
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Dependable Autonomic Computing Environment for Self-Testing of Complex Heterogeneous Systems / Baldini, A.;
Benso, A.; Prinetto, P.. - In: ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE. - ISSN 1571-0661. -
116:SPEC.ISS.(2005), pp. 45-57. [10.1016/j.entcs.2004.02.087]

Original

A Dependable Autonomic Computing Environment for Self-Testing of Complex Heterogeneous Systems

Publisher:

Published
DOI:10.1016/j.entcs.2004.02.087

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983859 since: 2023-11-15T10:14:13Z

Elsevier

A Dependable Autonomic Computing

Environment for Self-Testing of Complex

Heterogeneous Systems

Andrea Baldini, Alfredo Benso, Paolo Prinetto1 ,2 ,3

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 I-10129, Torino, Italy

Abstract

This paper is part of a R&D project aiming at the definition and implementation of an environment
for dependable autonomic computing. The primary goal of the study is the increase of dependability
of digital systems using self-healing techniques. Mobile agents implement self-testing policies for
complex and heterogeneous systems. The aim of this paper is to present the general ideas of the
project, describe the design decisions and a detailed view of the current architecture. The research
includes design and development of a working prototype.

Keywords: Dependability, Autonomic Computing, Self-testing, System Level Testing, Mobile
Agents.

1 Introduction

This study addresses the general necessity of increasing the dependability of
complex heterogeneous systems, using self-healing techniques. Self-healing is a
concept coming from the autonomic computing vision, i.e., self-test, -diagnosis,
-repair, and -management of target systems.

In the last years, as digital systems have grown in complexity, their op-
eration has become brittle and unreliable [1]. Not only computing systems’

1 Email: andrea.baldini@polito.it
2 Email: alfredo.benso@polito.it
3 Email: paolo.prinetto@polito.it

Electronic Notes in Theoretical Computer Science 116 (2005) 45–57

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.087
Open access under CC BY-NC-ND license.

mailto:andrea.baldini@polito.it
mailto:alfredo.benso@polito.it
mailto:paolo.prinetto@polito.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

complexity appears to be approaching the limits of human capability, but also
designers are less able to anticipate and design interactions among compo-
nents, leaving such issues to be dealt with at runtime. [2]

On the other hand, the goal of the companies is to increase productivity
while minimizing complexity for users and autonomic computing aspire to
realize it. [3]

The main characteristic of autonomic systems is self-management, divided
into four aspects: [2] self-configuration, i.e., automatic configuration in accor-
dance with high-level policies; self-optimization, i.e., proactive behavior of the
system, which continually seek ways to improve its performance and increase
its efficiency; self-healing, i.e., automatic detection, diagnosis, and repairing
of localized software and hardware problems; self-protection, i.e., anticipation
of problems based on early reports from sensors.

Starting from the idea of dealing with dependability issues during the mis-
sion operation of a system, our key point is an extensive use of mobile agents,
i.e., autonomous and identifiable computer program that can move from host
to host in a network under their own control, to periodically test a set of
target systems (self-testing), and in case of failure to diagnose (self-diagnosis)
and possibly solve the problem (self-repairing) before a severe malfunctioning
occurs (self-healing).

In the field of Computer Science, there are a number of different definitions
of software agent. According to Wooldridge and Jennings [4] an agent is a soft-
ware module with the following properties: autonomy, i.e., state encapsulation
and independent decision-making; reactivity, i.e., ability to perceive external
environment and respond to changes; pro-activeness, i.e., goal-directed be-
havior; social ability, i.e., interaction with other agents via a communication
language with an agent-independent semantics. [5]

Mobile agents are programs that can migrate from one machine to another.

Mobile agents evolve from the existing distributed computing paradigms
with several novelties. [6][7] The main advantages are: autonomy, even more
strongly than non-mobile agents; better support for mobile hosts; reduction
of network traffic, since an agent can simply work on site; facilitation for
software deployment. They can roam around, gather information about the
environment, download files.

