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A B S T R A C T

Heating, Ventilation and Air Conditioning (HVAC) optimization for energy consumption reduction is becoming
ever more a topic of the utmost environmental and energetic concerns. The two most employed methodologies
for optimizing HVAC systems are Model Predictive Control (MPC) and Reinforcement Learning (RL). This paper
compares three different RL approaches to HVAC optimization: one based on a black-box system identification
model trained on historical data, one based on a white-box model of a building and one online method based on
an imitation learning pretraining phase on historical data. The three approaches are compared with a literature
baseline and an EnergyPlus baseline. Results show that the overall best method in terms of energy consumption
reduction (65% decrease) and thermal comfort increase (25% increase) is the approach based on the white-box
model. However, the proposed methodology, based on online and imitation learning, demonstrates remarkable
efficiency, achieving comparable improvements in energy consumption after just a few months of online
training, while maintaining thermal comfort at around the same level as the baseline. These results prove
a direct online RL approach, which avoid the use of costly simulations, can provide a reliable and inexpensive
solution to the problem of HVAC optimization.
1. Introduction

More than half of the world’s population now lives in metropolitan
regions. According to United Nations estimates, urban areas would host
roughly 68% million people by 2030, with one-third of them living in
municipalities with populations of at least half a million (United Na-
tions, 0000b). According to the United Nations Habitat Division (United
Nations, 0000a), urbanization is largely energy intensive. Cities con-
sume and create approximately 75% of world’s primary energy supply
and 50%–60% of world’s greenhouse gas emissions. Thanks to the
advancement in Information Communication Technologies and with
the spread deployment of Internet of Things, it is possible to moni-
tor buildings and to develop new fine-grained algorithms for energy
consumption optimization (Wigle, 2014). Heating, Ventilation and Air
Conditioning (HVAC) systems are among the highest energy consump-
tion appliances in today’s urban scenarios, making them one of the most
important objects of research.

On top of traditional methods, based on the control of Propor-
tional Integral Derivative (PID) parameters (Soyguder, Karakose, & Alli,
2009), the two most employed methodologies for HVAC optimization
are Model Predictive Control (MPC) (Drgoňa et al., 2020) and Re-
inforcement Learning (RL) (Wang & Hong, 2020). The two methods
differ mainly in the fact that MPC requires a detailed model of the
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target environment in order to perform the optimization and choose
the optimal action. On the contrary, a vast class of RL algorithms are
model-free, meaning that they can be applied to any environment, even
with scarce or no information regarding its functioning. RL (Vázquez-
Canteli & Nagy, 2019) and in general Machine Learning methods have
been successfully applied to HVAC optimization and in general building
or smart grid control (Tiwari et al., 2022).

This paper thus aims at tackling the problem of reducing energy
consumption in HVAC systems. This problem consists in the task of
optimizing the overall energy expenses or consumption of the build-
ing HVAC systems, maintaining unvaried the internal comfort of its
users.

Our goal with the present work is that of providing a practical
solution to HVAC control, which can be readily applied to target
buildings and use-case scenarios. The main limitation of model-free
RL algorithms relies on the training phase because the agent needs
to try several actions before converging on the optimal policy. Hence,
in the training phase, the agent will apply several actions that may
cause an improper state of the environment, that in a building HVAC
system might cause an increase in energy consumption or discom-
fort for the user. To solve this issue, literature solutions propose the
usage of a simulated environment to train the model-free RL agent
vailable online 26 September 2023
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and then apply the agent to the real building. Such solutions rely
on costly white-box modelling of the target building or need other
auxiliary measures, such as wall temperature monitoring, to develop
data-driven system identification models. Both approaches can disrupt
the time and cost-effectiveness of the solutions. Our novel method-
ology, however, is readily applicable to any target use-case scenario
with few or none preparatory work. As explained in more detail in
this paper, our proposed approach relies on a fully continuous RL
agent. The agent undergoes an Imitation Learning (IL) phase, which
consists of a training methodology in which the agent is exposed to
building historical data, comprehensive of the actions performed by a
standard controller and their consequences on the environment, and
actively learns without having to directly perform any action itself.
After this pre-training phase, the agent is ideally deployed on the
target building HVAC system. For simplicity, a simulated model in
EnergyPlus (Zhang & Lam, 2019), one of the most renowned building
energy simulation programs (Yang & Becerik-Gerber, 2014), is adopted
as our real-case building, meaning that all constraints that would apply
to a real building have also been considered in our simulated scenario.
Results show that our approach is sound and effective, surpassing the
standard rule-based control systems already in the very first weeks of
adoption.

The paper is structured as follows: Section 2 presents a review of
the most recent literature about reinforcement learning approaches
regarding optimal control of HVAC systems, also detailing the novelties
that our approach brings to the current state of the art. Section 3
describes the three approaches investigated in this paper, namely, the
system identification model, the white-box modelling environment and
the fully online system. This section also fully describes the reinforce-
ment learning algorithm of choice, which is the Deep Deterministic
Policy Gradient (DDPG). Section 5 presents results for each different
methodology. At last, in Section 6, an overview of the proposed work
is given and final remarks are discussed.

2. State of the art

In what follows, a literature review of the state of the art on HVAC
optimization through Reinforcement Learning techniques is presented.
As shown, several attempts to adopt different methodologies have been
utilized. Most solutions employ model-free algorithms that work on
continuous action space for single-zone problems, consisting in opti-
mization tasks in which an agent has to discover the optimal HVAC
strategy (i.e. temperature setpoint, air mass flow rate) to maximize
one or more target objectives (i.e. thermal comfort, energy cost) in
an environment built of one whole thermal zone. The most preferred
method for the optimization task is the DDPG algorithm. When the
action space is discrete, the most common option is the Deep Q-
Network (DQN) algorithm or some kind of variation of it. All works
target either the overall energy consumption, the overall energy cost,
the thermal comfort or a combination of these.

A work presented in Kou et al. (2021) compares a data-driven
approach, that is one in which the optimal strategy arises as a con-
sequence of gathered data, based on a model-free DDPG algorithm,
with a rule-based approach and a Model Predictive Control (MPC)
methodology. The latter requires the adoption of a detailed model of
the building and accurate indoor air temperature predictions, while
the data-driven approach requires a smaller amount of inputs. The
control actions space consisted of the simple on/off switch of the HVAC
system. The model-free algorithm showed good performances in terms
of computational speed and cost reduction, however, the MPC method
performed the best, despite being more time and resource-consuming.
In Du, Zandi et al. (2021), a 2-zone building optimization is performed,
comparing a DDPG algorithm with a discrete DQN model and a rule-
based approach. As in Du, Li et al. (2021), the agent controls the indoor
temperature setpoint. The DDPG method showed the best performance
in terms of energy cost reduction and thermal comfort violation. A
2

DDPG algorithm is also used in Rahimpour, Verbič, and Chapman
(2020) for heating optimization, and compared with a model-based RL
approach consisting of an Approximate Dynamic Programming (ADP)
model. The model uses as a control action the on/off switching of the
HVAC system. The DDPG compared similarly to the ADP, while not
requiring a model of the environment. In Gao, Li, and Wen (2020), a
DDPG algorithm is compared with a DQN and simpler RL approaches,
for a control task concerning the definition of the HVAC indoor air tem-
perature and relative humidity setpoints. The proposed DDPG method
showed an increase in thermal comfort of up to 10% and a decrease in
energy cost.

