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Abstract—This paper deals with functional System-Level Test
(SLT) for System-on-Chips (SoCs) communication peripherals.
The proposed methodology is based on analyzing the potential
weaknesses of applied structural tests such as Scan-based. Then,
the paper illustrates how to develop a functional SLT programs
software suite to address such issues. In case the communication
peripheral provides detection/correction features, the methodol-
ogy proposes the design of a hardware companion module to
be added to the Automatic Test Equipment (ATE) to interact
with the SoC communication module by purposely corrupting
data frames. Experimental results are obtained on an industrial,
automotive SoC produced by STMicroelectronics focusing on
the Controller Area Network (CAN) communication peripheral
and showing the effectiveness of the SLT suite to complement
structural tests.

Index Terms—System-Level Test, functional testing, fault sim-
ulation, Automotive SoCs.

I. INTRODUCTION

THE manufacturing test flow is in charge of ensuring
that SoCs have been manufactured without faults, before

shipping products to customers. Due to the increasing com-
plexity of SoCs, a significant amount of faults may be still
untested after the manufacturing test flow [1]. Structural tests
focus on single-component testing, and they often lack testing
component interactions and interactions of communication
peripherals with an external driver [1].

In order to comply with increasing quality requirements,
such as ISO26262, in the last decade, a new step in manufac-
turing test flow has been added right before the final test. The
additional test step called the System-Level Test (SLT), resem-
bles the final application, workload, and environment as much
as possible, including external communication. Therefore, it is
a functional test step for exercising the SoC as a whole. The
intention is to cover the mentioned coverage weaknesses of
structural tests for already existing fault models.

This work proposes a methodology for generating an SLT
suite of functional test programs for communication peripher-
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als. The major innovative elements of the illustrated generation
strategy are the following:

• There exist potential structural testing weaknesses that
may arise from structural tests such as Scan-based or
Built-In Self-Test (BIST); a preliminary phase of the
approach aims at highlighting communication peripheral
elements that may suffer from such weaknesses.

• Based on the analysis above, guidelines to create SLT-
oriented functional test programs are provided in a de-
terministic and generic form; pseudo-codes are provided
to sketch SLT program flows, while data patterns come
from state-of-the-art approaches and are integrated into
the final SLT suite [2].

• Guidelines are provided for designing a companion mod-
ule for communicating with the communication periph-
eral under test; this is crucial to improve the detection of
faults located in detection and correction logic.

Experimental results are presented for the Controller Area
Network (CAN) module of an Automotive SoC manufactured
by STMicroelectronics. The CAN module includes embedded
memory elements, communication paths with the inside and
outside of the chip, and has a detection/correction logic for
errors in the received and transmitted data. The considered
design is ”polluted” by Scan Chains with different clock
domains, Logic-BIST (LBIST), and Memory-BIST (MBIST)
based Design For Testability (DfT) domains, which potentially
contribute at introducing untested logic for structural tests [3].

The CAN module under test counts about 436K for Stuck-
At Fault (SAF) and Transition Delay Fault (TDF). Increasing
the fault coverage of structural tests over SAF and TDF
models is the major purpose of the proposed methodology. The
original coverage guaranteed by the manufacturing test suite
of structural tests, including Scan, LBIST, and MBIST tests, is
97.89 % for SAF and 89.38 % for TDF. The synthesized SLT
functional test procedure provides increments of 1.12 % and
1.51 %, respectively, reaching 99.01% for SAF and 90.89%
for TDF.

Section II provides background, and section III illustrates
the proposed methodology. Section IV reports experimental
results, and section V concludes the paper.

0000–0000/00$00.00 © 2021 IEEE
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II. BACKGROUND

A. Manufacturing test flow

The rising complexity of integrated circuits strongly affects
the testing scenario. Scan-based tests, which are part of the so-
called structural tests, have been introduced to reduce the com-
plexity of manufacturing test flow; they allow the automation
of test pattern generation for an integrated circuit. For testing
a specific components, BIST modules are introduced in the
design, and they fall under the umbrella of structural tests.
Common BIST examples are the MBIST, in charge of testing
the memory arrays, and LBIST, oriented to test a specific
portion of logic. The manufacturing test flow is split into
phases to discard faulty devices as soon as possible [1]:

• Wafer Test checks for the primary electrical functionali-
ties of the chip before cutting it out from the wafer and
it is based on the execution of structural test patterns.

