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro,
Francesco Conti, and Luca Benini. Quentin: an ultra-low-power pulpissimo soc
in 22nm fdx. In 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology
Unified Conference (S3S), pages 1–3, 2018.

[56] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538), pages 3–14, 2001.

[57] Dario Mamone, Alberto Bosio, Alessandro Savino, Said Hamdioui, and Maur-
izio Rebaudengo. On the analysis of real-time operating system reliability in
embedded systems. In 2020 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2020.

[58] I. O. Loskutov, N. D. Kravchenko, V. A. Marfin, P. V. Nekrasov, D. V.
Bobrovsky, A. A. Smolin, and A. V. Yanenko. Investigation of operating
system influence on single event functional interrupts using fault injection and
hardware error detection in arm microcontroller. In 2021 International Siberian
Conference on Control and Communications (SIBCON), pages 1–4, 2021.

[59] Pablo M. Aviles, Almudena Lindoso, Jose A. Belloch, Mario Garcia-Valderas,
Yolanda Morilla, and Luis Entrena. Radiation testing of a multiprocessor
macrosynchronized lockstep architecture with freertos. IEEE Transactions on
Nuclear Science, 69(3):462–469, 2022.

[60] Luis Alberto Aranda, Nils-Johan Wessman, Lucana Santos, Alfonso Sánchez-
Macián, Jan Andersson, Roland Weigand, and Juan Antonio Maestro. Analysis
of the critical bits of a risc-v processor implemented in an sram-based fpga for
space applications. Electronics, 9(1), 2020.

[61] Andrew Elbert Wilson and Michael Wirthlin. Neutron radiation testing of fault
tolerant risc-v soft processor on xilinx sram-based fpgas. In 2019 IEEE Space
Computing Conference (SCC), pages 25–32, 2019.

[62] Wassim Mansour and Raoul Velazco. Seu fault-injection in vhdl-based pro-
cessors: A case study. In 2012 13th Latin American Test Workshop (LATW),
pages 1–5, 2012.

[63] Chang Cai, Shuai Gao, Peixiong Zhao, Jian Yu, Kai Zhao, Liewei Xu, Dongqing
Li, Ze He, Guangwen Yang, Tianqi Liu, and Jie Liu. See sensitivity evaluation
for commercial 16 nm sram-fpga. Electronics, 8(12), 2019.

[64] Andrea Portaluri, Sarah Azimi, Corrado De Sio, Daniele Rizzieri, and Luca
Sterpone. On the reliability of real-time operating system on embedded soft
processor for space applications. In Martin Schulz, Carsten Trinitis, Nikela
Papadopoulou, and Thilo Pionteck, editors, Architecture of Computing Systems,
pages 181–193, Cham, 2022. Springer International Publishing.

162 Bibliography

[65] Sarah Azimi, Corrado De Sio, Andrea Portaluri, Daniele Rizzieri, Eleonora
Vacca, Luca Sterpone, and David Merodio Codinachs. Exploring the impact of
soft errors on the reliability of real-time embedded operating systems. Elec-
tronics, 12(1), 2023.

[66] Fabio Benevenuti and Fernanda Lima Kastensmidt. Reliability evaluation on
interfacing with axi and axi-s on xilinx zynq-7000 ap-soc. In 2018 IEEE 19th
Latin-American Test Symposium (LATS), pages 1–6, 2018.

[67] Fabio Benevenuti and Fernanda Lima Kastensmidt. Analyzing axi streaming
interface for hardware acceleration in ap-soc under soft errors. In Nikolaos
Voros, Michael Huebner, Georgios Keramidas, Diana Goehringer, Christos
Antonopoulos, and Pedro C. Diniz, editors, Applied Reconfigurable Computing.
Architectures, Tools, and Applications, pages 243–254, Cham, 2018. Springer
International Publishing.

[68] Corrado De Sio, Sarah Azimi, and Luca Sterpone. On the evaluation of seu
effects on axi interconnect within ap-socs. In André Brinkmann, Wolfgang
Karl, Stefan Lankes, Sven Tomforde, Thilo Pionteck, and Carsten Trinitis,
editors, Architecture of Computing Systems – ARCS 2020, pages 215–227,
Cham, 2020. Springer International Publishing.

[69] C. De Sio, S. Azimi, and L. Sterpone. On the analysis of radiation-induced fail-
ures in the axi interconnect module. Microelectronics Reliability, 114:113733,
2020.

[70] Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural
network design using weights +1, 0, and -1. In 2014 IEEE Workshop on Signal
Processing Systems (SiPS), pages 1–6, 2014.

[71] Jonghong Kim, Kyuyeon Hwang, and Wonyong Sung. X1000 real-time phon-
eme recognition vlsi using feed-forward deep neural networks. In 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 7510–7514, 2014.

[72] Michel van Lier, Luc Waeijen, and Henk Corporaal. Bitwise neural network
acceleration: Opportunities and challenges. In 2019 8th Mediterranean Confer-
ence on Embedded Computing (MECO), pages 1–5, 2019.

[73] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer
Vision – ECCV 2016, pages 525–542, Cham, 2016. Springer International
Publishing.