Authors of Ding, Du, and Cerpa (2019) propose a holistic approach,
in which an innovative Deep Reinforcement Learning algorithm, the
Branching Duelling Q-Network, is employed to optimize over the en-
ergy consumption and the user thermal comfort. It is then compared
with a traditional Dual Deep Q-Network (DDQN) and a rule-based
approach. The action space consists in controlling the HVAC traditional
systems and several other building subsystems, such as lights, blinds
and window systems. The proposed method obtains a reduction up to
12% in energy consumption. In Du, Li et al. (2021), a Deep Determin-
istic Policy Gradient (DDPG) algorithm is trained on both cooling and
heating seasons and compared with a standard rule-based approach.
The DDPG algorithm controls the indoor air temperature setpoint on
a continuous scale, and shows a reduction in overall electricity cost
and consumption with only modest comfort temperature violations
(around 0.6 ◦C). In Brandi, Piscitelli, Martellacci, and Capozzoli (2020),
a DQN algorithm is used to optimize the control over the supply water
temperature of a building. The action space is discrete and consists of
a set of water temperature increments. The proposed method achieves
a significant reduction in energy consumption, setpoint violation and
overall thermal comfort, compared with a traditional rule-based ap-
proach. In Barrett and Linder (2015), an intelligent thermostat based
on a DQN algorithm is developed. The action space is discrete and
consists of the on/off switching of both cooling and heating HVAC
systems. Slight cost reduction and improved thermal comfort are ob-
tained, compared to a traditional scheduled thermostat. In Zhang,
Kuppannagari, Kannan, and Prasanna (2019), a black box approach
based on a neural network is employed, in which the network learns the
system identification by continuous interaction with the target building
modelled in EnergyPlus. Then, an MPC approach is compared with
a model-free Proximal Policy Optimization (PPO) algorithm, showing
that the model-based approach can achieve up to 10x improvements
in energy consumption and thermal comfort with respect to the RL
algorithm.

In Wei, Wang, and Zhu (2017), a DQN algorithm is employed for
discrete action-space, consisting of several multiple choices of air flow
rate control, over a multi-zone HVAC system. The exponentially large
action space is dealt with the help of custom heuristics for computa-
tional reduction purposes. Reduction in energy cost and maximization
of thermal comfort are the goals of the algorithm, which is tested on
an EnergyPlus environment. In Fu and Zhang (2021) an innovative
Twin Delayed Deep Deterministic Policy Gradient algorithm and Model
Predictive Control (TD3-MPC) is introduced and compared with a
standard DDPG algorithm for continuous control over indoor air tem-
perature setpoint, aimed at energy cost reduction and thermal comfort
maximization. The novel TD3-MPC scores around 15% better than its
DDPG counterpart. In Solinas, Bellagarda, Macii, Patti, and Bottaccioli
(2021) a hybrid approach to demand side management optimization
is presented, in which a system identification model is adopted to
realistically represent a target building thermodynamic response, based
on only historical data gathered from a standard controller. Then, three
methods are compared: a rule-based approach, an MPC and a DQN
algorithm, with the objective of reducing energy consumption, and
respecting thermal comfort. The action space consists in a discrete
set of supply air temperature increments. This approach showed clear

advantages in terms of overall results and real-world applications, as
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historical data are the only requirements for training the proposed
agent.

Table 1 reports the above-mentioned, most relevant works in the
literature on this topic. The table details the target of the optimization,
the control actions, the kind of algorithm or methodology employed,
the kind and size of the dataset over which the system is trained,
the kind of environment used for training and testing, if the RL agent
utilized is based on a model-free or model-based approach and finally if
the target use-case scenario consists of a single or a multi-zone building
(and the corresponding number of different thermal zones). Most of the
studies focus on optimizing energy consumption or cost, while main-
taining thermal comfort, revealing a strong trend towards sustainability
and user comfort. The control actions primarily involve manipulating
HVAC settings, emphasizing their key role in energy management. The
table shows a strong preference for model-free RL methods, with DDPG
and DQN being commonly used. However, a few studies employ both
model-free and model-based approaches, indicating a potential benefit
of combining both techniques. The duration and focus of the studies
vary, reflecting the diversity of applications and climates. Most studies
apply to single-zone scenarios, but a few extend to multi-zone, showing
an increasing complexity in the research field.

This paper expands on the work of Solinas et al. (2021) by im-
plementing a more complex use-case scenario and introducing three
distinct approaches to system modelling. In the cited work, the authors
focused on using a system identification model to represent system
dynamics. Our first approach also employs a system identification
model for simulating the building’s thermal response, providing a
useful comparison on a common baseline. Our second approach uses
detailed white-box modelling to simulate the target building, an ap-
proach often adopted in the discussed literature. While this method
can yield more accurate thermal responses, it often incurs high costs
due to the need for comprehensive modelling. The third and most
innovative approach is the application of a fully online agent to the
target building without any preceding model-based simulation. We use
a building model simulated in EnergyPlus as a proxy for a real building,
subject to the same constraints such as thermal comfort and energy
costs. The agent undergoes an Imitation Learning pre-training phase, a
novel method in the field of HVAC system optimization that we believe
significantly improves the practicality and efficiency of the solution.
To the best of our knowledge, this practical-centred approach, coupled
with an imitation learning pre-training phase, has never been proposed
before in the literature and represents a strong novelty in the field of
optimization for HVAC systems.