• Package Test repeats the application of the structural tests
after packaging the chip.

• Burn-In, mainly for automotive and safety-critical de-
vices, exacerbates latent faults.

• System-Level Test has been recently added as an addi-
tional test phase for safety-critical and automotive de-
vices [9]. It verifies the correctness of devices by resorting
to complex functional programs in an environment close
to the operational one.

• Final Test repeats the previous structural test suite, even-
tually complemented, ATE-wise, with functional SLT
tests where possible.

SLT is needed because the Scan- and BIST-based test ap-
proaches mainly focus on a single component testing without
emulating the final environment of the devices; in other words,
they do not exercise on- and off-chip component interactions,
nor between hardware and software. As a result, Hardware
implemented protocols, such as the CAN and SPI bus, are
not fully tested by structural tests. For instance, it is typical
to use loopback strategies to minimize the interaction with
the ATE. This is producing coverage drops on detection and
correction logic [10]. Scan and LBIST may also introduce
some untested logic when the architecture is partitioned into
islands or domains. Such domains may be activated separately
and some glue logic pitched between them may be struc-
turally untestable. SLT provides a better activation stimuli than

LBIST, because the device is functionally exercised [1], [11]–
[14].

B. State-of-the-art for communication peripherals testing

Since the advent of SoCs, designers have started to pack
more and more peripherals in the same die. This trend has
increased the complexity of SoCs as well as their peripheral
speed and capabilities. As complexity increases, so does the
testing effort; thus, different methods have been developed in
the literature for effectively testing peripherals. In the scope
of the current work, Table I shows a comparison between
different test approaches for communication peripherals.

The first commonly used approach for testing commu-
nication peripherals is always the Automatic Test Pattern
Generator (ATPG), a highly automated engine with high
coverage capabilities based on generating Scan-based patterns.
However, ATPG-based approaches do not have any online
testing capabilities or at-speed testing. Most importantly, Scan-
based patterns test the modules without functionally using
the communication peripherals, as already underlined in the
previous section.

Another partially automated approach is the introduction of
BIST in the SoC, paying the overhead of additional area [4],
[5]. Although BISTs provide at-speed high coverage capabil-
ities for stuck-at and partially online testing only at the SoC
startup, they are area-hungry, and they need to be designed ad-
hoc for every communication peripheral present in the SoC,
leading to an abnormous area overhead.

As Software-Based Self-Test (SBST) has emerged as an
effective technique for online testing of CPU modules [15],
the concept has also been applied to system peripherals [6]–
[8], [16]. SBSTs applied to system peripherals, for commu-
nication or not, have been developed to be transparent to the
application for simple protocol-related testing. SBST and SLT
reside under the umbrella of functional tests. On one hand,
SBSTs are mainly adopted as test strategies for online testing
capabilities of modules required by safety standards, with the
main objective of reaching very high absolute coverage figures.
On the other hand, the primary aim of SLT is the detection
of faults that escape from previous manufacturing test phases.
SLT is typically a holistic strategy that focuses on generating
complex hardware-software interaction between all the system
components on and off-chip, complex protocol functions, and

Test Nature Test Approach Pros Cons Target

Structural

ATPG Automated No functional interactions, AllHigh coverage capabilities No online testing, Low Speed Testing

BIST [4], [5]
At-speed testing Area overhead

SPI, RS-232High coverage capabilities Limited capabilities for TDF
Limited online testing (startup) No functional interactions

Functional

SBST [6] At-speed Online testing Simple protocol operations UART, HDLC,
Deterministic and automated methodologies No off-chip communications ETHERNET

SBST [7] At-speed Online testing No off-chip communications CAN

SBST [8] At-speed Online testing Simple protocols UART, PIAOff-chip communications No errors injector

Proposed SLT methodology
At-speed testing Manual efforts

GenericOff-chip communications No Online testing
Complex HW/SW interactions Additional Tester capabilities

TABLE I: Comparison between different test approaches for communication peripherals testing.
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requiring additional ATE capabilities, i.e., the capabilities of
driving the communication pins from the ATE side.

