
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections / Monaco, F; Ognibene, G; Parola, F;
Risso, F. - ELETTRONICO. - (2022), pp. 33-38. (Intervento presentato al convegno 2022 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN) tenutosi a Chandler (USA) nel 14-16 November,
2022) [10.1109/NFV-SDN56302.2022.9974828].

Original

Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NFV-SDN56302.2022.9974828

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978254 since: 2023-05-01T16:20:20Z

IEEE

Enabling Scalable SFCs in Kubernetes with

eBPF-based Cross-Connections

Francesco Monaco, Giuseppe Ognibene, Federico Parola, Fulvio Risso

Department of Computer and Control Engineering

Politecnico di Torino, Italy

name.surname@polito.it

Abstract—Service Function Chains (SFCs) are composed of
an ordered set of Network Functions (NFs) that provide network
services to the handled traffic. However, traffic is highly variable
over time, thus telco operators need to deploy scalable chains that
can quickly and easily adapt to the load fluctuations. Although
Kubernetes has already brought benefits in terms of increased
scalability and flexibility to general-purpose applications, it
is not natively suitable for network workloads since it lacks
some functionalities required by network services. This paper
presents a simple, cloud-native architecture that integrates SFCs
in Kubernetes, with the aim of seamlessly leveraging cloud-
native features such as horizontal autoscaling. The solution is
based on flexible cross-connections, namely logical links that
connect adjacent network functions, which can promptly adapt
the distribution of the network traffic to the existing network
functions in case of scale in/out events affecting the number
of NF instances. The architecture has been validated with an
open-source proof-of-concept implementation based on dedicated
Kubernetes operators and an eBPF load balancer, demonstrating
the feasibility and the efficiency of the proposed approach.

I. INTRODUCTION

With the ongoing softwarization of the network and the

advent of Network Function Virtualization (NFV), Network

Functions (NFs) have been increasingly deployed as software

rather than hardware appliances. The recent trend towards the

increasing use of microservices instead of huge, monolithic

functions, led to the necessity to define a way to create chains

of NFs, forming Service Function Chains (SFCs), which are

characterized by an ordered set of NFs traversed by the traffic

in a precise sequence. Since the amount of traffic traversing

the chain is highly variable, SFCs must be able to dynamically

adapt to the current network traffic load, hence optimizing the

use of resources and improving the quality of the offered ser-

vice. With the advent of cloud-native NFs [1], new possibilities

have opened up for the implementation of more flexible SFCs

that can benefit from cloud-native environments. In particular,

cloud-native infrastructures such as Kubernetes include the

logic to provide automatic scalability of the running services

within their core functionalities. However, although Kuber-

netes is currently the de facto standard orchestrator for general-

purpose applications, it lacks some functionalities required

by NF workloads, such as the possibility of defining service

chains with precise network topologies and configurations, and

the possibility to have pods with multiple network interfaces.

Furthermore, the Service abstraction provided by Kubernetes,

which leverages horizontal scaling and provides load balancing

for applications, is not suitable for NFs since typically they

are not the final recipient of the network traffic.

To address the aforementioned limitations of Kubernetes

while bringing several of its advanced features also to the

world of SFC services, we propose a model that integrates

SFCs in Kubernetes, with the explicit goal of maximizing the

reuse of existing Kubernetes features (in particular, horizontal

pod autoscaling), while current SFC technologies tend to

propose dedicated mechanisms for SFCs. This simplifies the

creation of cloud-native SFCs and, with respect to automated

scaling, it leads to a higher efficiency thanks to the capability

to dynamically adapt to the actual traffic load. In fact, the

proposed solution enables each NF to be independently scaled

in an arbitrary number of replicas, hence providing flexible

cross-connections between adjacent NFs instances in the chain.

This paper is structured as follows. Section II presents

the current state-of-the-art. Section III details our model for

a scalable cloud-native SFC, while Section IV provides a

brief insight of a proof-of-concept implementation. Finally,

the experimental evaluation is presented in Section V, while

Section VI concludes the paper.

II. RELATED WORK

Several approaches for the provisioning of SFCs based on

Software Defined Networking (SDN) and NFV technologies

can be found in the literature, which has been comprehensively

analyzed in [2]. Recently, the growth of cloud-native technolo-

gies for NFs and the success of Kubernetes as orchestration

platform paved the way towards new techniques for SFCs

provisioning, such as in [3] and [4].

