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On the Nonlinear Dirichlet-Neumann Method
and Preconditioner for Newton’s Method

F. Chaouqui, M. J. Gander, P. M. Kumbhar, and T. Vanzan

1 Introduction

We consider a nonlinear Partial Differential Equation (PDE)

L(𝑢) = 𝑓 in Ω, 𝑢 = 𝑔 on 𝜕Ω, (1)

where Ω ⊂ R𝑑 for 𝑑 ∈ {1, 2, 3} is an open bounded domain with a polygonal
boundary 𝜕Ω, and 𝑓 , 𝑔 ∈ 𝐿2 (Ω). We suppose that (1) admits a unique weak solution
in some Hilbert space 𝑢 ∈ X( e.g. 𝐻1 (Ω)). For instance, for a quasilinear operator L
in divergence form, explicit assumptions can be found in [1] and references therein,
see also [7, Chapter 8-9] and [5, Chapter 9]. Let us divideΩ into two nonoverlapping
subdomains Ω1 and Ω2 and define Γ 𝑗 = 𝜕Ω 𝑗 \ 𝜕Ω, 𝑗 = 1, 2. Let 𝑢 𝑗 be the restriction
of 𝑢 to Ω 𝑗 . The nonlinear Dirichlet-Neumann (DN) method starts from an initial
guess 𝜆0 and computes for 𝑛 ≥ 1 until convergence

L(𝑢𝑛1 ) = 𝑓1, in Ω1, L(𝑢𝑛2 ) = 𝑓2, in Ω2
𝑢𝑛1 = 𝑔1, on 𝜕Ω1 \ Γ, 𝑢𝑛2 = 𝑔2, on 𝜕Ω2 \ Γ
𝑢𝑛1 = 𝜆𝑛 on Γ, N2𝑢

𝑛
2 = −N1𝑢

𝑛
1 on Γ,

(2)

where 𝜆𝑛 = (1−𝜃)𝜆𝑛−1+𝜃𝑢𝑛−1
2 |Γ ,with 𝜃 ∈ (0, 1) , 𝑓 𝑗 := 𝑓 |Ω 𝑗 and 𝑔 𝑗 := 𝑔 |𝜕Ω 𝑗\Γ for 𝑗 =

1, 2. The operatorsN𝑗 represent the outward nonlinearNeumann conditions thatmust
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be imposed on the interface Γ and are usually found through integration by parts of the
variational formulation of the PDE. For instance, ifL(𝑢) = −𝜕𝑥 ((1+𝛼𝑢2)𝜕𝑥𝑢), then
N𝑗𝑢 = (−1) 𝑗+1 (1 + 𝛼𝑢2

|Γ)𝜕𝑥𝑢 |Γ. For the well-posedness of the Dirichlet-Neumann
method, we further assume that N𝑗𝑢 defines a bounded linear functional over X.
System (2) can be formulated as an iteration over the substructured variable 𝜆 as

𝜆𝑛 = 𝐺 (𝜆𝑛−1) := (1 − 𝜃)𝜆𝑛−1 + 𝜃NtD2

(
−DtN1

(
𝜆𝑛−1, 𝜓1

)
, 𝜓2

)
, (3)

where 𝜓 𝑗 = ( 𝑓 𝑗 , 𝑔 𝑗 ), 𝑗 = 1, 2, represent the force term and boundary conditions,
while the nonlinear Dirichlet-to-Neumann (DtN 𝑗 ) and Neumann-to-Dirichlet oper-
ators (NtD 𝑗 ) are defined as DtN 𝑗 (𝜆, 𝜓 𝑗 ) := N𝑗𝑢 𝑗 , and NtD 𝑗 (𝜑, 𝜓 𝑗 ) := 𝑣 𝑗 |Γ, with

L(𝑢 𝑗 ) = 𝑓 𝑗 in Ω 𝑗 , L(𝑣 𝑗 ) = 𝑓 𝑗 in Ω 𝑗 ,
𝑢 𝑗 = 𝑔 𝑗 on 𝜕Ω 𝑗 \ Γ, 𝑣 𝑗 = 𝑔 𝑗 on 𝜕Ω 𝑗 \ Γ,
𝑢 𝑗 = 𝜆 on Γ N𝑗𝑣 𝑗 = 𝜑 on Γ.