III. PROPOSED METHODOLOGY

This work proposes a methodology for generating an ef-
fective SLT suite of functional test programs oriented to
complement the testing abilities of structural tests specifically
for communication peripherals in SoCs.

The proposed methodology advances the state-of-the-art
SLT methodology because it does not rely upon holistic
assumptions (i.e., making the system boot is a good SLT
strategy). To the best of our knowledge, the proposed approach
is the first to detail the analysis of potential structural test
weaknesses. This analysis guides the development of the SLT
suite for communication peripherals, targeting test escapes
of structural tests in the shadowed zones of the circuit. The
methodology flow is represented in Figure 1.

Fig. 1: Flow diagram of the proposed methodology.

Firstly, the potential weaknesses that may arise from struc-
tural test flow must be highlighted by qualitatively analyzing
the fault list after evaluating ATPG, MBIST, and LBIST
approaches. This preliminary analysis step enables the po-
larization of the successive efforts in the generation of SLT
functional programs targeting meaningful circuit regions and
faulty conditions.

The functional program generation should cover all the pos-
sible working modes and parameters that an in-field applica-
tion could use, as holistically demanded by SLT. Moreover, the
proposed method draws more attention to those functionalities
that could be threatened by structural weaknesses.

Stimulating off-chip interactions with the external world,
through communication channels exposed by the chip, is a
crucial SLT workload for the SoC. Structural tests usually
force the communication channels to loop-back configurations,
as a consequence, the proposed methodology encompasses the
design of a flexible companion module capable of commu-
nicating from the ATE side to/from the SoC under SLT, as
Figure 2 shows. The companion module becomes indispens-
able when detection/correction features are available in the
peripheral module under test, as they are not going to be tested
since loop-back always transports uncorrupted bitstreams.

A. Structural Test Weaknesses Analysis

The analysis of structural test weaknesses is performed
manually, with the help of the user manual, the netlist, and

Fig. 2: Companion module view with a companion memory
storing error injection information.

the residual structural fault list. The communication module
under investigation needs to be stretched as it is generically
done in Figure 3. Arrows and labels are added to sub-module
boxes that can be extracted easily from the netlist. In the
resulting visualization, the colors of the arrows indicate the
criticality level of the specific interactions among modules
(e.g., dark color is for the most critical and white for low
risk), and the alphabetic labels group sub-modules according
to their functionality (e.g., under label ”A” are classified all
functionalities of the internal RAM) represent the following
considerations.

Fig. 3: Detail of a Generic communication peripheral.

What emerges from crossing functionality and structural
test limitations is quite intuitive to understand from Figure 3.
Therefore, when developing SLT functional programs, mean-
ingful areas to target are the following:
A) Embedded memory access ports: they may not be

completely covered along structural tests due to collars
and memory DfT circuits like MBIST [17].

B) Interfaces to other on-chip components: they may be
included in different LBIST, or Scan Chain islands can
introduce testability issues [3], [11].

C) Transmission/Reception Interfaces to Chip Top: Some
signals and pins to and from outside the SoC may never
be exercised during manufacturing tests.

D) Detection and correction logic circuits: they usually
include large logic functions resulting in deep circuits
that are hard to target by structural tests [1].

E) Complex hardware-software functions, like complex
protocol functions and synchronization mechanisms, are
not exercised [1].

Therefore, an effective SLT suite is a combination of programs
capable of systematically tackling all the aforementioned
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considerations. The next subsections provides guidelines to
punctually address functional programs generation according
to the list of critical circuit elements.