A solution based on the Network Service Mesh (NSM)

framework [5] was proposed in [3]. NSM allows individual

workloads to securely connect to Network Services, indepen-

dently of where they are running. A Network Service can be

composed of a chain of Endpoints, which actually implement

the NFs. NSM provides and manages all the necessary inter-

connections mechanism to let the traffic pass from the client

workloads to the endpoints of the requested Network Services.

When a client workload requests a particular Network Service,

NSM creates the necessary interfaces on the client and on the

endpoints, and configures the underneath forwarding mecha-

nisms in order to steer the traffic across the chain. However,

NSM does not enable any efficient load balancing among

NF Endpoint replicas. For this reason, the authors included

NAT-1

FW-1

FW-2

FW-3

GW-1

NAT-2 GW-2

Cross

Connection

Cross

Connection

Fig. 1: An example of a scalable SFC composed of a NAT, a Firewall
and a Gateway.

a network-aware load balancing system in order to leverage

all the instances of a particular Endpoint.

A framework based on Contiv/VPP [6] that integrates SFCs

in Kubernetes was proposed in [4]. It consists in a Kubernetes

Container Network Interface (CNI) plugin that uses FD.io VPP

to provide network connectivity between pods. Contiv-VPP

supports pods with multiple custom interfaces and enables

chaining between pods. Since Contiv-VPP enables only SFCs

that are composed of single NFs instances, scaling requires the

replication of the whole chain, with a further load balancer that

distributes the traffic among the different paths.

Unlike these two solutions that require either (i) the creation

of new interfaces and links for each client session or (ii) the

replication of the whole SFC, our solution allows to define

NF cross-connections only once, when the chain is initialized,

and leverages the native Kubernetes autoscaling at the NF-

level granularity, improving the efficiency and simplicity the

solution. This was achieved introducing the new concept of

flexible-cross connections, which connect replicas of adjacent

NF and are dynamically adapted in case of scaling events.

III. SYSTEM DESIGN

A. Goals

Since Kubernetes does not provide any abstraction to sup-

port SFCs, our solution (i) introduces a proper model for

SFCs, and (ii) defines the logic required to support multiple

and independent NFs replicas in the chains, while leveraging

existing Kubernetes features to the maximum extent. In details,

our work addresses the following four goals.

Declarative definition of SFCs. SFCs must be created with a

simple declarative description that includes only (logical) NFs

and their interconnecting links, without any further low-level

detail, such as the number of NF replicas in each stage of the

chain, or how the traffic is distributed among existing replicas.

Automatic support for multiple replicas of a NF. Each NF in

the chain may be executed with an arbitrary number of replicas

(e.g., Figure 1). This enables the creation of multiple paths

across NFs of the chain for optimal workload distribution,

which demands for a clever traffic distribution mechanism that

is implemented transparently by our solution.

Automatic adaptation of the chain to the variation of

replicas. Each NF in the chain must be able to scale (e.g.,

in/out) automatically, mostly leveraging existing Kubernetes

mechanisms (e.g., horizontal autoscaling). This requires our

solution to dynamically adapt the cross-connections between

consecutive NFs to keep them aligned with the number of

instances present at any given moment. This ensures that new

replicas are used and no traffic is forwarded to deleted replicas,

kind: ServiceFunctionChain

metadata:

name: transparent-firewall

spec:

networkFunctions:

- name: nat

links:

firewall: eth1

- name: firewall

links:

nat: eth1

gw: eth2

- name: gw

links:

firewall: eth1

a. Service Function Chain

kind: Deployment

metadata:

name: gw-deployment

spec:

selector:

sfc.polito.it/networkFunction: gw

template:

metadata:

labels:

sfc.polito.it/networkFunction: gw

annotations:

k8s.v1.cni.cncf.io/networks: sfc-gw-if@eth1

b. Network Functions

kind: NetworkAttachmentDefinition

metadata:

name: sfc-if-gw

spec:

config: '{

"cniVersion": "0.3.1",

"name": "sfc-cni",

"type": "sfc-cni",

"macGenerationString": "gw",

"ipam": {

"type": "static",

"addresses": [{"address": "10.240.0.2/24"}]

}

}'

c. Data plane interfaces config

Each link specifies the neighboring NF and the

interface through which it can be reached

Name of the interface

The lack or presence of this

field defines whether the NF

is L2 (lack) or L3 (presence)

Identifier of the

interface configuration

Fig. 2: Description of a simple SFC, referred to the chain of Figure 1.

which can be achieved through consistent hash mechanisms to

keep established sessions to the existing replicas.