(4)

If 𝑢ex ∈ 𝐻1 (Ω) is the solution of (1), then it must have continuous Dirichlet trace
and Neumann flux along the interface Γ. Defining 𝑢Γ := 𝑢ex |Γ, 𝜑 := N1𝑢ex |Γ and
using the operators DtN 𝑗 and NtD 𝑗 , these necessary properties are equivalent to

DtN1 (𝑢Γ, 𝜓1) = −DtN2 (𝑢Γ, 𝜓2), and NtD1 (𝜑, 𝜓1) = NtD2 (−𝜑, 𝜓2). (5)

2 Nilpotent property and quadratic convergence

It is well known, see e.g. [9, 4], that if L is linear and the subdomain decomposition
is symmetric, then the DN method converges in one iteration for 𝜃 = 1/2. Indeed, if
L is linear, one can work on the error equation, i.e. 𝜓 𝑗 = 0, and the symmetry of the
decomposition is sufficient to guarantee DtN1 (·, 0) ≡ DtN2 (·, 0), so that

𝜆1 =
1
2

(
𝜆0 + NtD2

(
−DtN1 (𝜆0, 0)

)
, 0

)
=

1
2

(
𝜆0 + NtD2

(
−DtN2 (𝜆0, 0)

)
, 0

)
=

1
2
(𝜆0 − NtD2 (DtN2 (𝜆0, 0), 0) = 0,

(6)

where in the third equalitywe used linearity, and in the lastNtD2 (DtN2 (𝜆, 𝜓), 𝜓) = 𝜆.
Can the nonlinear DN method also converge in one iteration?
On the one hand, the relation NtD 𝑗 (DtN 𝑗 (𝜆, 𝜓), 𝜓) = 𝜆 holds even in the nonlin-

ear case, simply because the nonlinear DtN 𝑗 operator is the inverse of the nonlinear
NtD 𝑗 operator. On the other hand, due to the nonlinearity ofL, one cannot rely on the
error equation, cannot state that NtD2 (−𝜑) = −NtD2 (𝜑), and the symmetry of the
decomposition is not sufficient to guarantee DtN1 (𝜆, 𝜓1) ≡ DtN2 (𝜆, 𝜓2), because of
the boundary conditions and the force term.
A straight forward observation is that if the nonlinear DN method converges in

one iteration, then 𝐺 (𝜆) = 𝜆ex, ∀𝜆, that is 𝐺 (·) is a constant. A necessary and
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Fig. 1: Subdomain solutions of the nonlinear DNmethod after one iteration (left), and exact solution
(right). The parameters are 𝑔 = 5 and 𝑘 = 2.

sufficient condition for the nonlinear DN method to converge in one iteration is then

0=𝐺 ′(𝜆)= 1
2
+1

2
(NtD2 (−DtN1 (𝜆, 𝜓1), 𝜓2)) ′ =⇒ (NtD2 (−DtN1 (𝜆, 𝜓1), 𝜓2)) ′=−1.

(7)
Clearly, (7) is satisfied if NtD2 (−DtN1 (𝜆, 𝜓1), 𝜓2) = −𝜆. We consider a toy example
in which this condition is satisfied. Let L = −𝜕𝑥

((1 + 𝑢2)𝜕𝑥𝑢
)
, 𝑢(0) = 𝑔 ∈ R+,

𝑢(1) = −𝑔 and 𝑓 (𝑥) = sin((2𝑘)𝜋𝑥). On the left plot of Fig. 1, we show the subdomain
solutions 𝑢1 and 𝑢2 obtained from (2) after the first iteration. The two contributions
sum to zero, which is the value of 𝜆ex. Thus, after one iteration we obtain the exact
solution shown in the right panel.
Even though the nilpotent property does not hold in general, we show in the

following Theorem that the nonlinear DNmethod can exhibit quadratic convergence.

Theorem 1 (Quadratic convergence of nonlinear DN)
For any one-dimensional nonlinear problem L(𝑢) = 𝑓 such that DtN′1 (𝜆ex, 𝜓1) ·

DtN′2 (𝜆ex, 𝜓2) > 0 with 𝜆ex := 𝑢ex |Γ, there exists a 𝜃 ∈ (0, 1) such that the nonlinear
Dirichlet-Neumann method converges quadratically.