B. SLT functional program suite generation

The generation of the functional SLT suite, addressing the
identified critical elements, starts from previously established
functional methodologies in the state-of-the-art, as reported in
Table I. State-of-the-art techniques like [7], [8], [16] cover
some of the critical functionalities even using standard test
configurations, such as exploiting loop-back configurations
from different communication channels and typical frame
transmissions/receptions. More efforts are required to com-
plement structural coverage for modules that are not yet
very much mentioned in the literature, such as the Error-
Management-Logic (EML), Bus-off sequence (if any), shared
bus arbitration, and synchronization logic modules of commu-
nication peripherals.

The resulting suite, which encompasses known and novel
approaches, has been developed manually by a test engineer
using the SoC documentation, including structural test applica-
tion notes, the netlist itself, and the list of residual faults from
structural tests. The suggested suite consists of 6 test programs
meticulously assembled to specifically target overlooked areas
during structural tests. Out of this set of programs, 2 requires
the collaboration of the companion module, indispensable to
exercise the peripheral by transmitting and receiving packets.

In the following, the functional program specifications are
reported in pseudo-code with generic communication periph-
erals functions that abstract the underlying software.

Moreover regarding the pattern selection, a generic function
call get pattern() is generically used in the pseudo-code. As
such the proposed algorithms can be executed multiple times
with various data patterns coming from known literature-based
ones such as from [2], where known techniques based on
walking bits and checkerboard patterns are illustrated.

The data pattern could also be automatically generated
from ATPG-based methodologies [2] or by adopting random
methodologies if the cost of fault simulations is not too
elevated. In these cases, a generation loop may be set up
to refine step by step the pattern set, while a deterministic
approach just require a single evaluation.

In the following subsections, the communication software
is described from an algorithm perspective, as well as the
companion module, for each consideration in Figure 3. All
the algorithms presented hereafter produce a signature, which
is finally compared with the golden one at the end of every
test execution.

1) Embedded Memory access ports: In SoC testing, embed-
ded memory access ports may not be exercised in structural
DfT circuits due to MBIST architecture [17]; when the MBIST
is operated, it disconnects the memory from the other SoC
elements and then it tests only a part of the connections among
memory and the rest of the circuit.

Communication peripherals usually provide a dedicated
memory to store data. Its functionality can be thoroughly
tested by filling the memory with incoming messages. The

proposed test must use all transmission/reception buffers if
there are more than one. The CPU running the SLT program
sends a burst of messages large enough to fill all buffers.

The test program pseudo-code is represented in Algorithm 1.

Algorithm 1 Embedded Memory Access Port test.
1: signature← 0 ▷ Init signature var
2: while peripheral rx buffers are full() ̸= True do
3: data← get pattern()
4: signarure← signature⊕ data
5: send data(data)
6: end while
7: wait reception()
8: while peripheral rx buffers are empty() ̸= True do
9: data← receive data()

10: signature← signature⊕ data
11: end while

2) Interfaces to other SoC components: The use of com-
munication interfaces to other SoC components like CPUs,
DMAs, etc., is limited during structural tests. They are quite
complicated and ATPG resistant because they are composed
of multiplexers which are typically difficult to test, especially
when a large-sized cross-bar is included in the system. The
situation gets even worse if the SoC modules involved in the
communications are far from each other in the layout and fall
into different LBIST islands [11] or Scan domains [3]. As the
structural tests often need to care about power consumption,
patterns are not applied to all gates simultaneously, but island
per island, or Scan domain by Scan domain.

In addition, complex communication protocols requires
coordination with digital/analog circuitry in other domains,
leading to coverage loss for structural tests, for example caused
by analog IPs being bypassed during Scan tests.

The register interface serves as a collection of registers
designed to control the peripheral’s behavior, issue commands,
store data for transmission/reception, configure additional
peripheral units (i.e. timing management logic), and report
information from the peripheral controller, including status or
interrupt registers. Reading and writing the registers ensure
on-chip bus system usage and functional interactions between
different LBIST islands. The proposed methodology performs
such operations by levering the peripheral under test in an
active yet not fully initialized state.