Support for L2/L3 NFs. The solution must support both

Layer 3 NFs, which have a MAC/IP address on their inter-

faces (e.g., a router), and NFs operating as bump-in-the-wire

transparent middleboxes, processing all traffic flowing through

them regardless of L2 addressing (e.g., a transparent firewall).

This work leverages existing Kubernetes mechanisms to

decide when and how to scale NF replicas; hence, how to

allocate resources and where to schedule each pod. However,

pure standard Kubernetes algorithms might not always take the

optimal decision for SFC workloads; as illustrative examples,

the default autoscaling criteria is based on CPU load, which is

not appropriate for NFs running according to the busy-polling

model; the default scheduling policy may not recognize the

necessity to run two consecutive NFs on the same server

to minimize I/O traffic, and more. The solution consists in

creating additional Kubernetes components that, for example,

export new metrics to drive the autoscaling mechanisms (e.g.,

based on the amount of traffic instead of the CPU used), or

additional policies (e.g., affinities) to influence the decisions

of the scheduler. Nevertheless, our approach enables reusing

a large amount of tested code already present in Kubernetes,

which greatly reduces the number of problems that need to be

considered when running a SFC.

B. Modeling SFCs

We modeled a SFC as a list of nodes, each one specifying

a NF, and a logical connection for each data plane interface

of the NF (Figure 2a) that defines the next NF that can

be reached through the interface. Each NF (Figure 2b) is

characterized by one or more data plane interfaces, each one

with its own network configuration (e.g., MAC/IP addresses,

etc.; Figure 2c). One additional interface could be natively

handled by Kubernetes and attached to the main CNI plug-

in, which can be used for management purposes. Since a

running NF can include one or more replicas, interfaces of

each replica have exactly the same network configuration

(including IP/MAC address, if present), hence making each

replica just a new pool of computing resources that is (from

the data plane point of view) indistinguishable from other ones.

This high-level connection model enables also the support

for asymmetric NFs, e.g., a NAT, which apply a different

processing to traffic according to its direction.

C. Modeling flexible cross-connections

To enable the connectivity between multiple replicas of ad-

jacent NFs, we need a flexible cross-connection that connects

adjacent groups of NF replicas according to the corresponding

logical connections specified in the SFC models. Each instance

of the cross-connection is two-sided and bidirectional, i.e.,

it can only manage traffic between two consecutive NFs,

with packets that can flow in both directions. The number of

handled replicas may be asymmetrical on the two sides and

also variable over time.

Flexible cross-connections, compared to simple point-to-

point links, have to manage a higher level of complexity

deriving from the larger number of possible connections be-

tween NF groups. Furthermore, they provide traffic forwarding

capabilities and all the necessary logic to distribute the traffic

among all the NF replicas. The logic that determines how

the traffic is distributed is based on network sessions (e.g.,

TCP/UDP 5-tuple), coupled with consistent hashing mecha-

nisms to ensure that all the packets belonging to the same

sessions are always forwarded to the same NF instances. This

association between session flows and NF replicas occurs for

each step of the SFC. As a result, the traffic of each session tra-

verses a path composed of exactly one replica for each NF. All

the above characteristics are transparent to NFs, which are not

aware of the presence of any intermediate cross-connection,

nor have any knowledge about the preceding/following NF

replicas.

IV. IMPLEMENTATION OVERVIEW

This section presents an open-source1 PoC implementation

of our model. Since the system was conceived to be integrated

with Kubernetes, some of the prototype components have

been designed to leverage the extensibility features of the

aforementioned platform. This is the case of the SFC CNI

plugin, which allows to configure the data plane interfaces of

NF pods, and of the SFC Operator which acts as a manager

for SFCs resources in the cluster, allowing to instantiate chains

given their logical model. The other fundamental component

is the eBPF Load Balancer, which implements the flexible

cross-connections between NFs.