Non-mobile agents and mobile agents are present in our environment, all of
them coherently introduced in the context of a multi-agent autonomic system,
i.e., a computing system that can manage itself given high-level objectives from
administrators.

In this paper in particular we will focus on software implemented hardware
self-testing capabilities.

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–5746

1.1 Motivations and Advantages

Based on our experience in the hardware and system testing fields, we think
that periodic testing of complex heterogeneous systems is the right direction
in order to obtain a significant gain in dependability.

The main advantages of using an autonomic computing environment based
on mobile agents are fundamentally three: pro-activeness, i.e., continuous self-
testing and possibly self-healing of systems occurs actively and before a mal-
functioning occurs; updating and upgrading capabilities, i.e., test, diagnosis,
and repairing procedures are always up-to-date; policy-based administrative
control, i.e., the administrators have complete control of the environment stat-
ing the general dependability policies, e.g., testing frequency.

The environment tries to respect the policies without human intervention,
hiding the details of the single procedure.

2 Related Research and State-of-the-Art

Our experience has been historically in the field of hardware and system test-
ing. The interest in applying software-implemented testing of systems and
components comes from advancements in the use of automatic test equip-
ments (ATE) such as automatic test pattern generation (ATPG), [8] Built-In
Self Test (BIST) [9] and self-repair (BISR), [10] and from our experience in
system testing design processes. [11]

Dependability concerns [12] are understandably at the center of our at-
tention; since the idea of ”Autonomic Computing” [3] was first introduced by
IBM’s senior vice president of research, Paul Horn, we have been interested
in using this concept to leverage on dependability issues.

Many of the founding elements for IBM’s autonomic computing initiative
already manifest into today’s iSeries servers [13] that exploit IBM’s blueprint
for delivering technology and tools to ease management of systems.

Another example is eBiquity, University of Maryland: [14] the goal of
this project is to create systems based on the cooperation of autonomous,
dynamic and adaptive component of various systems. These systems include
mobile/pervasive computing, multi-agent systems, artificial intelligence and
e-services.

MCA (Machine Check Architecture), Intel [15] is an open architecture
that allows systems to continue executing transactions as it recovers from
error conditions.

We can also mention RTP4 (Resilient Telco Platform 4) Continuous Ser-
vices, [16] a software solution that incorporates numerous self-configuring,

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–57 47

Agency

Communication Infrastructure

System
1

System
2

System
n

System
...

System
...

Agent
Repository

Fig. 1. General architecture

-healing, -optimizing and -protecting abilities, without having to consider the
current system configuration.

Another example of autonomous system architecture is described in the
Rainbow project (part of Carnegie Mellon ABLE initiative), a new technol-
ogy supporting automated, dynamic system adaptation via architectural mod-
els, explicit representation of user tasks, and performance-oriented run-time
gauges. [17]

One last citation is for the Recovery-Oriented Computing (ROC) project, a
joint Berkeley-Stanford research project that is investigating novel techniques
for building highly-dependable Internet services. [1][18]

3 General Architecture and Design Decisions

The project considers a network of systems (hereinafter called target systems)
composing, together with a system acting as provider of the self-testing capa-
bilities, i.e., the Agency, the whole environment (see Figure 1).

The periodic testing of critical component is provided by specific mobile
agents. The tests we need to perform are software implemented hardware tests,
such as testing the RAM of the target system or the hard disk before a failure
occurs. As a matter of fact, before failing completely usually components show
abnormal behavior, and testing can reveal it, in a similar way as the initial
bootstrap memory testing of a PC.

Typical tests involve processor’s functional units, memory (RAM or mass
storage), communication interfaces (network adapters, modems), etc.

The idea of using mobile agents for implementing the self-testing capabili-
ties, implies the instantiation of a fleet of mobile agents responsible for specific
test actions, and management.

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–5748

3.1 Policies and Goals

An autonomic computing system requires a uniform method for defining the
policies that govern the decision-making for autonomic managers. A policy
specifies the criteria that an autonomic manager uses to accomplish a definite
goal or course of action.