[74] Boyang Du, Sarah Azimi, Corrado de Sio, Ludovica Bozzoli, and Luca Ster-
pone. On the reliability of convolutional neural network implementation on
sram-based fpga. In 2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2019.

Bibliography 163

[75] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast,
scalable binarized neural network inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’17, page 65–74, New York, NY, USA, 2017. Association for Computing
Machinery.

[76] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu
Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. Ares: A frame-
work for quantifying the resilience of deep neural networks. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, 2018.

[77] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W. Keckler. Understanding error propaga-
tion in deep learning neural network (dnn) accelerators and applications. In
Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[78] Brunno F. Goldstein, Sudarshan Srinivasan, Dipankar Das, Kunal Banerjee,
Leandro Santiago, Victor C. Ferreira, Alexandre S. Nery, Sandip Kundu, and
Felipe M. G. França. Reliability evaluation of compressed deep learning
models. In 2020 IEEE 11th Latin American Symposium on Circuits & Systems
(LASCAS), pages 1–5, 2020.

[79] Mohamed A. Neggaz, Ihsen Alouani, Pablo R. Lorenzo, and Smail Niar. A
reliability study on cnns for critical embedded systems. In 2018 IEEE 36th
International Conference on Computer Design (ICCD), pages 476–479, 2018.

[80] Cristiana Bolchini, Luca Cassano, Antonio Miele, and Alessandro Toschi. Fast
and accurate error simulation for cnns against soft errors. IEEE Transactions
on Computers, pages 1–14, 2022.

[81] Fernando Fernandes dos Santos, Pedro Foletto Pimenta, Caio Lunardi, Lucas
Draghetti, Luigi Carro, David Kaeli, and Paolo Rech. Analyzing and increasing
the reliability of convolutional neural networks on gpus. IEEE Transactions on
Reliability, 68(2):663–677, 2019.

[82] Corrado De Sio, Sarah Azimi, and Luca Sterpone. An emulation platform for
evaluating the reliability of deep neural networks. In 2020 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 1–4, 2020.

[83] Corrado De Sio, Sarah Azimi, and Luca Sterpone. Firenn: Neural networks
reliability evaluation on hybrid platforms. IEEE Transactions on Emerging
Topics in Computing, 10(2):549–563, 2022.

[84] Travis Haroldsen, Brent Nelson, and Brad Hutchings. Rapidsmith 2: A frame-
work for bel-level cad exploration on xilinx fpgas. In Proceedings of the 2015

164 Bibliography

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’15, page 66–69, New York, NY, USA, 2015. Association for Computing
Machinery.

[85] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[86] Pynq. http://www.pynq.io/. Accessed: 2023-01-01.

[87] Xilinx. High-Level Synthesis, UG902. Xilinx.

[88] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package
of torch. In Proceedings of the 18th ACM International Conference on Multi-
media, MM ’10, page 1485–1488, New York, NY, USA, 2010. Association for
Computing Machinery.

[89] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[90] Cinzia Bernardeschi, Luca Cassano, Andrea Domenici, and Luca Sterpone.
Assess: A simulator of soft errors in the configuration memory of sram-based
fpgas. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 33(9):1342–1355, 2014.

[91] Eleonora Vacca, Corrado De Sio, and Sarah Azimi. Layout-oriented radiation
effects mitigation in risc-v soft processor. In Proceedings of the 19th ACM
International Conference on Computing Frontiers, CF ’22, page 215–220, New
York, NY, USA, 2022. Association for Computing Machinery.

[92] Andrea Portaluri, Corrado De Sio, Sarah Azimi, and Luca Sterpone. A new
domains-based isolation design flow for reconfigurable socs. In 2021 IEEE
27th International Symposium on On-Line Testing and Robust System Design
(IOLTS), pages 1–7, 2021.

[93] Andrea Portaluri, Corrado De Sio, Sarah Azimi, and Luca Sterpone. Seu
mitigation on sram-based fpgas through domains-based isolation design flow.
In 2021 21th European Conference on Radiation and Its Effects on Components
and Systems (RADECS), pages 1–4, 2021.

http://www.pynq.io/

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivations
	1.2 Aims and Objectives
	1.3 Contributions
	1.4 Thesis Organization
	1.5 Publications

	I Context
	2 Hardware-Reconfigurable Systems-on-Chip
	2.1 Reconfigurable Hardware
	2.1.1 Reconfigurable Architecture
	2.1.2 All-Programmable Systems-on-Chip

	3 Radiation Effects on Electronics
	3.1 An Introduction to Radiation Effects
	3.1.1 Dose Effects
	3.1.2 Single Event Effects (SEEs)

	3.2 Radiation Environments
	3.2.1 Electronics operating in Space
	3.2.2 Electronics operating on Earth

	II Physical-Level Radiation Analysis of Reconfigurable SoCs
	4 Analysis of Single Event Transient
	4.1 Overview on Single Event Transient Analysis
	4.2 SETs Propagation in the Programmable Logic
	4.2.1 State of the Art of the Analysis of SET Propagation in Programmable Devices
	4.2.2 A Static Analyzer for PIPB effect
	4.2.3 Modeling Function Generators and SETs Characteristics
	4.2.4 Analyzing PIPB on Placed-and-Routed Netlists
	4.2.5 Validating PIPB Analysis on Benchmark Circuits