A. SFC CNI Plugin

The SFC CNI plugin allows to configure the L2/L3 data

plane interfaces on NF pods, and has been designed to operate

in conjunction with Multus CNI [7]. Multus is a meta-plugin

1https://github.com/fmonaco96/sfc-k8s

that allows the use of multiple CNI plugins, to support multiple

NICs in Kubernetes. By default, Kubernetes allows to have

only one NIC for each pod, which is connected to the main

cluster network. However, one NIC is usually not enough for

NFs, since they typically need at least two additional interfaces

(ingress and egress).

The SFC CNI plugin configures veth pairs that connect the

pods with the network namespace of the host on which they

are scheduled. For what concerns IP addressing, the system

requires the use of the static IPAM plugin in order to assign

the same addresses to all the replicas of a NF. Similarly, also

the MAC address assigned by this plugin is required to be

the same for groups of replicas. In addition, the SFC CNI

plugin stores the details about interfaces configuration on the

corresponding Kubernetes pod resource, in order to make this

information available to the SFC Operator when it has to

connect the pod to the eBPF-based load balancers.

B. eBPF Load Balancer

Our flexible cross-connections are based on eBPF [8], which

has been chosen for its proven capability to create efficient

network functions [9]; in fact, it can process the traffic on its

natural path inside the Linux network stack, with clear benefits

in terms of performance and transparency. The eBPF load

balancer handles the traffic between two NFs, irrespective of

the actual number of replicas. Hence, it can implement an N-

to-M cross-connection between all veth interfaces associated

to two consecutive NFs in the SFC, which terminate in the host

network namespace.

The eBPF load balancer operates at the Traffic Control

(TC) level in the Linux networking stack, leveraging the hook

points of the veth on the host side. This allows the packets

coming from the pods to be immediately processed as soon as

they arrive at the ingress interface of the host, hence without

touching in any way the container where the NF is running. We

rely on some internal eBPF maps to keep all the information

about connected NFs and handled sessions. In particular, they

leverage two array maps containing the indexes of the NF

interfaces connected on each side. The session table, which is

a hash table, associates each handled TCP/UDP 5-tuple with

two interface indexes: one is the index of the interface from

which the first packet of the session was received and the other

one is the index of the egress interface selected by the load

balancing logic for that session.

This selection is made in two phases: (i) an hash function

is applied to the session 5-tuple and (ii) the obtained value

is used as an index to select an entry from the array map

of the egress interface indexes. A more elaborate consistent

hashing mechanism could be used to limit the shuffling of

sessions that can not be stored in the session table when the

latter is full, but this optimization is left as a future work.

Furthermore, an additional hash map is used as a small ARP

cache to facilitate the management of the ARP protocol across

the chain. In fact, since the IP/MAC addressing is the same

for each group of replicas, the ARP request/replies are always

identical. Responses can therefore be cached so that, after the

(2)

(1)

worker

veth-nfa-1 veth-nfb1-1 veth-nfb1-2 veth-nfc-1

veth-nfb2-1 veth-nfb2-2
Host

SFC Operator
(3)

(4)

NF-A

eth1

NF-B1

eth1 eth2

NF-C

eth1

eth1 eth2

NF-B2

Load Balancer Load Balancer

Fig. 3: Chain creation process

first reply, load balancers are able to respond immediately

with the cached reply, without having to propagate the request

across the chain.

C. SFC Operator

The SFC Operator acts as a manager for the system

implementing the Operator Pattern of Kubernetes. It op-

erates as a controller for ServiceFunctionChain and

LoadBalancer custom resources, which represent the SFCs

and eBPF Load Balancers instances in a cluster and are stored

in etcd. This operator runs as privileged DaemonSet in the

hosts’ network namespace, due to the necessity to manipulate

the network stack and attach the eBPF Load Balancers to

veth interfaces. Moreover, it watches the Kubernetes resource

representing the NF pods in order to immediately detect if

there is a new replica or an existing one is going to be deleted.

The SFC Operator has been implemented using Kopf [10],

a framework that allows to write Kubernetes Operators in

Python. This allowed us to leverage the BCC toolkit [11] to

handle the eBPF Load Balancer instances. In this way, it was

possible to create a single program that could deal with the

management of events concerning SFC cluster resources, but

also with the practical aspects concerning the configuration

of the data plane of eBPF Load Balancers. When the SFC

Operator notices that there is a new SFC resource in the

cluster, it creates the load balancers across the chain, compiling

and injecting the corresponding eBPF code in the Linux kernel.