The policy approach allows administrators to provide the general depend-
ability directives, while the specific problem resolution and the management
of the system behavior are left to the system. Our environment realizes it
with policies and goals.

Policies

Each policy refers to a single component, e.g., video RAM, bus controller,
specific piece of software, or a group of them. It expresses a general testing
profile for such component or group of components. It specifies which kind of
test to perform on the component, e.g., it specifies the quality of a test. It
specifies also the frequency of a test, e.g., each day, each week. Moreover, it
specifies what to do in case of failure, e.g., prompt a message or start diagnosis
phase.

An example of policy is: ”Test CPU ALU of all systems using functional
test of high quality each week”.

Goals

Goals are translations of policies into simple actions, and are the basis of
the communications among agents.

Each Goal represents an atomic task to be performed at a time on a par-
ticular target system, so the environment can more easily plan several tasks,
i.e. activate several goals, for each target system. Each goal contains:

• System Identification: unique target system id code;

• Component Identification: unique id number for each component of a sys-
tem, or a single set of components, e.g., an entire board;

• Device information: hardware information collected about devices involved
in the policy; hardware information are used to monitor the hardware con-
figuration of the whole system and to plan testing;

• On-action-failure behavior: the system allows administrators to decide the
consequence of an action failure;

• Frequency: test frequency to be respected;

• Inactivity time: inactivity time on the target system that can trigger an
event, e.g. a test on some component when the system has been idle for

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–57 49

Knowledge
Base

Agent
Repository

Goal Interpreter

Policies & Sys Info
Manager

AGENCY

Global Admin
Policies

Manager
Agent

Test Agent

Diagnosis
Agent

Healing
Agent

Local Agent

TARGET SYSTEM

MOBILE AGENTS

Local Admin
Policies

Local Admin
Policies & Sys Info

Goal Generator

Global Admin

Local Admin

Simple
Goals Results

Complex
Policies

Agents

Fig. 2. Detailed architectural view

more than n minutes;

• Quality: quality of the test to perform on the system component, e.g., fault
coverage;

• Constraints: constraints related to time of activation of the goal, bandwidth
occupation and resource occupation.

4 Detailed Architecture

The self-healing environment is based on a common JAVA platform popu-
lated with autonomous agents. As a general framework we chose JADE (Java
Agent DEvelopment Framework) [19], an agent middleware that implements
an agent infrastructure compliant with the FIPA specifications [20]. The entire
environment is built on top of that (see Figure 2).

The main components of this architecture are the Agency, the Target Sys-
tems, and a fleet of Mobile Agents, namely Manager, Test, Diagnosis and
Healing Agents. In this scheme, the Agent Repository is included in the
Agency, differently from Figure 1.

Our agents are divided into static agents and mobile agents. The former
manage to retrieve information on the systems connected to the environment,
along with the administrators policies (analysis), then plan the tests (plan-
ning); the latter move from system to system and start the tests (testing),

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–5750

retrieve the results, choose the suitable repair (diagnosis) and manage the en-
tire testing and healing process in general (healing). In this paper we will cite
only testing agents.

Mobile agents communicate through goals. Each agent maintains a list
of its goals and processes them one after the other. When an agent needs a
service from the outside, it sends a request, in form of a goal, to the agent
able to provide that service.

While mobile agents have no stable place, static agents reside on the central
Agency. Moreover, there is a static agent on each target system, the Local
Agent.

4.1 Description of Agents

The Agency is the core of the environment. The Agency receives the informa-
tion about each target system and generates a healing plan elaborating the
settings coming from the Local Agents and those established by the Global
Administrator. It also creates (activates) new mobile agents and send simple
commands (goals) to them.

Hence the Agency is composed by five different modules:

(i) Policy and Sys Info Manager: a module responsible for the reception and
elaboration of the information about each target system and for policy
management;

(ii) Goal Generator: a module responsible for the translation of the informa-
tion and settings in policies to be passed to the mobile Manager Agent;

(iii) Knowledge Base, a data base which stores all the target systems infor-
mation;

(iv) Goal Interpreter: a module responsible for the activation of the mobile
agents triggered by the request of the mobile Manager Agent;

(v) Agent Repository, containing a set of mobile agents that can be activated
by the Agency in response to a Manager Agent request.

