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Abstract: A differentiable nonlinear interpolation function learns the Raman gain efficiency and 

enables gradient-descent-based optimization of a Raman amplifier with arbitrary number of pumps. 

Example is given for unrepeatered links with a remote pumping stage. 
Keywords: Raman amplifier, Machine learning, Unrepeatered transmission 

 INTRODUCTION 

Raman amplifiers (RAs) present a significant advantage over erbium-doped fiber amplifiers (EDFAs) in terms of noise 

figure and potential for gain shaping [1]. Broadband amplification using RAs can be achieved by employing multiple 

Raman pumps at different frequencies. However, such configurations pose a challenge for the optimization of the pumps’ 

frequency and power due to the increased dimensionality of the problem [1]. Machine learning (ML) methods for the 

optimization are gaining traction [2], especially methods that train inverse system models to predict the required pump 

power and frequency for a given target gain profile [2] [3] [4]. ML methods provide excellent performance, however, 

they require a lot of training data to be generated in order to populate the 2Np dimensional space, where Np is the number 

of pumps. Furthermore, each training dataset is specific to Np and the number of wavelength division multiplexed (WDM) 

channels to be amplified and does not allow re-optimization when pumps are to be added or when the data load changes, 

unless an expanded training dataset including all the configurations is considered [5]. 

In this paper, we lift the requirement for training data by optimizing directly using the physical model for stimulated 

Raman scattering. The model is made differentiable in the pump powers and frequencies by first training a differentiable 

nonlinear interpolation function for the Raman gain coefficient. The optimization is then completely flexible in terms of 

1) number of pumps; 2) number of WDM channels; 3) number of RA stages; 4) fiber length. 

 DIFFERENTIABLE PHYSICAL MODEL OF THE SRS 

The SRS is typically described with ordinary differential equations [6], which can be solved numerically for forward 

propagating carriers using the expression: 

𝑃(𝑛, 𝑧) = 𝑃(𝑛, 𝑧 − ∆𝑧) −  𝛼∆𝑧 + ∑
𝑔𝑅(𝜔𝑚−𝜔𝑛)

𝐴𝑒𝑓𝑓
𝐿𝑒𝑓𝑓(∆𝑧)ⅇ𝑃(𝑚,   𝑧−∆𝑧)

𝑁

𝑚=1

, (1) 

 

where P(n, z) is the power at frequency index n and distance z, gR is the Raman gain coefficient for a given offset 

between the angular frequencies ωm and ωn, Aeff is the fiber effective area, Leff(L) = (1- exp(-2αL))/ (2α) is the effective 

power interaction length [6], α is the fiber attenuation, and  ∆z is the step size, set to 100 m in this paper (justified below).  

In (1), no distinction is made between a ‘pump’ and a ‘channel’. Each step in z is differentiable in power, but not in 

frequency due to gR which is typically obtained using a look-up table or piece-wise interpolation. In [7], gR is approximated 

using linear interpolation gR
LIN, which is sufficient for estimating the SRS between WDM channels, but fails to provide 

the required accuracy when high-power pumps are added near the maximum efficiency (as will be demonstrated later in 

the paper). To that end, we train a deep neural network (DNN) to learn a nonlinear interpolation function of gR
NL. The 

DNN is depicted in Fig. 1a), has 3 layers with 100 nodes per layer and a ReLU activation function, and is trained using 

gradient descent (GD) with the Adam optimizer and the mean squared error (MSE) cost function. In Fig. 2a), the 

normalized gR
NL, gR

LIN and the true gR are given as a function of the frequency offset for standard, single-mode fiber 

(SSMF). An MSE between gR and gR
NL of 4.1 ∙10-5 was achieved. The DNN is differentiable in the frequency offset and 

allows optimization w.r.t. pump frequency by substituting it for gR in Eq. (1). 