It then configures the TC hook of the NFs interfaces so that

all the generated traffic is handled by the load balancing logic,

providing a logical link between NFs and load balancers.

During the operation of the chain, when it detects an event

on NF replicas, it updates the configuration of adjacent eBPF

Load Balancers so that they are always aligned to work with

the instances present at the moment.

D. SFC Lifecycle

The lifecycle of a SFC is determined by its corresponding

ServiceFunctionChain resource. These resources allow

users to create SFCs in a fully declarative way without the need

of any other further detail, leaving the practical operations to

the SFC Operator. Figure 3 shows the main actions performed

by the SFC Operator when it has to manage the creation of

a new chain. As soon as a user applies a manifest of a SFC

to the Kubernetes API Server, (1) the SFC operator watches

the related event and (2) parses the provided description in

order to obtain the chain structure. During this phase, for

each couple of adjacent NFs, it creates and pushes to the

API server a LoadBalancer manifest and, at the same

time, through another controller, it proceeds with the actual

instantiation of the load balancers injecting their eBPF code

in the kernel (3). After their successful creation, the SFC

Operator proceeds with the creation of the links between

NF pods veth interfaces and adjacent load balancers (4),

configuring the TC hook of the pods veth interfaces so that

all incoming packets are processed by the load balancing logic.

Moreover, it pushes the interfaces indexes in the load balancer

data structures so that they know to which NFs they are linked.

As concerns the deletion, when a user deletes the

ServiceFunctionChain resource from the cluster, the

SFC operator reacts removing the eBPF Load Balancers

injected in the kernel and cleaning up all the TC hooks of

veth interfaces attached to the NF pods.

E. NF scaling

In order to properly handle scaling and more generally the

creation and the deletion of NF pods, the system reacts to two

specific events during the lifecycle of the pod. The first one

is the beginning of pod execution and the second one is the

start of the pod deletion procedure. When the SFC Operator

notices that a new NF pod has entered the running phase, it

immediately proceeds with the operations needed to include it

in the chain. First, it searches for all the eBPF Load Balancers

it must be linked to, then it proceeds with the actual connection

of the NF pod interfaces as described previously. On the other

hand, as soon as the SFC Operator notices that a NF pod

is going to be deleted, it removes from load balancers all

the information related to that replica so that it will not be

selected by the load balancing logic anymore. It is important to

highlight that the above clean-up operations must occur before

actually shutting down the pod in order to avoid dropping

packets. This can be achieved by postponing the actual NF

pod termination so that the SFC Operator has enough time

to complete the cleanup, which can be done by leveraging

the PreStop hook in the containers lifecycle, that allows the

execution of a command before starting the termination phase.

V. EVALUATION

This section presents a preliminary evaluation of the pro-

posed architecture in terms of performance and reaction times.

First, we compare our SFC scaling approach that operates

on individual NFs against the alternative approach based on

the scaling of the whole chain. Second, we evaluate the

performance of the eBPF Load Balancers in terms of their

throughput. Third, we measure the reaction time of the overall

system at the occurrence of scaling events.

A. NF scaling efficiency

In our solution, the scaling of NFs is based on the au-

toscaling features of Kubernetes, whose logic operates on each

single NF deployment. This enables SFCs that can scale only

the component that is stressed or underused, allowing better

resource usage compared to other approaches that scale the

whole chain. To highlight this aspect, we measured the amount

of resources requested by an SFC when it scales out only a

stressed NF as opposed to when it scales out the entire chain.

The tested SFC was composed of three NFs: a firewall, a

simple pass-through traffic policer, and a gateway. In terms

of computational resources they requested2 200, 150, 100

milliCPU respectively for each instance. The firewall is the

NF that is assumed to scale.

1 2 3

0

500

1,000

#replicas

R
es

er
v
ed

re
so

u
rc

es
(m

il
li

C
P

U
)

SFC with scaling FW Entire SFC scaling

Fig. 4: Requested milliCPU as the number of scaled instance increase.