3. Methodology

The present work targets the optimization of the heating con-
sumption of an HVAC system. The heating flow 𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 of an HVAC
system, and its related energy consumption, can be expressed with the
following equation:

𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 𝑚𝑑𝑜𝑡 ⋅ 𝑐𝑝 ⋅ (𝑇𝑎𝑖𝑟 − 𝑇𝑖𝑛) (1)

where 𝑚𝑑𝑜𝑡 is the air mass flow rate, 𝑐𝑝 is the specific heat capacity, 𝑇𝑎𝑖𝑟
is the air temperature from the HVAC system and 𝑇𝑖𝑛 is the indoor air
temperature. Hence, w.r.t to the reviewed literature, the action space
is extended to include air mass flow rate control, in addition to air
temperature control. Three main methodologies are then explored: the
first one, similar to Solinas et al. (2021), is based on a black-box system
identification model which simulates the building thermodynamics. In
the second one, a white-box model based on the EnergyPlus building
energy simulation program is adopted to provide a more realistic build-
ing response. The third methodology presents a novel online learning
approach, adopted to overcome the shortcomings of both previous
methods. The rest of this section will describe these approaches. Due
to the lack of real buildings in which we could test the three different
3

approaches we have chosen to use the software EnergyPlus (Crawley, t
Lawrie, Pedersen, & Winkelmann, 2000). Such software is a building
simulation program commonly used by researchers and designers and
is applied in this work to compare and test the three different methods
and to generate a historical dataset of an expert system for the control
of HVACs.

The task of finding the best action pair of indoor air temperature
increase and air mass flow rate can be described as a Markov Decision
Process (MDP) and thus tackled through reinforcement learning algo-
rithms. The optimal control problem is then modelled similarly to our
previous work (Solinas et al., 2021), in which an agent has to perform
a control action 𝑢 in a state 𝑠, to receive a reward 𝑟, transitioning to a
new state 𝑠′. The goal of the agent is that of finding the best control
ction in every state, maximizing the expected total reward.

The reward 𝑟 is defined as the distance of the indoor air temperature
𝑡 of the building to the predetermined setpoint 𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡, plus the cost 𝑐𝑡
f performing a particular control action pair 𝑢𝑡𝑒𝑚𝑝,𝑡, 𝑢𝑚𝑑𝑜𝑡,𝑡, respectively
he control actions over the temperature and the mass flow rate of the
ir that is provided by the HVAC system to the building.

= −(𝛽 ⋅ (𝑥𝑡 − 𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)2 + 𝜌 ⋅ 𝑐𝑡) (2)

here

𝑡 = 𝑢𝑡𝑒𝑚𝑝,𝑡 ⋅ 𝑢𝑚𝑑𝑜𝑡,𝑡 (3)

nd where 𝛽 and 𝜌 are variable to weigh the two sides of the equation,
he respect of the temperature setpoint on one side, and the energy
onsumption reduction on the other one. The choice of the cost function
s based on the direct proportionality of each of these control actions to
he system’s energy consumption. Specifically, an increase in the supply
ir temperature or the air mass flow rate leads to a corresponding
ncrease in the energy consumption by the HVAC system coil and the
entilation system, respectively. This allows the agent to optimize the
eward quantity by minimizing the use of the control actions as much as
ossible, thereby reducing the HVAC system’s energy consumption. As
n Solinas et al. (2021) state 𝑠 includes: the difference 𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡,𝑡−𝑥𝑡 (◦C)

between the setpoint and the indoor air temperature, with a 4 periods
lag; the difference 𝑥𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡,𝑡−𝑥𝑜𝑢𝑡𝑑𝑜𝑜𝑟,𝑡 (◦C) between the setpoint and the
outdoor air temperature; the outdoor relative humidity 𝑅𝐻𝑜𝑢𝑡𝑑𝑜𝑜𝑟 (%);
he wind speed 𝑊 𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑 (m/s); the wind direction 𝑊 𝑖𝑛𝑑𝑑𝑖𝑟 (𝑑𝑒𝑔𝑟𝑒𝑒𝑠);
he diffracted solar radiation 𝑅𝑎𝑑𝑑𝑖𝑓𝑓 (W∕m2); the direct solar radiation
𝑎𝑑𝑑𝑖𝑟𝑒𝑐𝑡 (𝑊 ∕𝑚2); the number of hours before the start or the end
f the next or the ongoing occupancy period, 𝑂𝑐𝑐𝑠𝑡𝑎𝑟𝑡 and 𝑂𝑐𝑐𝑒𝑛𝑑 (ℎ)
espectively. All inputs are pre-processed according to the 𝑀𝑖𝑛𝑀𝑎𝑥
ormalization rule. The set of control actions 𝑢𝑡, which the DDPG agent
an perform, consists in the supply indoor air temperature and the
orresponding air mass flow rate.

Differently to what had been presented in Solinas et al. (2021),
owever, the action space is now more complex as it includes not
nly the air temperature control but also the air mass flow rate.
ecause of this increased complexity, it has been deemed necessary
o implement an algorithm for continuous action spaces, namely the
eep Deterministic Policy Gradient (Lillicrap et al., 2015). The DDPG
lgorithm can be considered a DDQN (Mnih et al., 2015) for continuous
ction space. As shown in Algorithm 1, the DDPG is composed of two
ain networks, a critic network 𝑊𝜔, which is just a 𝑄 network as

n the DDQN model, and an actor-network 𝜇𝜃 , which is responsible
or sampling actions around a certain mean 𝜇. Both networks have
heir respective target networks for training stabilization purposes. The
arameter 𝛾 plays in the DDPG model a similar role than in a DDQN,
s already noted in Solinas et al. (2021). 𝛾 is employed to mediate
etween the two terms in the target 𝑄∗ value calculation (line 11 in
lgorithm 1), namely, the immediate reward 𝑟𝑡 and the expected long

erm reward 𝑄𝜔(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑄𝜔′ (𝑠𝑡+1, 𝜇𝜃′ (𝑠𝑡+1))). Higher values for 𝛾,
lose to 1, favour the maximization of long-term reward, while lower
alues of 𝛾, around 0.8, favour the maximization of immediate reward.

In the following three proposed implementations, the only changes
o the illustrated algorithm regards the state-transition function 𝑓𝜙 and

he number of episodes for which the agent is allowed to train.
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Table 1
RL optimization studies.

