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Summary
Objective. Stain normalization is a technique used to standardize the color appearance 
of digital whole slide images (WSIs). This study aimed to assess the impact of digital stain 
normalization on prostate cancer diagnosis by pathologists. 
Methods. A multi-institutional board of four pathologists evaluated 407 hematoxylin and 
eosin (H&E) prostate WSIs before and after stain normalization. The presence/absence of 
prostate adenocarcinoma, the Grade Groups as well as color quality perception and time 
required for diagnosis were recorded. 
Results. After normalization, color quality improved significantly for all pathologists 
(median scores increased from 4-6 to 7-8/10). Average diagnosis time decreased from 50s 
to 35s (p < 0.001). Inter-pathologist reproducibility for Gleason risk group showed a fair to 
good level of agreement, with an improvement after normalization. 
Conclusions. Stain normalization enhanced pathologists’ diagnosis of prostate cancer by 
improving color standardization, reducing diagnosis time, and increasing inter-observer 
reproducibility. These findings highlight the potential of stain normalization to improve 
accuracy and efficiency in digital pathology.

Key words: digital pathology, prostate cancer, stain normalization, gleason score, H&E 
staining

Introduction

Digital pathology (DP) adoption is transforming pathology practice as 
laboratories transition to digitized workflows 1. Realizing the full poten-
tial of this transition requires optimizing each step, including automated 
tracking, streamlined workflows 2, and proper validation of whole slide 
images (WSIs) 3. However, variability in tissue preparation across labs 
can impede this shift by affecting WSI quality  4. This variability poses 
challenges for telepathology consultations and digitizing archived slides 
with faded stains 5. 
Digital stain normalization tools have been developed to address vari-
able staining quality by standardizing appearance across digital images 
to enable consistent interpretation 6. Using normalization during prepro-
cessing has shown positive impacts by improving model generaliza-
tion for various AI algorithms 7,8. In our recent review 9, we identify data 
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augmentation and stain normalization as powerful 
techniques to significantly improve the performance 
and consistency of deep learning models in digital 
pathology. A preliminary study on stain normalization 
also suggested benefits for pathologists’ perception of 
WSIs 10. However, the impact of normalization in clini-
cal diagnosis settings remains unclear. One area re-
quiring further analysis is interobserver concordance 
in Gleason grading, which exhibits notable variability 11 
with implications for prostate cancer management. 
Therefore, this study aims to comprehensively evalu-
ate the impact of stain normalization on a large set of 
WSIs for prostate cancer diagnosis. Specifically, this 
study assesses how normalization could influence 
pathologists’ confidence, reproducibility, grading, and 
annotations. A multi-institutional panel of pathologists 
examined images with and without normalization to 
evaluate its potential to improve accuracy, efficiency, 
and reliability in digital pathology interpretation.

Materials and methods

Datasets

The dataset consisted of 407 hematoxylin and eosin 
(H&E) stained prostate WSIs obtained from The Can-
cer Genome Atlas (TCGA) program. The WSIs in this 
study were heterogeneous in terms of magnification 
and scanning devices. 253 WSIs were captured at 20x 

magnification (0.467 μm/pixel) and 154 WSIs were 
captured at 40x magnification (0.233 μm/pixel). In 
terms of scanning devices, 203 WSIs were captured 
using Leica scanners in.svs format, 151 WSIs were 
captured using Hamamatsu scanners in ndpi format, 
and 53 WSIs were captured using 3DHISTECH scan-
ners in.mrxs format. To address this variability, the 
dataset was partitioned into four balanced batches 
considering magnification, scanning device and stain 
variability. Each batch was designed to contain a simi-
lar distribution of images from different centers and 
scanning devices, as well as a comparable range of 
staining quality. This approach aimed to create ‘con-
sistent’ datasets, meaning that each batch had ap-
proximately the same level of variability in terms of im-
age sources and staining characteristics. The batches 
were then combined to create the final datasets as-
signed to each pathologist for evaluation. This strate-
gy was employed to mitigate potential bias and ensure 
that no single batch was significantly easier or more 
challenging to analyze than the others. The design of 
the entire study is reported in Figure 1. The study was 
conducted in accordance with the Declaration of Hel-
sinki, the WSI used were obtained from the publicly 
available dataset of TCGA not requiring additional Lo-
cal Ethical Board approval.