Assuming R represents the configuration and control pe-
ripheral register file, the test can be succinctly expressed in
pseudo-code in Algorithm 2.

Many modern micro-controllers offer additional hardware
capable of asserting a reset on modules within the entire SoC
for performing a clean restart of the communication. There-
fore, a functional reset test may be necessary and consists
of stopping the peripheral, resetting it, reading back register
values, and restarting the peripheral.

3) Transmission/Reception Interfaces to Chip Top: Trans-
mission/Reception Interfaces to Chip Top are crucial for the
overall functionality of transmitting and receiving messages to
and from outside devices. Structural tests are very limited by
the test access, as loop-back strategies are almost always used
to reduce the number of pins to contact and control from the
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Algorithm 2 Interfaces to other SoC components test.
Require: R, the set of the peripheral register file.

1: signature← 0 ▷ Init signature var
2: stop peripheral()
3: assert functional reset peripheral()
4: peripheral enable clock() ▷ Avoid init
5: for each r ∈ R do
6: if r is init register then
7: r ← r ∧ (1≪ INIT field pos)
8: signature = signature⊕ r
9: r ← r∨ ∼ (1≪ INIT field pos)

10: signature = signature⊕ r
11: else
12: r ← 0
13: signature← signature⊕ r
14: r ← UINT MAX
15: signature = signature⊕ r
16: end if
17: end for

ATE. Therefore, to functionally exercise the Transmission and
Receive logic, the Test Algorithm in 3 is used in conjunction
with a companion module for sequencing messages (which
details are described in Section III-C).

The proposed test program targets the receive/transmission
modules by initializing the peripheral to receive/transmit in
different configurations. The test program pseudo-code is
represented in Algorithm 3.

Algorithm 3 Transmission/Reception to Chip Top test.
Require: Btx, the set of transmission configuration modes.
Require: Brx, the set of reception configuration modes.
Require: shared, data shared between ATE and the DUT.

1: signature← 0 ▷ Init signature var
2: enable companion module(”message sequencer”)
3: for each btx ∈ Btx do
4: for each brx ∈ Brx do
5: configure peripheral(btx, brx)
6: if is transmission enabled(btx) then
7: data← get pattern()
8: signature← signature⊕ data
9: send data(data)

10: else
11: signature← signature⊕ shared
12: end if
13: wait reception()
14: data← receive data()
15: signature← signature⊕ data
16: end for
17: end for

4) Detection and correction unit: Many peripheral proto-
cols are designed to be susceptible to faulty behaviors. As
such, they implement an Error-Management-Logic (EML),
which increases reliability and robustness by introducing de-
tection and correction capabilities.

The detection functionality refers to the ability of the pe-
ripheral to assess when the transmitted/received data is wrong.
It is usually implemented by protection codes inserted into
the transmitted data. In addition to detection, correction logic
enables the repair of erroneous data using error correction
codes transmitted along the data. The correction is limited
as it usually tolerates a maximum number of flipped bits.

Moreover, the bus error detection logic ensures that nodes
can detect and report anomalies on the bus. This is achieved
by identifying incorrect messages and faulty conditions, thus
preventing any node from disrupting the bus with faulty
outputs. Additionally, malfunctioning nodes can recognize
their errors and disconnect themselves from the bus, entering
a bus-off state until they can re-synchronize and safely rejoin
communication.

The test program pseudo-code is represented in Algorithm 4.
In this case a companion module capable of injecting errors in
message frames is needed. Injection can be done with different
strategies as detailed in Section III-C.

Algorithm 4 Detection and correction unit test.
1: signature← 0 ▷ Init signature var
2: enable companion module(”pattern recognizer”)
3: data← get pattern()
4: signature← signature⊕ data
5: send data(data)
6: wait reception or errors()
7: if peripheral has errors() then
8: data← get failed transmitted data()
9: else

10: data← received data()
11: end if
12: signature← signature⊕ data
13: if support bus off() then
14: wait bus off()
15: end if
16: disable companion module()
17: data← get pattern()
18: signature← signature⊕ data
19: send data(data)
20: wait reception()
21: data← receive data()
22: signature← signature⊕ data

5) Complex hardware-software functions: The transmission
logic, which was already the object of investigation in subsec-
tion 3, assumes a pivotal role in handling the transmission
of messages, specifically when a priority scheme is part of
the peripheral’s protocol. When the protocol supports message
priority, the transmission handler incorporates complex logic
responsible for instigating a so-called transmission scan to
evaluate pending requests and pinpoint the highest in priority.