Study Target Control
actions

Methodologies Data and
season period

Model
free/based

Single/Multi
zone (n. of zones)

Kou et al. (2021) Energy cost, thermal
comfort, and
utility-level load
violation

Switching the HVAC
on/off (continuous)

DDPG, Alternating
Direction Method of
Multipliers (ADMM),
Rule-based

30 Summer Days,
Cooling

Model-Free Single-Zone

Du, Zandi et al.
(2021)

Energy cost, thermal
comfort

Temperature setpoint
(continuous)

DDPG, DQN,
Rule-based

1 month, Heating Model-Free Multi-Zone (2)

Du, Li et al. (2021) Energy cost, thermal
comfort

Temperature setpoint
(continuous)

DDPG, Rule-based 1 month, Heating
and Cooling

Model-Free Multi-Zone (2)

Rahimpour et al.
(2020)

Energy cost, thermal
comfort

Switching the HVAC
on/off (continuous)

DDPG, Approximate
Dynamic
Programming (ADP),
Rule-based

294 days, Heating Model-Free,
Model-Based

Single-Zone

Gao et al. (2020) Energy cost, thermal
comfort

HVAC temperature
and humidity
setpoints (continuous)

DDPG, Q-Learning,
SARSA, DQN

10,000 h, Heating
and Cooling

Model-Free Single-Zone

Ding et al. (2019) Energy consumption,
thermal comfort,
visual comfort and
indoor air quality

HVAC setpoint,
lighting, blind slat
angle and open % of
window (discrete)

Branching Duelling
Q-Network (BDQ),
DDQN, Rule-based

10 years, Heating
and Cooling

Model-Free Single-Zone

Brandi et al. (2020) Energy consumption,
thermal comfort

Supply water
temperature
(discrete)

DQN, Rule-based 3 months,
Heating

Model-Free Single-Zone

Barrett and Linder
(2015)

Energy cost, thermal
comfort

Switching Heating
and Cooling on/off
(discrete)

Q-Learning,
Rule-based

150 days, Heating Model-Free Single-Zone

Zhang et al. (2019) Energy consumption,
thermal comfort

HVAC setpoint
temperature, air mass
flow rate
(continuous)

Model-Based RL,
PPO, Rule-based

65 days, Heating Model-Free,
Model-Based

Single-Zone

Wei et al. (2017) Energy cost, thermal
comfort

Air flow rate
(discrete)

Deep Q Learning, Q
Learning, Rule-based

100 months,
Heating and
Cooling

Model-Free Single-Zone,
Multi-Zone (up to
5)

Fu and Zhang (2021) Energy cost, thermal
comfort

Indoor air
temperature setpoint
(continuous)

TD3-MPC, DDPG 100 days, Heating Model-based,
Model-Free

Multi-Zone (5)

Chen, Cai, and
Bergés (2019a)

Energy consumption,
thermal comfort

Supply indoor air
temperature
(discrete)

PPO-MPC 100 days, Heating Model-based,
Model-Free

Single-Zone

Solinas et al. (2021) Energy consumption,
thermal comfort

Supply indoor air
temperature
(discrete)

DDQN, MPC,
Rule-based

3 months,
Heating

Model-Free Single-Zone

Proposed solution Energy consumption,
thermal comfort

Supply air
temperature, air flow
rate (continuous)

DDPG, DDQN,
Rule-based

3 months,
Heating

Model-Free Single-Zone
The state-transition function 𝑓𝜙 represents the system dynamics and
maps a set of inputs 𝑦𝑡 into the next state 𝑠𝑡+1:

𝑓𝜙(𝑦𝑡) → 𝑠𝑡+1 (4)

𝜙 is the core of the proposed environment as it is necessary in order
o provide accurate feedback to the learning agent regarding the effects
f its action on the world.

It will be shown how different configurations provide different ad-
antages and shortcomings for HVAC systems optimization. As shown
n Fig. 1, three configurations are presented differing from one another
y the way they treat the 𝑓𝜙 state-transition function. In the first
pproach, a black-box model based on a neural network is used to
earn 𝑓𝜙 from historical data and predict new states accordingly. The
lack-box model is then used as the environment to receive agent
ctions and output corresponding rewards and next states. In a second
pproach, a simulated building modelled in EnergyPlus is used to
pproximate 𝑓𝜙 and provide virtual data to the agent. The training
rocess thus happens directly on the simulated building. For both the
lack-box and the white-box models, the testing has been performed
n a simulated building taking the role of the actual real building. In
he last configuration, a simulated building is treated in all concerns
s if it was a real-world building, providing ground-truth values for
he 𝑓 state-transition function. In this last approach, first an Imitation
4

𝜙

Learning phase based on historical data is adopted, acting as expert
data for this pre-training phase. Then the agent is directly deployed in
an online fashion on the real building.

3.1. Black-box model

The most evident advantage of performing a system identification
based on historical data from the target building is that of creat-
ing a fast and reliable simulated model which can provide a good
approximation of the state-transition function 𝑓𝜙.

Compared to Solinas et al. (2021), the environment under study
is more complex as the air mass flow rate control action has been
introduced. For this reason, a more powerful system identification
method has been deemed necessary for better capturing the system
dynamics.

More specifically, a neural network model has been implemented
for approximating the non-linear state-transition function, mapping the
initial internal temperature of the building 𝑥𝑡, the set of control actions
𝑢𝑡, namely the distributed air temperature and the air mass flow rate,
and a set of disturbances 𝑑𝑡, consisting in the outdoor temperature
and the occupancy status of the building, into the following internal
temperature �̂�𝑡+1

𝑓 (𝑥 , 𝑢 , 𝑑 ) → �̂� (5)
𝜙 𝑡 𝑡 𝑡 𝑡+1
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Fig. 1. Sequence diagram of the three proposed approaches.
The model consists of three stacked fully connected layers with
Rectified Linear Unit (ReLU) activation function, modelled in PyTorch.

3.2. White-box model

Compared to a black-box modelling tool such as the system iden-
tification described in the previous section, white-box modelling has
the advantage of being based on an analytical thermodynamics simu-
lation of the system. The white-box model, in fact, simulates the real
building in its most relevant thermal characteristics and behaviours.
The main advantage is that such kind of modelling is more accurate in
approximating the real-world state-transition function 𝑓𝜙. However, the
development of such a model is a time-consuming and costly process,
5

which involves a thorough investigation of the target premises and a
careful analysis of its structure, which has to be accurately replicated
in the chosen simulator.

When a white-box model is available, it is however the best op-
tion to approximate the building’s thermal response, without actually
having to connect the learning agent to the target structure. For the
purpose of this project, the model has been implemented in Ener-
gyPlus (Crawley et al., 2000), following the structure of Gym-like
environments (Brockman et al., 2016).