Mobile Agents are the moving executors of the environment.

• The Manager Agent is a mobile agent responsible for the management and
the timely execution of the test plan generated by the Agency. The Manager
Agent is in charge of a set of target systems and it moves from one to another
to check the status of the testing process, retrieve test history and collect
results of the tasks performed by mobile agents. It can self-clone if in charge
of too many target system.

• Test (or Diagnosis or Healing) Agents are mobile agents with specific ca-

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–57 51

pabilities needed by the environment and activated by the Agency when
necessary. An agent moves towards a target system, analyzes available re-
sources and possibly performs its task. It can receive other tasks while it is
moving or acting on a specific target system, possibly self-cloning. When it
has terminated its tasks, it dies.

The Local Agent is in charge of the communications with the Java Virtual
Machine and the Operating System of a target system, but also of the com-
munication with the Manager Agent and mobile agents. It maintains updated
information about all actions performed on the system; it maintains an up-
dated list of available resources; it is also responsible for the management of
the local policies.

4.2 Communications and Simple Behavior

We have described the roles of the agents, now we can complete the picture
adding the information about communications (see Figure 2).

To understand the details of the communications, it is useful to describe a
basic scenario (see Figure 3).

Each local agent alerts the environment when its system turns on or it is
available; then it retrieves all useful information on the system and the local
administrator policies. Such information is transmitted to the agency (and
updated).

Agency agents match the local administrator policies with the global poli-
cies (Policy Manager) and, along with the software and hardware information,
generate a list of tests to perform (Goal Generator). The result is a list of
goals to communicate to a mobile manager agent. The mobile manager agent
in charge of the addressed system moves to the target and if it is the right time
(determined by policies/goals constraints) it starts the actions, i.e., it sends
to the agency a list of goals each representing a single action to perform,
respecting policies/goals constraints.

The agency (Goal Interpreter) selects an agent able to perform the specific
action: if the agent exists in the environment, i.e., it has been already acti-
vated, then the agency assigns the action (goal) to the existing agent, else the
agency creates a new agent with information coming from the agent repository
and activates it with the new action (goal).

The involved mobile agent migrates, moves to the target system and, if
the resources are available, executes its task (goal); results are stored in the
target system (local agent). The manager agent on duty is responsible for
results acquisition and analysis. Depending on results, it sends new tasks
(goals) to the agency, e.g., a diagnosis action after a failure of a specific test,

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–5752

Local Agent: Target system exploration & policy determination

Local Agent: Policy transmission

Policy Manager: Policy storage

Goal Generator: Policy elaboration & Goal generation

Goal Generator: Goal transmission

Manager Agent: Goal activation

Goal Interpreter: Mobile Agent selection

Goal Interpreter: Mobile Agent activation

Manager Agent: Arrival on target system

Mobile Agent: Migration to target system and task execution

Goal Interpreter: Send Goal to existing mobile Agent

[Yes][No]

[No]

[Yes]

Agent already activated?

Time to activate a Goal?

Manager Agent: Result collection

Fig. 3. Main flow of execution in (basic scenario)

and it stores the result (Knowledge Base).

4.3 Payload Mechanism and Testing

The entire environment is based on the idea of using software-implemented
tests, i.e., programs that are able to test the functionality of the devices and
to detect misbehavior.

Moreover we try to implement tests that can run online, i.e., concurrently
with the mission operation of the SUT (System Under Test), or at least with-
out or with little user awareness, e.g., deploying idle moments.

This constraint has an impact also on software-implemented tests, in terms

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–57 53

of access to the device during the test, i.e., we should retain a resource only
for a short time, and of device state, i.e., we cannot expect to find a resource
in the same state after releasing and reacquiring it.

Finally, a hardware test usually needs a native library to be loaded, specific
for the target system, usually written in C or assembly code and compiled for
the specific platform. These pieces of code are interpreted as additional test
agents in our environment, implying that such agents contain native libraries
as payload.