The test program pseudo-code is represented in Algorithm 5.
Communication protocols can be based on a dedicated bus,

connecting each node to another separately, or on a shared bus
between nodes. The shared bus requires additional logic as
nodes must implement functionality to perform the arbitration
on the shared bus. Indeed, a node starting a transmission can
face the cases when the bus is idle (e.g., other nodes are not
using the bus) or another node is using the bus. Although, in
the first case the only active node will take the bus; bus sensing
is not enough when N nodes start transmission simultaneously.
Modern protocols introduce an initial phase of transmission
called the arbitration phase.

The arbitration logic can be tested by employing the pro-
posed companion module in message sequencer mode requir-
ing a shared ID among SLT and ATE. Assuming lower ID has
higher priority, the test program pseudo-code is described in
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Algorithm 5 Complex transmission functions test.
Require: ID1, ID2, ID3, s.t. ID1 > ID2, ID3 > ID2.

1: signature← 0 ▷ Init signature var
2: data← get pattern()
3: signature← signature⊕ data
4: send data(ID1, data) ▷ Send data with ID1

5: data← get pattern()
6: send data(ID2, data) ▷ Send data with ID2

7: data← get pattern()
8: send data(ID3, data) ▷ Send data with ID3

9: cancel transmission(ID2)
10: cancel transmission(ID3)
11: wait reception()
12: if rx contains(ID2) ∨ rx contains(ID3) then
13: ▷ Failure
14: end if
15: data← receive data()
16: signature← signature⊕ data

Algorithm 6, while the message sequencer mode is described
in Section III-C.

Algorithm 6 Synchronization functions test.
Require: ID, predefined ID between ATE and this program.

1: signature← 0 ▷ Init signature var
2: enable companion module(”message sequencer”)
3: data← get pattern()
4: signature← signature⊕ (ID + 1)
5: send data(ID, data) ▷ Send data with ID
6: ▷ Companion senses a frame and transmits ID+1.
7: data ID ← receive data ID()
8: signature← signature⊕ data ID
9: data← get pattern()

10: signature← signature⊕ (ID − 1)
11: send data(ID, data) ▷ Send data with ID
12: ▷ Companion senses a frame and transmits of ID-1.
13: data ID ← receive data ID()
14: signature← signature⊕ data ID

Finally, the timing of communication protocols must be
tested. This test requires the implementation of strict synchro-
nization, and the assistance of a companion module able to
introduce an arbitrary delay into transmission frames is crucial.

C. Companion module

Different companion modules can be hosted on the ATE
FPGA; they can reside on the ATE at the same time with
their inputs and outputs multiplexed. Tthe right functionality
is activated and communication supplied along the execution
of the SLT functional programs that need external support from
the ATE.

According to previous subsection III.B, the companion
module functionalities needed to complement some of the SLT
firmware running on the chip under test are several:

• Message reception and transmission from and to the
peripheral under test, also called message sequencer.

• Error injection within the content of specific message
segments transmitted to the peripheral under test.

• Delay injection during message transmission.
The message sequencer mode transmits predefined mes-

sages to the SoC. Pre-generated messages are stored on-board

the companion module in the ATE, and sent out according
to the tested communication protocol. The companion module
architecture for this mode consists of a central entity and a
memory component. The messages can be either hand-crafted,
extracted from verification stimulus, or auto-generated pseudo-
randomly. Upon receiving an enable signal, i.e., from a digital
General Purpose I/O (GPIO), it transmits the message and it
returns to an idle state upon completion.