3.3. Online learning

Due to the difficulties regarding the system identification model for
the presented environment with a more complex action space, and the
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Algorithm 1 The DDPG algorithm for HVAC optimization.
1: Random initialize parameters 𝜔, 𝜃 of critic network 𝑄𝜔 and actor-network

𝜇𝜃 , parameters 𝜔′ ← 𝜔 of target critic network 𝑄𝜔′ and parameters 𝜃′ ← 𝜃
of target actor network 𝜇𝜃′

2: Initialize replay memory 𝐷, learning rate 𝛼 and target network update
parameter 𝜏

3: while 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 < 𝐸𝑃𝑚𝑎𝑥 do
4: while 𝑆𝑡𝑒𝑝𝑠 < 𝑆𝑡𝑒𝑝𝑠𝑚𝑎𝑥 do
5: Observe state 𝑠𝑡 and sample action 𝑢𝑡+1 = 𝜇𝜃(𝑠𝑡) + 𝜖 where 𝜖 ∼ 𝑂𝑈
6: Perform action 𝑢𝑡+1 in the environment, get the reward 𝑟𝑡+1, calcu-

late the new temperature 𝑥𝑡+1 = 𝑓𝜙(𝑠𝑡, 𝑢𝑡) and observe next state 𝑠𝑡+1 =
[𝑥𝑡+1, 𝑑𝑡+1]

7: Store (𝑠𝑡, 𝑢𝑡, 𝑟𝑡, 𝑠𝑡+1) in the replay memory 𝐷
8: end while
9: while 𝑈𝑝𝑑𝑎𝑡𝑒_𝑆𝑡𝑒𝑝𝑠 < 𝑈𝑝𝑑𝑎𝑡𝑒_𝑆𝑡𝑒𝑝𝑠𝑚𝑎𝑥 do

10: Sample a batch (𝑠𝑡, 𝑢𝑡, 𝑟𝑡, 𝑠𝑡+1) of size 𝐵𝑠 from memory 𝐷
11: Compute target Q value: 𝑄∗(𝑠𝑡, 𝑢𝑡) = 𝑟𝑡 + 𝛾 ⋅

𝑄𝜔(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑄𝜔′ (𝑠𝑡+1, 𝜇𝜃′ (𝑠𝑡+1)))
12: Update 𝑄𝜔 performing gradient descent step on (𝑄∗(𝑠𝑡, 𝑢𝑡) −

𝑄𝜔(𝑠𝑡, 𝑢𝑡))2

13: Update 𝜇𝜃 performing gradient ascent step on 𝑄𝜔(𝑠𝑡, 𝜇𝜃(𝑠))
14: Update 𝑄𝜔′ parameters: 𝜔′ ← 𝜏 ⋅ 𝜔 + (1 − 𝜏) ∗ 𝜔′

15: Update 𝜇𝜃 parameters: 𝜃′ ← 𝜏 ⋅ 𝜃 + (1 − 𝜏) ∗ 𝜃′

16: end while
17: end while

impracticability of simulating a white-box model for every new test
building, a different approach to HVAC optimization is presented here.

This approach is based on an online learning technique, in which the
RL agent responsible for choosing the correct action pair of temperature
and air mass flow rate is directly connected to the target building,
can perform an action on the actual system and receive real-time
feedback from it. By doing so, it is possible to gather the real thermo-
dynamic response from the environment, overcoming the difficulties
of a system identification model and avoiding the need of costly and
time-consuming white-box modelling. On the other hand, this approach
brings several shortcomings to be appropriately tackled. The agent,
indeed, needs to quickly learn an effective strategy to at least match the
performance of the existing baseline controller. If this does not happen
quickly enough, the training cost regarding energy consumption and
thermal comfort might be too high in the very first weeks or months
for practical implementation. This would be an expected outcome as
in the very first stages of learning RL agents are basically clueless
regarding what the optimal action is and tend to explore a lot of
possibly inefficient strategies.

In a nutshell, compared to the two other kinds of methodologies,
during online learning, the agent has to reach a satisfactory level of
performance in a very short time frame compared to the offline training
methods described previously.

To overcome such difficulties, the online approach is integrated
with a pre-training phase, where the agent is exposed to historical
data regarding the existing controller of the building and the system
dynamics. This is based on an Imitation Learning methodology (Hus-
sein, Gaber, Elyan, & Jayne, 2017) which has been proven useful in
robotics (Schaal, 1999), 3D navigation tasks (Hussein, Elyan, Gaber, &
Jayne, 2018) and many other applications. At first, an expert system (a
standard rule-based HVAC controller, in our case) is recorded in order
to generate a historical dataset representing a first-hand experience of
the real-world dynamics for the learning agent. More specifically, the
main feature of Imitation Learning is that during this training phase,
the agent cannot choose its own actions, but these are determined
by what the existing controller did during the recorded period. The
agent is thus fed with expert actions and their real consequences on the
environment as recorded in the historical dataset, that is, the action set
𝑢𝑡 and consequent state 𝑠′𝑡 are predetermined at each timestep by the
istorical real-world process. Once this pre-training phase is completed,
he agent acts and learns in the simulated environment just as before.
6

4. Experimental setup

To rigorously evaluate the efficiency of HVAC control models, a
comprehensive testing methodology is employed. In this section, we
present the simulation environment, training data, evaluation metrics,
and specific setup for each of the three models under examination:
Black-box model, White-box model, and the Online Learning model.

4.1. Simulation environment

The experimental setup hinges on the EnergyPlus (E+) simulator, a
top-tier building energy modelling (BEM) software. For all testing, an
EnergyPlus model, retrievable here (Chen, Cai, & Bergés, 2019b) and
employed in Chen et al. (2019a), is used. This model is composed of a
five thermal zones building, which is treated as a unique thermal zone
for the purpose of our work, that is, at each timestep 𝑡 the average of
the indoor air temperature of the five zones is computed and employed
as 𝑥𝑡, one of the primary component of state 𝑠𝑡. The proposed methods
will be tested against an EnergyPlus rule-based approach, a standard
controller which performs predefined actions based on a fixed schedule,
depending on the time of the day, the day of the week and the season
of the year. The EnergyPlus (Crawley et al., 2000) baseline was chosen
due to its comprehensive and accurate simulation capabilities, being a
state-of-the-art tool, developed by the U.S. Department of Energy for
simulating buildings’ thermal dynamics. It provides a valuable bench-
mark for comparing and evaluating the performance of our proposed
HVAC control approach.

In all cases, two possible control actions are available for the pro-
posed DDPG agent: continuous supply air temperature increases, given
the constraints of a minimum value of 0 ◦ C and a maximum of 6 ◦ C,
and continuous air mass flow rate provision, from a minimum of 0 m3∕s
to a maximum of 3.5 m3∕s. When, for comparison purposes, the tests
involve the DDQN algorithm, the control actions set is constructed as a
combination of seven possible temperature increments [0,1,2,3,4,5,6]
and four air mass flow rate actions [0,1,2,3.5], making a total action
space of 28 different action pairs.