Proof A sufficient condition for quadratic convergence is that the Jacobian of 𝐺 (·),
defined in (3), is zero at 𝜆ex := 𝑢ex |Γ, that is 𝐺 ′(𝜆ex) = 0. A direct calculation shows

𝐺 ′(𝜆) = (1 − 𝜃) + 𝜃NtD′2 (−DtN1 (𝜆, 𝜓1), 𝜓2) ·
(−DtN′1 (𝜆, 𝜓1)

)
. (8)

Setting 𝜆 = 𝜆ex and using the optimality condition DtN1 (𝜆ex, 𝜓1) = −DtN2 (𝜆ex, 𝜓2)
of (5), the above equation changes to

𝐺 ′(𝜆ex) = (1 − 𝜃) + 𝜃NtD′2 (DtN2 (𝜆ex, 𝜓2), 𝜓2) ·
(−DtN′1 (𝜆ex, 𝜓1)

)
. (9)

If DtN′1 (𝜆ex, 𝜓1) = DtN′2 (𝜆ex, 𝜓2) held true, then using the identity

NtD′2 (DtN2 (𝜆, 𝜓2), 𝜓2) ·
(
DtN′2 (𝜆, 𝜓2)

)
= 1,
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Fig. 2: In the left panels, we show the convergence curves, and in the right panels we plot 𝐺𝜃 (𝜆) .
The top-row refers to a symmetric decomposition, and the bottom-row to an asymmetric one.

obtained by differentiating NtD 𝑗 (DtN 𝑗 (𝜆, 𝜓 𝑗 ), 𝜓 𝑗 ) = 𝜆, we would easily get that
𝜃 = 1/2 leads to 𝐺 ′(𝜆ex) = 0. Nevertheless, variational calculus shows that to
calculate DtN′𝑗 (𝜆, 𝜓 𝑗 ), one has to solve a linear PDE which does not depend on 𝜓 𝑗
anymore, but whose coefficients still depend on the subdomain solutions 𝑢ex |Ω1 and
𝑢ex |Ω2 . In general then, DtN′1 (𝜆ex, 𝜓1) ≠ DtN′2 (𝜆ex, 𝜓2). However, DtN 𝑗 being one
dimensional functions, we have DtN′1 (𝜆ex, 𝜓1) = 𝛿DtN′2 (𝜆ex, 𝜓2), for some 𝛿 ∈ R+
if DtN′1 (𝜆ex, 𝜓1) · DtN′2 (𝜆ex, 𝜓2) > 0. Inserting this into (9), we obtain 𝐺 ′(𝜆ex) = 0
if 𝜃 = 1

1+𝛿 ∈ (0, 1). □

To illustrate Theorem 1 numerically, we consider L(𝑢) = −𝜕𝑥 ((1 + 𝛼𝑢2)𝜕𝑥𝑢),
Ω = (0, 1), 𝑓 (𝑥) = 100𝑥, 𝑢(0) = 0 and 𝑢(1) = −20. In the top-row of Fig. 2, we
set the interface Γ to 𝑥 = 1/2. In the left panel, we plot the convergence curves for
𝜃 = 1/2 and for 𝜃q := 1

1+𝛿 . In this setting, 𝛿 = 1.006 and 𝜃q = 0.498, so due to the
symmetry of the decomposition, 𝜃q is still very close to 1/2. In the right panel, we
plot 𝐺 𝜃 (𝜆) and see that as 𝜃 changes, the minimum of 𝐺 𝜃 (𝜆) moves, such that it is
attained at 𝜆 = 𝜆ex for 𝜃 = 𝜃q.
Next, in the bottom row of Fig 2, we consider the same equation and boundary

conditions, but Γ is now at 𝑥 = 0.3. The decomposition is asymmetric, with 𝛿 = 0.43
and 𝜃q = 0.699. The left panel shows clearly that for 𝜃 = 1/2 the convergence is
linear, while for 𝜃 = 𝜃q, the DN method converges quadratically. In the right panel,
we observe that 𝐺1/2 (𝜆) does not have a local extremum at 𝜆 = 𝜆ex, while 𝐺 𝜃𝑞 (𝜆)
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Fig. 3: Convergence behavior of nonlinear DN for different mesh sizes in 1D (left) and 2D (right).

does. Theorem 1 does not easily generalize to higher dimensions, since DtN′𝑗 are then
matrices, and the relaxation parameter would have to be an operator. Numerically
we observed for symmetric decompositions fast convergence for 𝜃 = 0.5, while for
asymmetric decompositions, 𝜃 needs to be tuned for good performance.