Stain Normalization

Stain normalization is a technique used to adjust and 
align the color appearance of histological slides with 

Figure 1. Study design showing division of multicentric WSI collection into batches presented to pathologists from different 
institutions. Pathologists evaluated tumor annotations, Gleason risk group, diagnosis time, and color quality for original and 
normalized images after a washout period. Each WSI received assessments from two pathologists before and after normaliza-
tion. Analysis focused on color, diagnosis time, agreement between pathologists regarding diagnosis and tumor localization.
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respect to a target image, thus reducing the impact 
of staining variations. To carry out the stain normal-
ization process, an improved version of the STAINS 
(STAndardIzation & Normalization of histological 
Slides) tool  12 was utilized. Briefly, the digital stain 
normalization process involves standardizing the 
appearance of histology images by removing inter-
image variability in stain conditions while preserving 
biologically relevant features. Before STAINS nor-
malization, tissue detection is performed to identify 
relevant tissue. Then, color parameters for the trans-
formation are computed on the entire WSI. Finally, 
normalization is performed, applying the same trans-
formation to every tile. 
Each pathologist was asked to provide a refer-

ence WSI that they subjectively judged as optimal-
ly stained. These target images were selected at 
a resolution of 20x. Stain normalization was then 
conducted for each pathologist using their chosen 
reference slide as the target. This approach allowed 
the pathologists to evaluate the normalized image 
according to their individual chromatic preferences. 
Figure 2 presents an example of the normalization 
process utilizing two different target images. Dur-
ing this process, the color characteristics of the im-
age are modified while ensuring the preservation 
of structural integrity of the original content. In this 
regard, a previous study was conducted, showing 
that this normalization method does not introduce 
clinically significant artifacts 10.

Figure 2. Example of stain normalization using different target images chosen by pathologists. The algorithm starts by 
estimating the H&E stain colors in each image, then adjusting the image appearance to align with target color values, while 
preserving local tissue contrast. The normalization process alters the color characteristics of the image while maintaining the 
structural integrity of the original content. Normalization took approximately 3 minutes per WSI.
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The stain normalization process was performed on 
a workstation with 8 cores and 128 GB of RAM. The 
normalization time is consistent across pathologists, 
with mean computational times ranging from 3.22 to 
3.47 minutes per WSI, depending on the pathologist. 
These processing times are based on an average 
WSI area of around 6.10 × 109 pixels.

Pathologists WSIs evaluation

A panel consisting of four pathologists (referred to as 
path #1, #2, #3, and #4) from different institutions and 
with different years of experience participated in the 
evaluation of the WSIs. The evaluation process initially 
consisted of assessing the original images, followed 
by re-evaluating the normalized versions of the same 
slides after a 3-month washout period. To ensure a 
comprehensive evaluation, two batches of WSIs were 
randomly assigned to each pathologist. Furthermore, 
each batch was evaluated by two different pathologists, 
as indicated in Table SI. To maintain anonymity and pre-
vent tracing back to the original WSIs, the normalized 
slides were anonymized during the second round of 
evaluation. For each WSI, the pathologists were pro-
vided with an Excel spreadsheet (Microsoft, Redmont, 
USA) containing the following data (Fig. S1):
1	 Diagnosis: presence/absence of invasive acinar 

prostate adenocarcinoma, with specification of the 
Gleason Score and Grade Group, as per the most 
recent WHO classification 13;

2	 Time required for diagnosis, from the slide opening 
to the diagnosis formulation (in seconds);

3	 Perceived color quality, on a scale from 1 (lowest) 
to 10 (highest quality)

4	 QuPath 14 (version 0.4.3) was used to visualize the 
WSIs (Fig. S2). After the visual evaluation, patholo-
gists performed annotations of the tumor area, with 
color-coded discrimination of Gleason patterns 3, 
4 and 5, then extracted as geojson format.

Data analysis

Normally distributed continuous variables are ex-
pressed as mean ± standard deviation (SD), while non-
normally distributed variables are expressed as median 
and interquartile range (IQR). Intra-pathologist variabil-
ity and inter-pathologist reproducibility between original 
and normalized slides for final diagnosis and Gleason 
risk group were measured using Cohen’s kappa coef-
ficient. Perceived image quality and time required for di-
agnosis were compared between original and normal-
ized WSIs using a paired t-test. Additionally, compara-
bility of tumor area annotations and prevalent Gleason 
pattern before and after normalization was assessed 
using the Dice Similarity Coefficient (DSC) at a mag-
nification of 5x using Python (version 3.7.11). Statistical 
analysis was performed in Matlab (MathWorks, USA) 
with a significance level set at 0.001.