Three possibilities can be explored for error injection: error
inject errors according to information already provided before
running the test (i.e., a list of times to inject at); a pseudo-
random injector that injects errors at random times and loca-
tions in the message data frame (i.e., a pseudo-random value
determines injection times); a communication protocol injector
that knows about the protocol characteristics and corrupts them
on purpose (i.e., leaving start and stop bit for too long or short
time).

Regarding delay injection, a companion module is required
to introduce an arbitrary transmission delay. The introduced
delay forces a de-synchronization that exercises the commu-
nication peripheral modules aimed at the fine adjustment of the
communication timing. Moreover, when the delay introduces
a misbehaviour that cannot be corrected, the error detection is
exercised as well.

IV. EXPERIMENTAL RESULTS

The proposed case study is a cluster of four CAN modules
embedded into a 40 nm Automotive SoC manufactured by
STMicroelectronics. The SoC has a multicore architecture with
three 32-bit cores, it has 6 MB of flash memory and 128 KB
of general-purpose SRAM. The SoC design is equipped with
multiple LBIST partitions and Scan Chain Domains.
Figure 4 presents a layout heatmap (extracted from the actual
physical implementation) for the CAN peripheral in the DUT,
where the 4 different controllers can be observed. Figure 4a
shows a color-driven layout map of the CAN peripheral logic
depending on the critical regions highlighted by the structural
test weaknesses analysis, as detailed in section III.A (see the
legend in the figure). In this map there are at least two very
localized hot spots, located in the error detection/correction
logic, and in the Transmission/Reception interface to the chip
top, in the southern part of the heat map. This experimental
evidence confirms the hypothesis formulated in section III.A
about structural test weaknesses. As a preview of the final
results fully reported later, Figure 4b provides the layout
heatmap of the CAN peripheral, in red the untested SAF
faults, and in green the tested ones by all the structural tests.
Meanwhile, Figure 4c presents the effect of applying the
proposed SLT suite complementing structural tests. Many red
spots disappear or the areas colored red are much lighter after
SLT.

The algorithms presented in section III.B have been im-
plemented for the cluster of CAN modules. Test patterns are
provided according to the deterministic approach shown in [2].
The resulting suite of 6 functional test programs is presented

in Table II; it reports, for each program, the targeted weakness,
as well as the execution time in terms of clock cycles,
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(a) Function-based coloured layout plot. (b) Structural SAF Coverage heatmap
plot.

(c) Structural and SLT suite SAF
Coverage heatmap plot.

Fig. 4: Layout view of the four CAN controllers in the CAN peripheral of the DUT.

Fig. 5: Laboratory experimental setup.

the memory footprint (code and data), their fault simulation
grading time, and their approximate development time by
one person for both program development and verification
and companion module development and verification. The
functional SLT suite requires 11,622,737 clock cycles, which
translates into 145 ms with a clock frequency of 80 MHz
(the maximum reachable clock for the CAN peripherals in the
DUT). The suite was developed in 136 hours or 8.5 days by

two test engineers.

Meanwhile, the companion modules are synthesized and
implemented in a Xilinx MPSoC ZCU 104 Ultrascale Plus+
equipped with 4 Arm A53 cores running a Linux-based operat-
ing system and connected to a host computer through Ethernet.
The FPGA is directly controllable by a Linux operating system
through the PYNQ framework. The laboratory setup is shown
in Figure 5. This allows the connection of an external CAN
node to the chip top allowing off-chip by the DUT, including
all features related to the error injections. The instantiated
companion modules occupy 13,071 LUTS, 6,441 FlipFlops, 2
BRAM cores, and three external I/O pins of the programmable
logic; it was synthesized and implemented with a clock of 2
MHz.