3 Mesh independent convergence

One of the attractive features of the DNmethod for linear problems is that it achieves
mesh independent convergence. Does this also hold for the nonlinear DNmethod (2)?
We first define the nonlinear DN method for multiple subdomains. Motivated by
the definition of the DN method for the linear case in [2], we divide the domain
Ω := (0, 𝐿) × (0, 𝐿) into 𝑁 nonoverlapping subdomains Ω 𝑗 = (Γ 𝑗−1, Γ 𝑗 ) × (0, 𝐿),
with Γ0 = 0 and Γ𝑁 = 𝐿. The nonlinear DN method for multiple subdomains is then
defined for the interior subdomains by

L(𝑢𝑛𝑗 ) = 𝑓 𝑗 in Ω 𝑗 ,

N𝑗𝑢𝑛𝑗 (Γ 𝑗−1, ·) = −N𝑗−1𝑢
𝑛
𝑗−1 (Γ 𝑗−1, ·) on Γ 𝑗−1,

𝑢𝑛𝑗 (Γ 𝑗 ) = (1 − 𝜃)𝑢𝑛−1
𝑗 (Γ 𝑗 , ·) + 𝜃𝑢𝑛−1

𝑗+1 (Γ 𝑗 , ·) on Γ 𝑗 ,

where 𝜃 ∈ (0, 1), and for the left and right most subdomains by

L(𝑢𝑛1 ) = 𝑓1, in Ω1, L(𝑢𝑛𝑁 ) = 𝑓𝑁 , in Ω𝑁 ,
𝑢𝑛1 (Γ, ·) = 𝑔(0), N𝑁𝑢𝑛𝑁 (Γ𝑁−1, ·) = −N𝑁−1𝑢

𝑛
𝑁−1 (Γ𝑁−1, ·),

𝑢𝑛1 (Γ1, ·) = (1−𝜃)𝑢𝑛−1
1 (Γ1, ·)+𝜃𝑢𝑛−1

2 (Γ1, ·), 𝑢𝑛𝑁 (𝐿, ·) = 𝑔(𝐿).

We perform two experiments, one in 1D and one in 2D. For the 1D case, we
consider the nonlinear diffusion equation −𝜕𝑥

((1 + 𝑢2)𝜕𝑥𝑢
)
= 0, with 𝑢(0) = 0 and

𝑢(1) = 20. We divide the domainΩ = (0, 1) into ten equal subdomains. We then plot
the relative error of the nonlinear DN for four differentmesh sizes ℎ = 1e-2, ℎ = 2e-3,
ℎ = 1e-3, and ℎ = 1e-4. The left plot in Fig. 3 shows that the convergence rate of the
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nonlinear DN is independent of mesh size, while it is quadratic for Newton’sMethod.
We repeat a similar experiment in 2D, but now the domain Ω = (0, 1) × (0, 1) is
divided into four equal subdomains. Even in 2D, we observe the mesh independent
convergence of the nonlinear DN method, see the right plot of Fig. 3.

4 Dirichlet-Neumann Preconditioned Exact Newton (DNPEN)

In Section 2, we observed that under some special conditions on the exact solution
of the nonlinear problem and 𝜃, the nonlinear DN method (2) can be nilpotent.
Moreover, the nonlinear DN method can also converge quadratically. But to achieve
this, we need to tune the parameter 𝜃 according to some a priori knowledge of the
exact solution of the nonlinear problem. Thus in general, the nonlinear DN method
converges linearly (as shown in Fig 3).
Iterativemethods can be used as preconditioners to achieve faster convergence, see

[4] for the linear case, and [8] for a historical introduction including also the nonlinear
case. It was proposed in [6, 3] to use the nonlinear RestrictedAdditive Schwarz (RAS)
and nonlinear Substructured RAS (SRAS) methods as preconditioner for Newton’s
method. We use the same idea here and apply Newton’s method to the fixed point
equation of the nonlinear DN method (3), which represents a systematic way of
constructing non-linear preconditioners [8]. The fixed point version of (3) can be
written as

F (𝜆) := 𝜆 − 𝐺 (𝜆) = 𝜃𝜆 − 𝜃NtD2 (−DtN1 (𝜆, 𝜓1) , 𝜓2) . (10)

Applying Newton to (10) we obtain a new method called Dirichlet Neumann Pre-
conditioned Exact Newton (DNPEN) method.
We saw in Section 2 that the DN method can be nilpotent in certain cases. Can

DNPEN still be nilpotent? Let 𝜆ex denote the fixed point of the iteration (3). Let us
assume that the Dirichlet Neumann method converges in one iteration. This means
that 𝐺 defined in (3) satisfies 𝜆ex = 𝐺 (𝜆0) for any initial guess 𝜆0. This shows that
the map 𝐺 is constant, and hence F ′(𝜆) reduces to the identity matrix. Moreover,
one step of Newton’s method applied to (3) can then be written as

𝜆1 = 𝜆0 − (F ′(𝜆0))−1F (𝜆0) = 𝜆0 − F (𝜆0) = 𝐺 (𝜆0) = 𝜆ex,

and hence DNPEN will also be nilpotent in that case. We further have also the
following result.