4.2. Key performance indicators

To compare the results achieved by the three different approaches
between them and w.r.t to the EnergyPlus baseline, we adopted the
following KPIs that are (i) the Percentage People Dissatisfied (PPD),
(ii) Coil Power and (iii) HVAC Power. Such KPIs are widely adopted
in the literature presented in Section 2 to compare and validate the
algorithms w.r.t. baseline e.g. Chen et al. (2019a), Ding et al. (2019).
PPD is a metric that indicates the average percentage of people that
would be dissatisfied in certain thermal conditions. Anything below
20% is considered to be acceptable by the American Society of Heating,
Refrigerating and Air Conditioning Engineers (ASHRAE), which sets the
standards on thermal comfort (American Society of Heating, Refriger-
ating and Air Conditioning Engineers (Atlanta, Georgia), 2017). Coil
Power expresses the energy consumed by the heating coil in terms of
kWh, while HVAC Power indicates the overall energy consumption of
the whole system. In a nutshell, a strategy that tends to supply warmer
air temperature at a lower mass flow rate will proportionally increase
the Coil Power consumption, and vice versa a strategy that mainly relies
on the supply air mass flow rate is going to keep coil consumption at
lower levels.

4.3. Black-box model setup

The Black-box model is a data-driven approach that learns the ther-
mal dynamics of the building based on historical data. For training and
testing, one year of hourly data from E+ simulations was utilized. This
dataset includes a wide range of variables, from external and internal
temperatures to solar radiation. Performance was evaluated using two
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Table 2
Results comparison for black-box model and energyPlus (E+) baseline.

E+ 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐷𝐷𝑃𝐺

𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.99

PPD 19.33% 45.76% 41.01% 42.89%
Coil Power 6317 kWh 1209 kWh 1320 kWh 1660 kWh
HVAC Power 10076 kWh 5309 kWh 6471 kWh 6850 kWh

metrics: Percentage of People Dissatisfied (PPD) and HVAC system’s
energy consumption (in kWh). Lower values in both metrics indicate
better performance. The training data consists in the historical dataset
as created by a standard EnergyPlus scheduled rule-based controller,
which acts as the baseline and the expert system here. The neural
network is a fully connected three layers model, of 32 neurons each
with Rectified Linear Unit (ReLU) activation function, modelled in
PyTorch. Learning rate is set to 0.001 and batch size to 32.

4.4. White-box model setup

The White-box model makes use of physical laws and architectural
details of the building to simulate the building’s thermal behaviour.
It employs the same training and testing data, which can be retrieved
at Chen et al. (2019b), as the Black-box model, obtained from one year
of EnergyPlus simulations. Performance evaluation is identical to the
Black-box model, employing PPD and energy consumption as metrics.

The proposed algorithm (DDPG) is tested against the model (DDQN)
presented in Solinas et al. (2021) which acts on discrete action spaces
only. For a fair comparison, models are trained and tested on the same
3-months data used in Solinas et al. (2021). Both are tested on various
levels of the 𝛾 hyper-parameter. As before, the EnergyPlus scheduled
ontroller is adopted as the baseline. This literature baseline was chosen
ecause it represents our previous work in the development of control
trategies for a similar, albeit less complex, HVAC system. This allows
s to evaluate the progress and improvements made in our current work
ompared to our previous methodologies.

Two scenarios are presented in which internal loads are modelled
ifferently. Internal loads are all those endogenous factors, apart from
he HVAC system itself, that contribute to the heating of the building,
uch as the electrical appliances and the presence of people inside the
uilding’s areas. In the first scenario, no internal loads are modelled,
howing the algorithm’s ability in learning how to optimize the building
nergy distribution without additional factors. In the second scenario,
nternal loads are present and strongly influence the internal thermo-
ynamics of the system, allowing the RL agent to exploit their presence
y consuming significantly less energy than in the previous case.

.5. Online learning model setup

The Online Learning model employs an iterative process to learn
nd improve its performance over time.

For simplicity, the white-box EnergyPlus model acts here as the
eal building on which the methods are tested online. In a real world
cenario, the building simulated with EnergyPlus can be easily replaced
y a real world building equipped with Internet of Things devices that
onitor the environmental conditions and report the needed data.

Two scenarios are proposed in which the chosen algorithm (DDPG),
s tested in an online setting without previous training and with pre-
ious offline imitation learning training. In the latter case, the RL
lgorithm is shown one year of baseline EnergyPlus controller actions,
hich enables it to start the online training phase with previous, though

imited, knowledge of the environment.
Compared to tested Black-box and White-box models, the whole

ear is considered in this experimental campaign. This has been proven
seful for increasing the learning capabilities of the online RL agent.
espite this, the action space is the same as the other tested approaches,
7

for the whole year. As only increments in the supply indoor air tempera-
ture are possible in the proposed methodology, cooling actions were not
allowed for neither the rule-based approach nor the RL agent, resulting
in poorer performances in terms of thermal comfort for both approaches
during the summer months. For this reason, despite showing results for
the whole period, we will focus the discussion of the results on the
heating season.

5. Results

In this section, results are presented for the three proposed ap-
proaches, namely the offline learning based on the system identification
black-box model, the offline learning based on a white-box model and
an online and Imitation Learning approach.

5.1. Black-box model

In this section, results are presented for the offline learning meth-
ods based on the newly developed system identification model (see
Section 3.1).

The neural network is capable of quickly learning from the provided
historical dataset. Indeed, after just 30 epochs, the loss on the training-
and the test-set gets as low as 0.34 ◦C. No hyperparameters optimiza-
tion campaign has been carried out, because the model performs in a
satisfactory way on the testing dataset, while lacking to transpose these
results when employed as the state-transition function 𝑓𝜙 during the
raining of the RL agent.

In fact, despite the good performance on the historical dataset as
bservable in Fig. 2 for both the training and test loss, the system
dentification seems to not be able to accurately represent the state-
ransition function 𝑓𝜙 for all action pairs that the agent implements
uring its training phase, as shown in Table 2. The agent is completely
ot able to match the performance of the rule-based controller in terms
f thermal comfort, meaning that the state-transition function, upon
hich the thermal response and thus its reward is calculated, led it

trongly off the path. On the contrary, the energy consumption term in
he reward function does not depend on the state-transition function,
ut it is simply represented as the cost of performing a certain action
roportionally to its intensity, making the agent much more able to
erform efficiently in that regard.

The poor performances of the system identification model are most
ikely due to the fact that adding a second control variable, namely the
ass air flow rate, made the environment significantly more complex

nd thus harder to encompass with a system identification model. On
op of that, the historical data upon which the model is trained exhibits

very narrow action space. This is due to the rule-based controller
outine scheduling, which often chooses the same action pairs for
etting the building’s internal temperature to the required setpoint, and
hus does not allow the system identification model to really encompass
ll possible action pairs and their effects on the system thermal dynam-
cs. A larger historical dataset, consisting of a much greater variety
f control action pairs and their direct consequences on the building
hermal response would most likely allow significant improvements to
he system identification model introduced here. This greater variety
f actions is however seldom available and, in most cases, unfeasible
o collect as it would require, in real-case scenarios, that the standard
ontroller performs many potentially inefficient control action pairs.