Given these problems, one of the main purposes of the Local Agent on a
target system is to make the local tests possible.

Local tests are triggered by goals in the Test agents. As soon as a new goal
is processed by the Test agent it belongs to, this agent moves to the involved
SUT (System Under Test). Here it finds the Local agent and its services.

The Test agent asks for minimum resources, depending on the goal con-
straints.

We have already stated that a hardware test usually needs a native library
to be loaded. In this case, if an up-to-date, or at least compatible, library is
already locally available, it is just loaded on the local Operating system. If it
is not available or too old, the Local agent requests it to the Goal Interpreter
as a special Payload test agent.

The Local agent stores the library (payload) locally and finally can send
a message to the Test agent with the authorization to the test. Then the
Test agent performs the test, possibly after the loading of the required native
library. The local agent provides all the necessary services for management,
naming and versioning of the libraries, along with the Agency; moreover it
provides access to low level functions and system calls though a specific Java
Native Interface (JNI).

5 Working Prototype

The first thing to choose is the class of target systems, and the decision of
using PCs is by far the most viable. Nowadays they are the most common
digital systems of a certain complexity and they can be easily connected to
other digital systems through networks.

For sake of completeness, both Windows-based systems and Linux boxes
are addressed. The Agency is activated on Windows 2000 Server or Windows
XP Pro and the Local Agent runs under Linux Mandrake 9.2.

Additional simplifications are included in the prototype; in particular both
Knowledge Base and Agent Repository are implemented in a preliminary ver-
sion.

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–5754

Component Type & Model of component Type of Test Lib

CPU Mobile AMD Athlon XP-M 2000+ Functional ALU Yes

RAM DDR SDRAM 1 SODIMM 512MB Partial March Test Yes

Modem SiS 56k Winmodem HAMR5600 AT Query Yes

LAN SiS 900 PCI Fast Ethernet NIC TCPLoss

Table 1
Test cases

At last the development of Mobile Agents and native libraries is under
way: we have a limited set of working agents. We focus on functional testing
of specific components, e.g., processor, RAM, modem, network adapter.

5.1 Practical Results

We have installed the environment on a very small network, involving one
central system (Agency) and two target systems.

The environment is easily installed and configured on the machines, both
Windows- and Linux-based.

From the testing perspective, four different test cases have been analyzed,
functionally testing the arithmetic unit of the processor, a part of the memory,
the internal modem and the network adapter (see Table 1). We omit the
details of the specific tests performed locally. The last column represents the
presence of a native library to load in order to perform the test. Test policies
are simple and use periodic testing of the given components on the two target
systems.

All modules correctly manage the communications, and through specific
tools provided by JADE we have demonstrated correct agent mobility.

It is quite difficult to show the experiments, we try to give an idea of the
exchange of messages on the following ”sniffer” screenshot (see Figure 4).

In the figure the GUI of the middleware shows two panes: on the left
a list of the currently active agents (MainContainer represents the Agency,
Containers represent target systems); on the right an example of message
exchange among agents at a particular instant. At a certain point of the
sequence of messages the Manager Agent moves from the Main Container
(Agency’s place) to Container3 (Target System).

A last note on the dimensions of the environment at this point, supposing
a Java Virtual Machine already installed on the system: the Agency side, is

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–57 55

Fig. 4. Screenshot of JADE Sniffer

about 1.4 MB; the target system side, including JADE core, is about 700 KB;
mobile agents, including payloads, vary from 15 KB to 30 KB.

6 Conclusions and Future Work

In the context of a R&D project aiming at the definition and implementation
of an environment for dependable autonomic computing, we have presented
the general ideas of the project, described the design decisions and a detailed
view of the current architecture.

The work is beginning to produce results in terms of feasibility and ap-
plicability, but many parts must be addressed by research studies and fully
implemented.

The prototype is limited and the application at case studies has been re-
stricted too. We need much work to complete the case study, developing new
agents (testing, diagnosis and self-repairing agents) and applying the environ-
ment to a significant number of target systems.