Results

Color quality and time to diagnosis after 
normalization

Table I shows the color quality scores and diagnosis 
times for each pathologist on the original and normal-
ized WSIs. Across all image batches, normalization 
led to a noticeable decrease in average diagnosis 
time of approximately 13 seconds per WSI. Additional-
ly, normalization improved the perceived color quality 
scores for all pathologists, as indicated by increased 
median scores (Fig. 3). This trend was confirmed in 
a sub-analysis of images categorized by original low, 
medium, and high color quality (Fig. S3).
Having two pathologists score each image enabled 
direct comparison of color quality before and af-
ter normalization (Tab.  II). Median scores increased 
significantly across all batches after normalization 
(p < 0.001). Analyzing the distributions of original ver-

Table I. Color quality and diagnosis time metrics for each individual pathologist on original and normalized WSIs. Mean, 
standard deviation, and median values are shown. Asterisks indicate statistically significant increases in color quality and 
decreases in diagnosis time after normalization (paired t-test, p < 0.001).

Pathologist Images
Color Quality Time to diagnosis

Mean ± Std. Dev. Median Mean ± Std. Dev. Median

Path #1
Original 5.28 ± 2.25* 6 111.72 s ± 65.44 s* 100.00 s

Normalized 7.77 ± 1.61* 8 75.58 s ± 36.98 s* 70.00 s

Path #2
Original 4.05 ± 2.05* 4 27.76 s ± 16.99 s* 23.00 s

Normalized 6.98 ± 1.59* 7 17.86 s ± 12.13 s* 15.00 s

Path #3
Original 5.27 ± 2.39* 6 36.47 s ± 20.83 s* 30.00 s

Normalized 6.84 ± 1.74* 7 31.14 s ± 12.87s* 30.00 s

Path #4
Original 4.84 ± 1.89* 5 27.83 s ± 16.27 s* 23.00 s

Normalized 7.28 ± 2.40* 7.5 23.83 s ± 12.82 s* 20.00 s
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Figure 3. Distributions of color quality scores by each pathologist for original (red) and normalized (blue) WSIs. The asterisk 
indicates a statistically significant increase in color quality after normalization (p < 0.001).

Table II. Inter-pathologist agreement on Gleason risk groups and similarity of tumor annotations, before and after normaliza-
tion. Cohen’s kappa was calculated for Gleason risk groups, defined by grouping grade groups into 4 categories: no tumor, 
grade group 1, grade groups 2-3, and grade groups 4-5. The mean Dice similarity coefficient (DSC) compared tumor regions 
and individual Gleason pattern areas annotated before and after normalization. The asterisk indicates statistically significant 
increase in agreement after normalization (p < 0.001).

Batch Images
Color Quality

Mean ± SD
Cohen’s kappa 
for Risk Group

DSC on tumor annotations
Mean (No. WSIs)

Tumor Pattern 3 Pattern 4 Pattern 5

Batch 1
Original 4.95 ± 1.90* 0.6782 0.702 (82) 0.537 (51) 0.452 (52) 0.246 (14)

Normalized 7.48 ± 1.61* 0.6609 0.733 (82) 0.589 (51) 0.431 (52) 0.165 (14)

Batch 2
Original 4.77 ± 1.83* 0.5174 0.676 (87) 0.286 (48) 0.467 (61) 0.125 (11)

Normalized 7.40 ± 1.49* 0.5539 0.725 (87) 0.295 (48) 0.477 (61) 0.170 (11)

Batch 3
Original 4.61 ± 1.94* 0.4762 0.665 (85) 0.231 (61) 0.384 (61) 0.036 (6)

Normalized 6.96 ± 1.45* 0.4964 0.696 (85) 0.229 (61) 0.475 (61) 0.049 (6)

Batch 4
Original 5.11 ± 1.92* 0.6363 0.661 (80) 0.409 (59) 0.376 (56) 0.070 (9)

Normalized 7.03 ± 1.91* 0.6853 0.749 (80) 0.506 (59) 0.397 (56) 0.019 (9)
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sus normalized quality scores in increasing quality 
groups reinforced this trend (Fig. S4). The improved 
image quality from normalization reduced the average 
diagnosis time significantly (p < 0.001).