The main drawback of this method is that it only allows optimization of forward Raman pumps, since solving (1) with 
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backward-propagating pumps requires iterative algorithms which are not differentiable. 

 

 
Fig. 1.  a): Raman efficiency model and training; b): Considered single-span setup with a ROPA. 

 CONSIDERED SETUP 

Forward pumping is applicable to e.g. remote pumping stages and hybrid EDFA-RA for boosting the launch power in 

e.g. unrepeatered links [8], which are single-span and typically very long. The multi-pump multi-stage example we 

consider is given in Fig. 1b). A full C-band load is considered with 40 channels in the [191.6; 195.6] THz range (C-band). 

An EDFA provides the initial amplification to 𝑃𝐸𝐷𝐹𝐴
𝑜𝑢𝑡  = 15 dBm (≈ -1 dBm per channel). A flat profile is assumed at the 

EDFA input at a total power 𝑃𝐸𝐷𝐹𝐴
𝑖𝑛  = 0 dBm. The EDFA model considered in this work is trained experimentally [8] and 

provides a highly non-flat gain (seen in the results section). Flattening the EDFA output using a filter would require 

wasting power, which is highly undesirable in such power-deficient links. Instead, an additional RA is used to 1) boost 

the power further; and 2) optimize the transmitter output w.r.t. the power spectral profile at the receiver. An SSMF of L1 

= 210 km follows, at which point a forward pumping Raman remote optical power amplifier (ROPA) is assumed with 

Raman pump lasers guided from the receiver location by an additional fiber. An L2 = 40 km of SSMF span is assumed 

between the ROPA and the receiver. We assume a fiber loss of 0.2 dB/km in the C-band. In the S-band, where the pump 

lasers would typically be placed, the loss is assumed to be 0.25 dB/km. These numbers are chosen to be in line with 

SSMF, however, the model in Eq.(1) is completely flexible w.r.t. the individual loss coefficient per channel (e.g. obtained 

from fiber characterization and for specialized fiber types). 

 OPTIMIZATION STRATEGY 

The RAs frequency and power are optimized such that a flat profile is received at a given power level 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑡𝑜𝑡  = -10 

dBm (≈ -26 dBm per channel), which means that the RAs need to provide a total gain of 25 dB to the C-band. Some semi-

heuristic iterative methods have been developed for the optimization of such systems [8] [10], which become challenged 

when the number of parameters grows (e.g. due to the increased number of RA pumps). Furthermore, here the full C-

band load together with the non-flat launch characteristics pose an additional challenge to the optimization of the RAs. 

The RAs are initialized uniformly in the frequency range of [198; 220] THz and with equal power per pump 𝑃𝑖
𝐹= 𝑃𝑡𝑜𝑡/NF, 

𝑃𝑖
𝑅= 𝑃𝑡𝑜𝑡/NR, where 𝑃𝑖

𝐹  and 𝑃𝑖
𝑅 are the powers of the i−th forward and i−th remote pump, respectively, NF and NR are the 

number of forward and remote pumps, respectively, and 𝑃𝑡𝑜𝑡 = 2.5 W is the total power constraint of the RA, as considered 

in this work. Gradient descent optimization is then applied w.r.t. both RAs pumps’ frequency and power with a target 

cost of minimizing the MSE between the received profile and the target profile.  

In order to apply frequency and power constraints, the MSE is appended with the following cost terms: 

 

𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝑅ⅇ𝐿𝑈 (𝐹𝑚𝑖𝑛 − min
𝑖

𝑓𝑖
𝑅) +  𝑅ⅇ𝐿𝑈 (𝐹𝑚𝑖𝑛 − min

𝑖
𝑓𝑖

𝐹) +  𝑅ⅇ𝐿𝑈 (max
𝑖

𝑓𝑖
𝑅 − 𝐹𝑚𝑎𝑥)