Theorem 2 The convergence of DNPEN does not depend on the relaxation param-
eter 𝜃 in the DN preconditioner.

Proof The function F from (10) corresponding to DNPEN can we rewritten as
F (𝜆) = 𝜃K(𝜆, 𝜓1, 𝜓2), whereK(𝜆, 𝜓1, 𝜓2) := 𝜆−NtD2 (−DtN1 (𝜆, 𝜓1) , 𝜓2). Thus,
Newton’s iteration reads
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Fig. 4: Comparison of DNPEN (with optimal 𝜃) with unpreconditioned Newton, nonlinear DN
(with optimal 𝜃) and RASPEN for a symmetric partition (left) and an asymmetric partition (right).

𝜆𝑘+1=𝜆𝑘−
(
𝐽F (𝜆𝑘)

)−1
F (𝜆𝑘)=𝜆𝑘−

(
𝜃𝐽K(𝜆𝑘)

)−1
𝜃K(𝜆𝑘)=𝜆𝑘−

(
𝐽K(𝜆𝑘)

)−1
K(𝜆𝑘),

which shows that the Newton correction does not depend on the relaxation parameter
𝜃. The iterates of Newton’s method will thus only depend on K, and DNPEN has 𝜃
independent convergence. □

The above theorem shows that when using DNPEN, one does not need to search
for an optimal choice of 𝜃, in contrast to the nonlinear DN method (2).
We now compare the convergence of DNPEN, the unpreconditioned Newton

method, the nonlinear DN method (2) and RASPEN [6]. We consider the nonlinear
diffusion problem −𝜕𝑥

( (
1 + 𝑢2) 𝜕𝑥𝑢) = 𝑓 on Ω = (0, 1) decomposed into two

equally sized subdomains, with 𝑢(0) = 0, 𝑢(1) = 10 and 𝑓 (𝑥) = sin(10𝜋𝑥). For both
DN andDNPEN,we choose the optimal relaxation parameter provided in Theorem 1.
The left plot in Fig. 4 shows that the iterative DN converges quadratically using the
optimal parameter and is very similar to DNPEN with no significant gain in the
number of iterations. The convergence curves also show that the unpreconditioned
Newton method is slower than all preconditioned ones, and DNPEN has a slight
advantage over RASPEN.
We repeat the same experiment but now using an asymmetric partition of the

domain Ω. The right plot in Fig. 4 shows that for this configuration, DNPEN is
the fastest while again unpreconditioned Newton is the slowest among the methods
considered. Moreover, DNPEN is significantly faster than the nonlinear DNmethod.
Finally, we illustrate numerically that the convergence of DNPENdoes not depend

on 𝜃. We know that in general, the nonlinear DN method converges linearly, and it
is not always possible to find an optimal 𝜃 such that it converge quadratically. We
again consider the symmetric partition of the domain and use the same boundary
conditions and force term as above. However, instead of the optimal 𝜃, we consider
two non-optimal 𝜃’s, namely 𝜃 = 0.1 and 𝜃 = 0.9. The left plot in Fig. 5 shows
the linear convergence of nonlinear DN for both 𝜃 = 0.1, and 𝜃 = 0.9, and both
are slower than the unpreconditioned Newton method. However, DNPEN converges
much faster than Newton’s method and in the same number of iterations for the two
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Fig. 5: Comparison of DNPEN with the unpreconditioned Newton method and nonlinear DN (left)
and with RASPEN (right) for two different non optimal 𝜃’s.

different values 𝜃 = 0.1 and 𝜃 = 0.9. The right plot in Fig. 5 shows that DNPEN is
still faster than RASPEN for both values 𝜃 considered.

5 Conclusion

While iterative DN methods are known to converge linearly, we proved that one can
obtain quadratic converge for some one-dimensional nonlinear problems and for a
well chosen relaxation parameter 𝜃. Under specific conditions, the nonlinear DN
method can also become a direct solver, like in the linear case. We then extended
DN to multiple subdomains and numerically showed that its convergence is mesh
independent. We finally introduced the nonlinear preconditioner DNPEN, proved
that the convergence of DNPEN does not depend on the relaxation parameter 𝜃,
and observed numerically that DNPEN is faster than unpreconditioned Newton,
nonlinear DN and RASPEN in all our examples.
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