To grade the System-Level Test functional programs, func-
tional fault simulations [18] are performed using a commercial
fault simulator Z01X (Synopsys), for Stuck-At-Faults (SAF)
and Transition Delay Faults (SDF) fault models. Table III
presents SLT fault coverage results including ”Single”, ”In-
cremental”, and ”delta” ∆ coverages, which represent the
individual program coverage, the incremental value to previous
tests, and the increment to previous ones, respectively. The
fault coverage achieved by the structural tests (Scan-based,
LBIST and MBIST) reaches 97.89% for 435,967 SAFs and
89.38% for 435,966 TDF. The proposed SLT permits reaching
up to 99.01% for SAFs and 90.89% for TDFs. Figure 6a
and Figure 6b show that the functional SLT programs add

Test Name Algorithm
Number Mode1 Targeted

Weakness
Execution
Time [cc]

Memory
Footprint

Fault Sim.
Time2

Develop.
Time

[KB] [h] [h]
Embedded Memory Access Port Algorithm 1 LPBK A 2,522,475 9.96 13.96 20

Interfaces to other SoC components Algorithm 2 NA B 23,870 12.55 0,13 26
Transmission/Reception to Chip Top Algorithm 3 LPBK, CMP C 332,096 6.42 1.84 22

Detection and correction unit Algorithm 4 CMP D 7,294,466 6.82 40.39 34
Complex transmission functions Algorithm 5 LPBK E 1,002,251 6.92 5.55 10

Synchronization functions Algorithm 6 CMP E 447,579 6.77 2.48 34
Total 11,622,737 49.44 64.35 136

TABLE II: Characteristics of SLT suite for CAN peripheral.
[1] LPBK = Loopback, CMP = Companion Module.

[2] Stuck-at + Transition Delay fault models for a total of ca. 900k faults.
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Test Nature Test Name Algorithm
Number

Fault coverage SAF [%] Fault coverage TDF [%]
Single Incremental ∆ Single Incremental ∆

Structural
Scan-based NA 95.69 95.69 NA 87.17 87.17 NA

LBIST NA 53.46 97.89 2.2 16 89.38 2.15
MBIST NA 1.13 97.89 0 0.03 89.38 0

Functional

Transmission/Reception to Chip Top Algorithm 3 40.30 98.45 0.56 12.55 89.65 0.27
Embedded Memory Access Port Algorithm 1 41.79 98.65 0.2 12.77 89.73 0.08
Complex transmission functions Algorithm 5 25.01 98.66 0.01 5.79 89.74 0.01

Interfaces to other SoC components Algorithm 2 13.36 98.96 0.3 5.11 90.63 0.89
Detection and correction unit Algorithm 4 39.94 98.99 0.03 11.82 90.67 0.04

Synchronization functions Algorithm 6 35.39 99.01 0.02 14.24 90.89 0.22
Total 99.01 1.12 Total 90.89 1.51

TABLE III: Fault coverage for Stuck-at fault model (435,967 faults) and Transition delay fault model (435,966 faults).

(a) Stuck-At fault model.

(b) Transition Delay fault model.

Fig. 6: Venn diagrams between Structural, LBIST and func-
tional (SLT) test approaches.

up to 1.12% and 1.51% of fault coverage. LBIST and Scan-
based approaches are also quantified in Figure 6, showing that
Scan-based approaches cover most of the faults. Functional
SLT emerges to be more powerful than LBIST (e.g., covering
more faults of the CAN cluster) but LBIST covers more faults
”uniquely” than SLT. MBIST adds no unique coverage and is
not reported in the diagrams.

The relative improvement by the SLT suite for SAF is about
50% concerning untested faults from structural tests. About
TDFs, despite the incremental improvement being higher than
for SAFs, the improvement over untested faults is 15%. Given
the relatively low coverage for TDF achieved by structural
methods, many TDF faults look to be functionally untestable.

V. CONCLUSIONS

The proposed methodology aims at filling the gap in struc-
tural tests for communication peripherals by providing a func-
tional SLT suite. It illustrates how to create a general recipe
for developing an effective functional SLT suite based on the
identification of structural tests weaknesses on communication
peripheral. The support of companion modules is added to
address off-chip communications and error injections. In order
to validate the proposed methodology, the CAN peripheral
has been selected. However, the methodology is peripheral
independent, and portable to other communication modules
like UART, SPI, and others.
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