.2. White-box model

This section presents results where the RL algorithm is directly
rained on a white-box model such as that of EnergyPlus (see Sec-
ion 3.2). This is a perfectly viable approach whenever detailed mod-
lling of the target building is present.

When no internal loads are present, the agent can fulfil its task
nly by relying on temperature increments in the supplied air, as no
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Fig. 2. Training loss on historical data for the system identification model.
Table 3
Results comparison for white-box model, energyPlus (E+) baseline and DDQN baseline, no internal loads.

E+ 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐷𝐷𝑃𝐺 𝐷𝐷𝑄𝑁 (Solinas et al., 2021)

𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.99 𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.99

PPD 25.11% 26.97% 23.85% 21.89% 27.12% 30.40% 27.82%
Coil Power 12765 kWh 5672 kWh 6617 kWh 9400 kWh 8311 kWh 9582 kWh 12816 kWh
HVAC Power 15132 kWh 7508 kWh 8471 kWh 11278 kWh 10509 kWh 11835 kWh 14838 kWh
Table 4
Results comparison for white-box model, energyPlus (E+) baseline and DDQN baseline, with internal loads.

E+ 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐷𝐷𝑃𝐺 𝐷𝐷𝑄𝑁 (Solinas et al., 2021)

𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.99 𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.99

PPD 19.33% 14.58% 16.38% 16.95% 21.13% 20.90% 19.89%
Coil Power 6317 kWh 931 kWh 1511 kWh 3109 kWh 2090 kWh 932 kWh 4890 kWh
HVAC Power 10076 kWh 3265 kWh 4200 kWh 5975 kWh 5378 kWh 4296 kWh 7589 kWh
other internal factor helps raising the temperature. Results for different
values of 𝛾 are shown in Table 3: higher 𝛾 favours thermal comfort,
ower 𝛾 favours energy saving, as observed and discussed more exten-
ively in Solinas et al. (2021). The observed results clearly indicate
ow the DDPG algorithm is doing a better job at both respecting
he thermal comfort of users and reducing energy consumption than
he rule-based approach and the DDQN algorithm. More specifically,
able 3 shows how the proposed method can reach up to 50% overall
nergy consumption reduction with respect to the EnergyPlus standard
ontroller, and up to 29% reduction with respect to the DDQN literature
aseline, respectively from 15132 kWh for the EnergyPlus controller
nd from 10509 kWh for the DDQN baseline to 7508 kWh. These results
re obtained by keeping the thermal comfort (PPD) increase under
% with respect to the rule-based controller, from a PPD of 25.11%
o 26.97%, while even slightly improving thermal comfort over the
iterature baseline. On top of that, if thermal comfort is considered as
he main goal of the optimization, thus selecting a higher value for 𝛾, a

PPD increase of almost 10% is achievable with respect to the baseline
controller, from 25.11% to 21.89%, while still reducing the energy
consumption of around 26%.

More surprisingly, when internal loads are present, as shown in
Table 4, the agent is actually capable of making use of this variable by
drastically reducing the coil energy consumption by 85% with respect
to the EnergyPlus baseline, from 6317 kWh to a mere 931 kWh, while
8

also increasing the thermal comfort by around 25% with respect to
the EnergyPlus and the literature baseline, from a PPD of respectively
19.33% and 20.90% to 14.58%. The proposed DDPG agent is capable
of achieving such results by exploiting the fact that, in the specific use-
case scenario, electrical appliances and people present in the building
already provide all the heat required to warm the building up to the
target setpoint, and not much additional heating power is needed.
The agent mainly relies on supply air mass flow rate, in order to
maintain good thermal conditions and account for possible overheating,
therefore reducing the overall HVAC’s consumption less drastically
by around 65% and 24% with respect to the two baselines, from
respectively 10076 kWh for EnergyPlus and 5378 kWh for the DDQN
to 3265 kWh for the proposed DDPG method.

In general, it can be observed that the DDQN results are generally
worse than that of DDPG, considering each different set of values for the
hyperparameter 𝛾. This might be due to the fact that the added control
action variable, the supply air mass flow rate, severely increased the
discrete action-space employed by this kind of RL agents, thus making
the optimization harder to achieve with the same level of performance.
Also, discrete action spaces allow for less fine-grained control over the
HVAC system, reducing the overall effectiveness of the agent.

5.3. Online learning

This section presents the results achieved by the proposed online
learning (see Section 3.3), directly connected to the target building.
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Fig. 3. Three years comparison between the EnergyPlus (E+) baseline and the proposed approach without pretraining, in terms of monthly average PPD.
Fig. 4. Three years comparison between the EnergyPlus (E+) baseline and the proposed approach without pretraining, in terms of monthly total energy consumption.
In Fig. 3 and 4, it is possible to observe the results for the online
raining process without previous Imitation Learning. It is evident how
he online DDPG agent performs worse than the baseline in the whole
irst year in terms of PPD (see Fig. 3), and for the most part of the year
n terms of energy consumption (see Fig. 4). Only during the third year
f training, the RL agent gets closer to the performance of the rule-
ased approach in terms of energy consumption, while the training has
o get to its second year to match the performance in terms of thermal
omfort.

When considering the agent that went through a previous Imitation
earning phase on historical data, it is immediately evident how this
reatly enhances the agent performance since the very first moments of
ction. As shown in Fig. 5 the DDPG agent performs slightly worse than
he baseline in terms of PPD, in the heating period, especially during
ts first month of training, while improving from the second month
nward. Fig. 6 shows significantly more promising results as the agent
s able to drastically reduce the energy consumption from the very first
ay of action and especially so in the whole heating season.

Table 5 reports the overall results after the first year of training
or the rule-based EnergyPlus controller, the online DDPG algorithm
ithout pre-training and with Imitation Learning pre-training. It is evi-
ent how the Imitation Learning technique provides significant benefits
9

Table 5
Results for the RL online training scenario on 1 year data.

E+ 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐷𝐷𝑃𝐺

𝑁𝑜 𝐼𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐼𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

PPD 26.92% 35.85% 29.43%
Coil Power 11102 kWh 18954 kWh 5821 kWh
HVAC Power 20056 kWh 33319 kWh 13033 kWh

in terms of both PPD reduction and especially energy consumption
with respect to the same online algorithm without the pre-training
phase. Similarly, when compared with the EnergyPlus controller, the
proposed DDPG and Imitation Learning approach is able to reduce
energy consumption from the very first year by around 35%, from
20056 kWh to 13033 kWh, while only slightly increasing the PPD by
less than 10%, from 26.92% to 29.43%.