Quantitative analysis of stain normalization

To quantitatively assess the impact of stain normal-
ization on the WSI dataset, we used HistoQC tool 
(version 2.1) to extract brightness features from the 
red, green, and blue color channels of the original and 
normalized WSIs. The distribution of these brightness 
features was compared before and after normalization 
using boxplots (Fig. 4).
The boxplots demonstrate that stain normalization ef-
fectively reduces the variability in brightness across 
the WSIs. The original WSIs exhibit a wider spread of 
feature values, indicating high variability in staining. In 
contrast, the normalized WSIs have a tighter distribu-
tion of brightness values clustered around the optimal 
levels for each color channel. 

Normalization impact on cancer diagnosis

We evaluated if normalization affected the pathologists’ 
evaluation of cancer presence and assignment of risk 
groups. Risk groups were stratified into 4 levels: no 
tumor, grade group 1, grade groups 2-3, and grade 
groups 4-5 15. Cancer detection concordance between 
the original histology slides and normalized images 
was almost identical (Fig. S5). Meanwhile, inter-
pathologist agreement for assigning the final risk group 
within each batch improved slightly after normalization 
(Tab. II). Agreement ranged from fair to good (0.48-0.68 
for original WSIs, and 0.50-0.69 after normalization). In 
three out of four batches, normalization led to a slight 
increase in agreement between pathologists. Only 
one batch showed a minimal decrease from 0.68 to 
0.66 originally. Figure 5 exemplifies how normalization 
improved inter-pathologist consensus for one slide. 
In the original WSIs, Gleason pattern assignment 
greatly differed between pathologists. However, 
after normalization, one pathologist changed the 
assessment and a higher consensus was achieved.

Figure 4. Boxplots comparing the distribution of RGB brightness features for original and normalized WSIs across each pa-
thologist. The normalized WSIs show reduced variability and improved clustering around optimal brightness levels compared 
to the original WSIs.
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Figure 5. Example case where stain normalization improved inter-pathologist agreement on Gleason patterns 
(20x magnification). In the original image, there was disagreement between pathologists. Pathologist 1 detected 
Gleason pattern 4 (orange) while Pathologist 2 identified only pattern 3 (yellow). After normalization, both agreed 
on final pattern 3.

Figure 6. Representative cases showing the effect of normalization on tumor detection and color quality ratings. 
(a) In the original WSI, both pathologists failed to detect any tumors (top row) and rated color quality as low 
(1/10). After normalization (bottom row), they agreed on detecting cancerous foci and rated color quality higher 
(5/10 and 3/10). Normalization also partially revealed an overlapping Gleason pattern 4 region (orange). (b) Origi-
nally, Pathologist #1 did not detect the cancerous tissue identified by Pathologist #2 and rated color quality as 
1/10. Following normalization, both pathologists detected tumors in the same areas. They also rated perceived 
color quality much higher (5/10 and 7/10, respectively).
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Tumor detection and pattern recognition

We assessed the effect of normalization on inter-pa-
thologist agreement for localizing tumors and anno-
tating their extent (Tab. II). Overall, tumor localization 
agreement, as measured by DSC, improved from the 
original to normalized slides (0.66-0.70 originally vs. 
0.70-0.75 after normalization). The boxplots in Figure 
S6 illustrate the DSC distributions for each batch. A 
statistically significant increase in DSC was observed 
for three of the four batches (paired t-test, p < 0.001). 
Figure 6A shows examples where both pathologists 
only detected cancer in the normalized images, with 
increased color quality scores. Detection and assign-
ment of Gleason pattern 4 also improved across all 
batches after normalization. Agreement for pattern 
3 improved in three of four batches. This suggests 
normalization enhanced detection and classification 
of cancerous regions. Figure 6B exemplifies a case 
where one pathologist missed cancer in the original 
but identified it in the same location after normaliza-
tion. No significant improvement occurred for pattern 
5, likely due to the small number of cases available.