	4.3 Effects of SETs during Hardware Reconfiguration
	4.3.1 State-of-the-Art on the Evaluation of SETs during Hardware Reconfiguration
	4.3.2 Modeling Reconfiguration Circuitry
	4.3.3 Fault Model: From Transient Pulse to Soft Error
	4.3.4 Evaluating Errors due to SETs during Reconfiguration

	4.4 Research Advancements on the Analysis of Single Event Transients

	5 Analysis of Single Event Upset
	5.1 Overview on Single Event Upset Analysis
	5.2 PyXEL: A framework for Easing Bitstream Analysis and Experiments
	5.2.1 Bitstream Analysis, Visualization, and Manipulation
	5.2.2 Vivado Integration
	5.2.3 Bitstream Decoding
	5.2.4 Automation Support for Fault Injection and Radiation Testing Experiments

	5.3 Analysis of Electrical Behaviour of Faulty Interconnections
	5.3.1 Methodology for Interconnection Faults Analysis
	5.3.2 Faulty Interconnection Electrical Characterization

	5.4 Research Advancements on the Analysis of Single Event Upsets

	6 Radiation Test Analysis
	6.1 Overview on Radiation Test Analysis
	6.2 Testing the Zynq On-Chip-Memory with Protons
	6.2.1 State of the Art of Radiation Analysis of SoC Memory
	6.2.2 Proton Radiation Testing Setup
	6.2.3 Proton Test Results and Fault Models
	6.2.4 On-Chip Memory Fault Emulation

	6.3 A CRAM Technology Analysis: CMOS vs FinFET
	6.3.1 Proton Test Experiment Setup
	6.3.2 Proton Test Results, Analysis, and Comparison

	6.4 Research Advancements in Proton Testing of Reconfigurable SoCs

	III Reliability Analysis of Reconfigurable Hardware-Accelerated SoCs
	7 Evaluating Reliability of Embedded Processor Systems
	7.1 Overview on Reliability of Embedded Processor
	7.2 Evaluating Reliability of Hard Processors
	7.2.1 State of the Art of Reliability Analysis of Hard Processors
	7.2.2 Microprocessor Fault Injection Platform
	7.2.3 Fault Models
	7.2.4 Software Benchmark Reliability Evaluation

	7.3 Evaluating Software Reliability in Soft Processors
	7.3.1 State of the Art of Reliability Analysis of Soft Processors
	7.3.2 Soft Processor Reliability Analysis Flow
	7.3.3 SEUs Evaluation of Hardened Software on Soft Processor

	7.4 Reliability of Applications running in Real-Time Operating System on Soft Processors
	7.4.1 State of the Art of Reliability Analysis of Real-Time Applications on Soft Processors
	7.4.2 Multiple Bit Upset Fault Model
	7.4.3 Soft Processor under Test: Device, Hardware, Operating System and Application
	7.4.4 Reliability Analysis for Soft Processor running RTOS

	7.5 Research Advancements in Reliability Evaluation of Embedded Processors

	8 Evaluating Reliability of Host-Accelerator Interfacing
	8.1 Overview on Reliability of Host-Accelerator Interfacing
	8.2 Analysis of the AXI Interconnect Module
	8.2.1 State of the Art on the Evaluation of Robustness of AXI Interconnection Core
	8.2.2 The Reliability Evaluation Flow for AXI interconnect Core
	8.2.3 Hardware and Software Benchmark
	8.2.4 Reliability Analysis for AXI Interconnect IP Core
	8.2.5 Results of Reliability Analysis of AXI Interconnect IP Core

	8.3 Research Advancements in Reliability Evaluation of AXI Interconnections Module

	9 Evaluating Reliability of Hardware-Acceleration for Neural Networks
	9.1 Overview on Reliability of Hardware-Accelerated Neural Networks
	9.2 Effects of SEUs on Reconfigurable Accelerated Quantized Neural Network
	9.2.1 State of the Art of Reliability Analysis of Quantized Neural Network implemented on Reconfigurable Hardware
	9.2.2 Fault Injection Platform
	9.2.3 Reliability Evaluation Analysis of the Binarized Network

	9.3 Emulating Architectural Faults on Hardware Accelerated Neural Networks
	9.3.1 State of the Art of Robustness Analysis of Hardware Accelerated Neural Networks
	9.3.2 Hybrid-based Approach to Neural Network Reliability
	9.3.3 FireNN Platform
	9.3.4 Reliability Analysis of an AlexNet Layer
	9.3.5 Results of Software-based Reliability Evaluation of an AlexNet Layer
	9.3.6 Results of Hybrid-based Reliability Evaluation of an AlexNet Layer

	9.4 Research Advancements in Reliability Evaluation of Hardware-Acceleration for Neural Networks

	10 Conclusions and Future Directions
	10.1 Conclusions
	10.2 Future Directions

	Bibliography