Figure 4 shows the results of the test in terms of milliCPU

requested by the entire chain for the two approaches as the

number of replicated instances increase. In case of interrupt-

based NFs, the requested CPU does not imply it is actually

consumed, hence it could be re-assigned to other services

demanding more CPU power. However, this is possible only

in case the over-allocation policy is allowed, which is usually

discouraged in case of strong service guarantees. Vice versa,

with NFs based on a busy-polling model (e.g., in case of

DPDK-based NFs), the amount of CPU actually consumed

is equal to the reserved value, independently of the amount

of traffic to be processed, hence leading to an unnecessary

waste of resources. Hence, this result confirms that the scaling

performed on individual NFs allows to greatly decrease the

resource utilization, avoiding unnecessary over-allocations or

resources wasted by busy-polling NFs.

B. eBPF Load Balancer performance

In the traditional approach in which the whole chain is

scaled, NFs can be directly connected through a point-to-point

link (e.g., veth). Instead, in our architecture the fan-in/fan-

out of each NF can be potentially greater than one, hence

requiring the presence of a load balancer between NFs, which

may introduce additional performance penalties. This section

evaluates this additional cost of the eBPF load balancer, com-

pared to other two interconnection mechanisms provided by

Linux kernel: Virtual Ethernet (veth) and the standard Linux

2In Kubernetes, requests determine the amount of resources reserved for a
pod, which may be different from the consumed resource, which is usually
smaller than the value above.

bridge software. In this test, physical connections between NF

pods are created as follows:

• Virtual ethernet: the veth is used as a direct link between

the NFs. One end of the veth is placed in the network

namespace of the first NF and the other end is placed in

the network namespace of the second NF.

• eBPF Load Balancer: each NF is connected to the host

network namespace through a veth and the load bal-

ancer cross-connects the veth ends on the host side.

• Linux bridge: similar to the previous case, but in this case

the veth head ending in the host network namespace are

connected through a Linux bridge.

Tests address two different scenarios: (i) a chain composed

of two pods, a client and a server; (ii) a chain composed

of three pods, a client, a transparent firewall and a server.

In these tests, each NF is deployed with a single replica.

In both scenarios all the pods of the chain are executed on

the same Kubernetes node, with the physical interconnections

implemented through the above technologies. The throughput

of each chain has been measured with iperf3, using TCP

traffic with standard parameters.

Client-Server Client-Firewall-Server

0

20

40

G
b

it
s/

se
c

Linux Veth eBPF Load Balancer Linux Bridge

Fig. 5: Performance comparison between scenarios’ sub-cases.

Results in Figure 5 show that the additional overhead

introduced by the eBPF load balancer is very limited com-

pared to the optimal case (veth), and much better than any

alternative technologies, such as Linux bridge. This is due

to the efficiency provided by the eBPF technology, which

operates directly in-kernel, thus avoiding expensive context

switching. Hence, despite the proof-of-concept (session-based)

load-balancing logic, our implementation proved to be defi-

nitely faster than the standard Linux bridge.

C. Reaction Time

In order to evaluate the reaction time of the system, we

measured the time required from a change of state of a replica

to be noticed by the operator, and also how long it takes to

the operator to configure/clean-up the interfaces and update

the load balancing rules affected by the event. For the tests,

a generic NF with two network interfaces has been used. For

this reason, the add or remove operations on the interfaces are

performed twice for each event. The time taken to update the

load balancers eBPF maps is not shown in the results because

its contribution is so low that can be considered negligible.

The first test evaluates the time elapsed from starting a pod

(representing a new replica) until it is fully included in the

Milliseconds

0 50 100 150 200 250 300 350 400 450 500

Delay from start of Pod execution

Operator activity

Configure TC hook filter (1)

Configure TC hook filter (2)

Fig. 6: Reaction time composition for a new replica event.

chain by the operator. Results in Figure 6 show that most of

the delay is due to the propagation of the event related to

the status of the running pod in the cluster, which falls under

the responsibility of the standard Kubernetes logic, while the

time required by our operator is much smaller. More in depth,

the graph shows that, within the operator, the most time-

consuming operations are the configuration of the two TC

hook filters (before/after the NF) that connect the current NF

to the rest of the chain through the eBPF load balancing logic.

The reverse case is the scale-in operation, which corre-

sponds to the removal of one replica. In this case, the operator

reacts as soon as it detects that a pod is going to be deleted. In

this test we measured the time taken by the SFC to converge to

the new state, starting from the instant in which the pod begins

its graceful termination to when it is successfully removed

from the chain and all the cross-connections are properly

updated. The pod used in the tests was forced to delay the

beginning of the termination procedure by 0.5 seconds.