+  𝑅ⅇ𝐿𝑈 (max
𝑖

𝑓𝑖
𝐹 −  𝐹𝑚𝑎𝑥) +  𝑅ⅇ𝐿𝑈 (max

𝑖
𝑃𝑖

𝑅 − 𝑃𝑚𝑎𝑥) +  𝑅ⅇ𝐿𝑈 (max
𝑖

𝑃𝑖
𝐹 −  𝑃𝑚𝑎𝑥)  

+  𝑅ⅇ𝐿𝑈 (∑ 𝑃𝑖
𝑅

𝑖
− 𝑃𝑡𝑜𝑡) +  𝑅ⅇ𝐿𝑈 (∑ 𝑃𝑖

𝐹

𝑖
−  𝑃𝑡𝑜𝑡), 

 

(2) 

 

where 𝑃𝑚𝑎𝑥 = 2 W is the power constraint per laser, 𝑓𝑖
𝐹 and 𝑓𝑖

𝑅 are the frequency and power of the i−th forward and 

remote pump, respectively, and 𝐹𝑚𝑎𝑥 = 220 THz and 𝐹𝑚𝑖𝑛 = 198 THz are the frequency constraints (range chosen to 

support 1st and 2nd order pumping). After initial convergence, pump lasers with frequency offset ≤ 200 GHz are merged 

together in a single pump with a power equal to the sum of powers (if the 𝑃𝑚𝑎𝑥  constraint for the new pump is satisfied) 

and frequency equal to the average of the frequencies. Optimization then resumes. This ensures the efficient use of lasers. 

Different variants can be devised of merging strategy, e.g. always selecting the N pumps with highest powers and 

pruning the rest, or prune based on minimum resulting deterioration of the MSE. In either case, the designer is free to 

impose a constraint on the number of pumps available for the RA and/or their frequency. 



 

 

 

 
Fig. 2.  Simulation results. a): Raman gain coefficient modeled with a linear approximation (solid line) and a DNN (markers), together with the true 

gR (dashed line); b): optimized Raman configuration when initialized to 20 remote and 20 forward pumps, converged to 7 remote and 6 forward 

pumps; c): resulting power profiles for the configuration b), together with the GNPy benchmark. 

 RESULTS 

The received power profiles optimized and estimated using the model (1) are compared to 1) a full implementation in 

GNPy of the setup from Fig. 1 including a Raman solver for the set of ordinary differential equations describing the SRS 

and using a piece-wise interpolation for the tabulated gR values [11]; and 2) the model in Eq. (1) which assumes gR
LIN. 

In Fig. 2b), the optimized forward and remote pumps are given when the optimization algorithm was initialized with 20 

pumps each. The model converged to NF = 4 and NR = 6, an MSE of 0.07dB2 and a max error to target of 0.67 dB. The 

benchmarks are then given in Fig. 2c). We see excellent correspondence between the model and the GNPy benchmark 

(maximum error of 0.7dB between the target profile and GNPy validation), which also justifies the chosen step size. In 

this case, the forward RA provides ≈ 18.07 dB of gain, while the ROPA provides ≈ 6.88 dB with total powers ∑ 𝑃𝑖
𝐹

𝑖 =

2.20 W and ∑ 𝑃𝑖
𝑅

𝑖 = 1.52W, respectively. The linear assumption on gR results in significant discrepancies of  ≈ 4.8 dB 

of maximum error, indicating that it is not feasible to apply this simple model for optimization.  

The minor discrepancies between the model in Eq. (1) and GNPy are attributed to the finite step size. At the chosen 

value of ∆𝑧= 100 m and the optimization requires ≈ 500 iterations to converge which takes ≈5 min on a standard CPU. 

 CONCLUSIONS 

An optimization method was presented for forward Raman amplifiers which is completely flexible in the main system 

and amplifier parameters. The optimization follows the physical model of the SRS and does not require training data to 

be generated. An obvious extension is to include the RA and EDFA NFs in the model in order to optimize the received 

SNR profile instead of power similar to [9]. 
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