Fig. 7 displays the monthly rewards achieved by the DDPG agent,
both with and without the Imitation Learning phase. Fig. 8 shows the
cumulative rewards over time for both agents. The cumulative reward
is a measure of the total reward that the agent has accumulated over
time, and it can provide an understanding of the overall performance
of the agent. The reward metric has been presented in Section 3 in
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Fig. 5. Three years comparison between the EnergyPlus (E+) baseline and the proposed approach with Imitation Learning pretraining, in terms of monthly average PPD.
Fig. 6. Three years comparison between the EnergyPlus (E+) baseline and the proposed approach with Imitation Learning pretraining, in terms of monthly total energy consumption.
q. (2). The blue line represents the agent that was pre-trained with
mitation Learning, while the red line represents the agent without
ny pre-training. It can be again observed from the monthly rewards
hat the agent performing Imitation Learning achieves higher rewards
specially in the very first months of training, compared to the agent
ithout Imitation Learning. This further highlights the impact of the

mitation Learning on helping the agent grasp a good understanding
f the dynamics of the HVAC system. Again, it is possible to note the
easonal nature of the data, with the agent being constrained to perform
oorly during the summer months (from May to September) because no
ooling action can be performed.

It is thus clear how the proposed method allows for a quick and
fficient HVAC control of buildings, where energy consumption is
educed from the first few weeks of operation with respect to the
raditional scheduled controllers. Furthermore, in this approach, the RL
gent only requires a historical dataset in order to perform an offline
mitation Learning phase, and is capable of being deployed online
n the target real-world building without the need for costly energy
hite-box modelling of the structure.

Table 6 presents an overall comparison of all the approaches pre-
ented in this work, including an EnergyPlus baseline and a literature
10

aseline (Solinas et al., 2021). Results have been gathered by a testing
phase on 3 months of data, in order to be consistent with the literature
baseline. The online learning algorithm has been pre-trained following
the Imitation Learning methodology and then directly deployed on the
building. Its results correspond then to its very first 3 months of actual
learning. Despite being the best performer in terms of both thermal
comfort and energy consumption reduction, the approach based on a
white-box modelling of the target building is costly, in terms of both
computational resources and time, and thus not always feasible in all
scenarios. The last proposed approach, based on an Imitation Learning
pre-training phase on historical expert data and online learning on
the target building is less performing overall but carries significant
advantages in terms of being able to be almost immediately deployed
on the target real building with negligible loss in terms of performance.

6. Concluding remarks

This paper has presented three different approaches to HVAC op-
timization through Reinforcement Learning techniques. In the first
approach, a system identification model is adopted in which a neural
network is trained on a 3-months historical dataset, and a DDPG agent
is trained receiving thermal response feedback on the actions taken

directly by the trained system identification model. This approach did
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Fig. 7. Monthly Rewards for the DDPG agent with and without Imitation Learning.
Fig. 8. Cumulative Rewards over Time for the DDPG agent with and without Imitation Learning.
not provide satisfactory results, as opposite to what is shown in Solinas
et al. (2021). This is most likely due to the increased complexity of
the action space in the proposed use-case scenario and the possible
overfitting of the historical training dataset.

In the second approach, a white-box model is used to simulate the
building thermal response and train the DDPG agent. As anticipated,
this method led to superior outcomes as the simulation accurately
represents the state-transition function that governs the system’s ther-
modynamics. Theoretically, the white-box model holds a clear edge
due to its close approximation of the physical system, which enables
optimal energy consumption and comfort outcomes. However, despite
this theoretical superiority, it is often impractical in real-world ap-
plications due to the extensive costs and time demands. Thorough
modelling of each building and their HVAC systems—necessary for
control and optimization—can be prohibitively expensive and time-
consuming, limiting the approach’s overall feasibility. Thus, while the
11
white-box model approach provides the best performance in a con-
trolled setting, its implementation costs highlight the necessity for
alternative, more practical solutions.

Finally, an approach is presented in which the DDPG agent is
trained directly on the target building, following an offline phase of
imitation learning where it is exposed to a historical dataset gathered
from a traditional rule-based controller operating on the building. This
online approach demonstrates that, after only a few days of training,
the proposed agent can match and even surpass the performances
of the baseline controller in terms of energy consumption reduction,
while maintaining user thermal comfort. Our proposed methodology
addresses a key gap in the current state-of-the-art HVAC optimization
research. Traditional RL methods are limited by the need to use ex-
tensive and costly simulations for training before practical application
to mitigate the risk of, when applied to real-world systems, taking
numerous suboptimal actions that might impair system efficiency and
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n
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Table 6
Comparison of results for the three proposed approaches and the two baselines on 3 months data.

E+ 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐷𝐷𝑃𝐺 𝐷𝐷𝑄𝑁 (Solinas et al., 2021)

𝑆𝑦𝑠𝑡𝑒𝑚 𝐼𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑊 ℎ𝑖𝑡𝑒 𝐵𝑜𝑥 𝑂𝑛𝑙𝑖𝑛𝑒 𝐼𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

PPD 19.33% 45.76% 14.58% 21.09% 20.90%
Coil Power 6317 kWh 1209 kWh 931 kWh 1229 kWh 932 kWh
HVAC Power 10076 kWh 7508 kWh 3265 kWh 4316 kWh 4296 kWh
user comfort. Conversely, our approach incorporates an offline imita-
tion learning phase, enabling the agent to start immediate interaction
with the target real-world environment with good efficiency, without
the need for complex modelling simulations. Although this method’s
performance may be slightly lower than the white-box model due to the
inherent limitations in directly capturing the physical system’s nuances,
this minor trade-off in accuracy is more than offset by the substantial
gains in efficiency and applicability. This approach is therefore viable
for real-case scenarios where only historical data concerning the target
building is typically available, and the agent needs to rapidly learn an
optimal strategy to minimize time spent exploring ineffective and costly
strategies.

In future work, we plan to refine our system identification model
by investigating the impact of various hyperparameters, such as the
number of connected layers in the neural network and learning rates,
on the model’s performance. This examination will contribute to bet-
ter understanding why our current model fell short of expectations
and will provide a basis for improvement. Additionally, we aim to
explore more complex scenarios involving multiple thermal zones,
which would enhance the realism and applicability of our approach.
Moreover, through the utilization of Internet of Things capabilities for
environmental variable monitoring and control, we intend to conduct
a practical application of our approach to a real-world building. This
would offer a more robust validation of its effectiveness and help
identify any potential shortcomings. We believe that this iterative and
critical approach to refining our methodology will result in substantial
improvements in HVAC optimization, paving the way for more efficient
and comfortable building environments.
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