0 50 100 150 200 250 300 350 400 450 500

Pod Termination

Delay from start of Pod Termination

Operator activity

Remove TC hook filter (1)

Remove TC hook filter (2)

Milliseconds

Fig. 7: Reaction time composition for a terminating replica event.

Figure 7 shows that the time spent by the operator is similar

to the previous test. In this case the main contribution is given

by the removal of TC hook filter from the veth interfaces.

Even in this case the operator reacts after a slight delay as

evidenced by the grey bar in the picture, due also in this case

to the time to propagate the deletion event in the cluster. The

dashed line highlights the moment in which the replica is no

longer part of the chain, showing that the SFC converges much

faster than the time required by Kubernetes to terminate the

pod. This is a desired result, as the operator must complete

his operations before the pod terminates in order to prevent

traffic from being forwarded to a replica that no longer exists.

Finally, additional tests (not shown here for the sake of

brevity) confirm that no packets are lost in the reconvergence

process, hence making this operation loss-free. However, some

traffic sessions are handled by a different replica than before,

with possible problems in case of stateful NFs. A clever

mechanism that avoids session redirections, which requires a

smarter load balancer and a more sophisticated pod termina-

tion logic, is left to our future work.

VI. CONCLUSIONS

This paper presents a possible approach for highly scalable

SFCs in a cloud-native environment such as Kubernetes. In

particular, we propose a model to represent the concept of

scalable SFCs and a PoC implementation to integrate them

into the aforementioned platform. This work demonstrates the

possibility to support SFCs with an arbitrary number of NF

replicas that can change continuously over time, thus enabling

the creation of chains that can dynamically adapt to the traffic

load, with support for different L2/L3 network models.

Our experimental evaluation has shown that our solution

achieves better results in terms of overall resource consump-

tion compared to other approaches based on the scaling of

whole SFCs. Tests on the performance of the eBPF-based

cross-connections have shown that the maximum throughput

is comparable with simpler direct links, emphasizing the low

overhead deriving from the additional load balancing logic.

As part of our future work, we foresee the possibility

to extend the load balancing implementation with a more

advanced weighted logic based on the effective load on NFs,

which could further optimize the use of NFs resources and

improve the average quality of services offered by SFCs.

ACKNOWLEDGMENT

Federico Parola acknowledges the support from TIM S.p.A.

through the PhD scholarship.

REFERENCES

[1] T. U. Group. (2020) Cloud native thinking for telecommunications.
[Online]. Available: https://github.com/cncf/telecom-user-group/blob/
master/whitepaper/cloud native thinking for telecommunications.md

[2] K. Kaur, V. Mangat, and K. Kumar, “A comprehensive survey of service
function chain provisioning approaches in sdn and nfv architecture,”
Computer Science Review, vol. 38, p. 100298, 2020.

[3] B. Dab, I. Fajjari, M. Rohon, C. Auboin, and A. Diquélou, “Cloud-
native service function chaining for 5g based on network service mesh,”
in ICC 2020 - 2020 IEEE International Conference on Communications

(ICC), 2020, pp. 1–7.
[4] A. Bouridah, I. Fajjari, N. Aitsaadi, and H. Belhadef, “Optimized

scalable sfc traffic steering scheme for cloud native based applications,”
in 2021 IEEE 18th Annual Consumer Communications & Networking

Conference (CCNC), 2021, pp. 1–6.
[5] T. N. S. M. Authors. Network service mesh. [Online]. Available:

https://networkservicemesh.io/
[6] T. C.-V. Authors. Contiv-vpp. [Online]. Available: https://contivpp.io/
[7] T. M. Authors. Multus. [Online]. Available: http://multus-cni.io/
[8] M. Fleming. (2017) A thorough introduction to ebpf. [Online].

Available: https://lwn.net/Articles/740157/
[9] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,

“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-

mance Switching and Routing (HPSR), 2018, pp. 1–8.
[10] K. Authors. Kubernetes operator pythonic framework (kopf). [Online].

Available: https://github.com/nolar/kopf
[11] T. B. Authors. Bpf compiler collection (bcc). [Online]. Available:

https://www.iovisor.org/technology/bcc