References

[1] A. Fox, D. Patterson; ”Self-Repairing Computers”, Scientific American, June 2003

[2] J.O. Kephart, D.M. Chess, ”The Vision of Autonomic Computing”, IEEE Computer, Jan. 2003,
pp. 41-50

[3] P. Horn, ”Autonomic Computing: IBM’s Perspective on the State of Information Technology,”
IBM Corporation, October 15, 2001

[4] M. Wooldridge, N.R. Jennings, ”Intelligent agents: Theory and practice.” The Knowledge
Engineering Review, 10(2):115-152, 1995

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–5756

[5] M.R. Genesereth, S.P. Ketchpel, ”Software agents.” Communications of the Association for
Computing Machinery, pp 48-53, July 1994

[6] A. Fuggetta, G.P. Picco, G. Vigna, ”Understanding Code Mobility.” IEEE Transactions on
Software Engineering, Vol. 24, 1998

[7] C.G. Harrison, D.M. Chess, A. Kershenbaumn, ”Mobile Agents: Are they a good idea?”
Available as IBM Research Report, 1995

[8] F. Corno, U. Glaser, P. Prinetto, M. Sonza Reorda, H. Vierhaus, M. Violante; ”SymFony: a
Hybrid Topological-Symbolic ATPG Exploiting RT-Level Information”; Computer-Aided Design,
Volume: 18, Issue: 2, February 1999, page(s) 191-201

[9] A. Benso, S. Chiusano, G. Di Natale, M. Lobetti Bodoni, P. Prinetto; ”On-line & Off-line BIST in
IP-Core Design”; IEEE Design and Test of Computers, Volume: 18, Issue: 5, September-October
2001, page(s) 92-99

[10] A. Benso, S. Chiusano, G. Di Natale, P. Prinetto; ”An On-line BISTed RAM Architecture with
Self Repair Capabilities”; IEEE Transactions on Reliability, Volume: 51, Issue: 1, March 2002,
page(s) 123-128

[11] A. Baldini, A. Benso, P. Prinetto; ”Efficient design of system test: a layered architecture”; ITC
2002: IEEE International Test Conference, Baltimore, MD (USA), October 2002, page(s) 930-939

[12] Benso, S. Chiusano, P. Prinetto; ”A Software Development Kit for Dependable Applications in
Embedded Systems”; ITC 2000: IEEE International Test Conference, Atlantic City (NJ), October
2000, page(s) 170-178

[13] IBM iSeries servers. iSeries V5R2 and IBM’s autonomic computing initiative. Self-Managing
IT Infrastructure Technologies for e-business, IBM, 2002

[14] EBiquity, http://www.ebiquity.org, University of Maryland

[15] ”IA - 32 Intel Architecture Software Developer’s Manual, Volume 3 - System Programming
Guide”, by Intel Corporation, Chapter 14, 2003

[16] Resilient Telco Platform. FSC-White Paper,
http://www.fujitsu-siemens.com/rl/products/software/rtp4.html

[17] Rainbow project, http://www-2.cs.cmu.edu/ able/rainbow/

[18] ROC Project, http://roc.cs.berkeley.edu/

[19] JADE Framework, http://sharon.cselt.it/projects/jade/

[20] Foundation for Intelligent Physical Agents, http://www.fipa.org/

A. Baldini et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 45–57 57

http://www.ebiquity.org
http://www.fujitsu-siemens.com/rl/products/software/rtp4.html
http://www-2.cs.cmu.edu/~able/rainbow/
http://roc.cs.berkeley.edu/
http://sharon.cselt.it/projects/jade/
http://www.fipa.org/

	Introduction
	Motivations and Advantages

	Related Research and State-of-the-Art
	General Architecture and Design Decisions
	Policies and Goals

	Detailed Architecture
	Description of Agents
	Communications and Simple Behavior
	Payload Mechanism and Testing

	Working Prototype
	Practical Results

	Conclusions and Future Work
	References