Discussion

The staining of H&E tissue sections is crucial for ac-
curate pathology interpretation but can be affected by 
variables including fixation, processing, section thick-
ness, and staining methods 16. Operator- and labora-
tory-specific processes, along with factors impacting 
slide quality, such as fading over time or overly thick 
sections, require pathologists to adapt to color varia-
tions when consulting across institutions 17. Stain nor-
malization approaches aim to address variability and 
provide consistency for AI models. However, the ben-
efits for pathologists in clinical practice are less stud-
ied, especially with the transition to digital pathology 
introducing scanning variables 18.
Our study evaluated prostate samples from multiple in-
stitutions assessed by four pathologists before and af-
ter digital stain normalization. The aim was to document 
subjective and objective reliability variables and record 
significant changes in diagnostic concordance using a 
routine sample in a standard pathology laboratory 19. 
Customizing the normalization protocol based on each 
pathologist’s reference slide respected their individual 
routine and preferences. This avoided imposing a one-
size-fits-all standardized approach, which can be highly 
subjective given pathology’s visual nature and variabil-
ity in individual experience levels. 
Perceived color quality improved for all pathologists 
across batches, with lower quality slides showing the 
most pronounced enhancement from near unreadable 
to sufficiently acceptable (Figs. S3-S4). This suggests 

normalization can mitigate challenges from poor stain-
ing and aging, which is important when material is 
limited. Subjectively improved suitable staining eases 
the diagnostic burden on pathologists, potentially im-
proving working conditions 20. With rising examination 
requests and a pathologist shortage, reduced diag-
nosis time and improved workflow from normalization 
provides pivotal advancements  21. Faster diagnosis 
addresses time constraints in pathology and enables 
a more synchronized, consensus-driven environment.
Enhanced images improved concordance on Grade 
risk group and tumor quantification, which are crucial 
for prostate cancer risk stratification and treatment 
decisions 22. Significant gains occurred for patterns 3 
and 4, key for stratification, potentially reducing un-
certainty  23. However, no improvement was seen for 
pattern 5, likely due to limited cases. Better tumor de-
tection provides a more accurate extent estimate and 
ensures prognostic details are not missed 24.
These effects can have a dramatic impact on clinical 
practice and patient outcomes, especially when focal 
biopsy changes lead to substantial alterations in ther-
apy 25. In a sample like a prostate biopsy, the likelihood 
of missing a focus of tumor significantly increases with 
suboptimal staining techniques 26. Figure 5A shows a 
compelling case where normalization enabled iden-
tifying occult cancer. Initially no tumor was seen due 
to poor staining, but after normalization, foci of acinar 
carcinoma became visible.
While our study provides insights into the utility of nor-
malization, there are limitations that should be acknowl-
edged. As there is no single ground truth for histopatho-
logical evaluation, improved concordance between pa-
thologists may not necessarily correlate with diagnostic 
accuracy. Additionally, some original WSIs had poor 
quality and weak staining, which normalization only par-
tially addressed. In addition, the study did not perfect-
ly replicate real-world clinical practice, as pathologists 
diagnosed based on a single WSI without supporting 
information (e.g., additional sections or immunohisto-
chemistry). While normalization addresses chromatic 
variation, technical defects like out-of-focus areas or 
tissue folds remain challenging to assess. Future work 
should emphasize an optimized diagnostic workflow in-
corporating high-quality WSIs and comprehensive diag-
nostic approaches to fully evaluate clinical impact.
Our findings indicate the potential value of stain nor-
malization in daily pathological diagnosis. Reducing 
color variability and enabling pathologists to view their 
preferred settings can significantly improve interpret-
ability and reliability while preserving the original im-
age. Integrating normalization into digital pathology 
systems could enhance accuracy, efficiency, and ulti-
mately patient outcomes.
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Conclusion

In conclusion, this study demonstrates the positive 
impact of stain normalization during prostate cancer 
diagnosis. By reducing staining variability, normaliza-
tion enhanced color quality, reduced diagnosis time, 
and improved concordance among pathologists on 
cancer detection and grading. These benefits can 
lead to more precise risk assessment and treatment 
decisions for patients. The integration of stain normal-
ization into digital pathology workflows holds promise 
for advancing the field by improving the consistency, 
efficiency, and reliability of pathological evaluations. 
Overall, these findings indicate the potential of color 
standardization tools to significantly enhance patient 
care as digital pathology is increasingly adopted.
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