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Abstract—Mechanical energy harvesting is one of the most
promising solutions to the renewable powering of dispersed
Internet of Things devices. The design of such powering systems,
however, is a challenging task, not only because a stochastic
description is required to represent the very mechanical energy
source which is random in nature, but also because a significant
mismatch is often present between the electrical load and the
equivalent circuit representing the harvester. In this contribution
we propose a sophisticated solution technique allowing for the
evaluation of the first two order moments of the output voltage
for the stochastic differential equations model representing the
device. The approach applies also to nonlinear harvesters ex-
ploiting a moment closure technique. We take into consideration
also the presence of a reactive matching network aiming at the
optimization of the energy flow between the harvesting device
and the load. Results, besides validating the stochastic analysis
technique, show an important improvement in the output power
delivery and in the conversion efficiency.

Index Terms—Energy harvesting, piezoelectric energy har-
vester, nonlinear dynamical systems, impedance matching, non-
linear resonance

I. INTRODUCTION

Mechanical vibrations available in the environment are
one of the most promising energy sources to feed energy
harvesting devices exploited for the autonomous electrical
powering of, e.g., individual elements of scattered wireless
sensor networks [1]-[4]. Designing efficient harvesters is of
course a major goal to make such technologies feasible for
practical implementation, and an effective design relies on
the availability of accurate and sound models [5]-[8]. As the
first element of the modeling chain, the proper description of
the energy source is at least as important as the description
of the harvester collection and transduction mechanisms. Due
to their inherent random nature, the natural environment for
ambient vibration description is stochastic analysis [9], which
mathematical intricacies need to be taken into account for
reliable modeling. In particular, the forcing mechanical energy
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is described as a stochastic process that, in the simple case of
negligible noise correlation time, can be represented as a white
Gaussian noise process [10].

The harvester modeling is then completed by a mechanical
oscillator excited by the random vibrations that embeds a
transducer, typically realized with a piezoelectric material, to
complete the energy conversion process. Recently, we showed
that a convenient picture, also in view of the design stage,
makes use of the electro-mechanical analogy to build an equiv-
alent (electrical) circuit representing the behavior of the entire
harvesting device [11]. Among others, this representation
suggests the use of a matching network between the harvester
itself and the electrical element representing the load, usually
a resistance [12]-[14]. The goal of this matching network is
to tame the sub-optimal operation of the harvester, so as to
maximize the energy transfer to the load and, therefore, also
the device conversion efficiency.

In this contribution, we describe the stochastic modeling of
a piezoelectric energy harvester subject to random mechanical
vibrations, such as the common example of cantilever covered
by a piezoelectric material as shown in Fig. 1. The cantilever,
besides being covered by the transduction material schemat-
ically connected to the load in the figure, is also completed
by an inertial mass connected to the tip in order to enhance
the mechanical swinging and, thus, the piezoelectric material
excitation. This system can be well approximated by a simple
linear model as far as the mass motion can be assumed one
dimensional and of limited amplitude, or in other words as far
as the vibration energy is small enough. Taking inspiration
from our recent work [12], [14], a reactive LC matching
network is interposed between the transducer and the resistive
load.

We show novel analytical results from the solution of
the Stochastic Differential Equation (SDE) system describing
the entire device (including the matching network), making
evident the large advantages in the use of such matching in
terms of output (i.e., on the load) average voltage, output
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Fig. 1. Schematic representation of a piezoelectric cantilever beam energy
harvester.

average power and conversion power efficiency.

The following section is devoted to the derivation of the
SDE model and to the construction of a dimensionless version
that makes calculations more convenient. After showing in
Section III a power balance equation derived from the SDE
model, we evaluate the output voltage and the conversion effi-
ciency highlighting the advantages of the matching technique.
Finally, conclusions are drawn in Section IV.

II. PIEZOELECTRIC HARVESTER MODELING

The first step in the modeling of a vibration energy harvester
is the description of the energy source, i.e. random ambient vi-
brations. In terms of their spectral contents, energy of mechan-
ical vibrations is typically concentrated at low frequencies.
However, for a negligible noise correlation time and a realistic
harvester characterized by a wide enough intrinsic frequency
response, a white Gaussian noise process may represent a
reasonable approximation, although nonphysical as a perfectly
flat spectrum would correspond to an infinite signal energy
(however limited by the finite bandwidth of the deterministic
device). Also taking into account the well developed math-
ematical theory of deterministic systems excited by a white
noise, the white process approximation is quite common in
the literature [9], [10], [15]-[22]. According to such theory, a
one dimensional white Gaussian noise is the time derivative
of a Wiener process, the basic tool for stochastic analysis [9].

A. SDEs and variable transformations

In the following we adopt the standard notation used in
probability: Capital letters denote random variables, while
lower case letters denote their possible values. A one dimen-
sional Wiener process W; = W(t) is characterized by an
expectation value E[W;] = 0 (symbol E[X}] denotes expec-
tation, or average, of the stochastic process X;), covariance
cov(Wy, Ws) = E[W; W] = min(¢,s) and W; ~ N(0,¢),
where symbol ~ means “distributed as”, and A (0,¢) denotes
the normal (Gaussian), zero average distribution.

In the general case, a system of d SDEs driven by a one
dimensional Wiener process takes the form

dZ, = a(Z,)dt + eB(Z,)dW, (1)

where Z; is a vector (of size d) valued stochastic process, the
d-dimensional vector a is called the drift function, while the d-
dimensional vector B is the diffusion, and € is a dimensionless
parameter introduced to control the noise source amplitude.
Noise is called additive (or not modulated) for a constant
diffusion B, while in the general case of a diffusion B(Z;)
corresponds to a modulated, or multiplicative, noise. In the
following, we consider a linear SDE system with linear drift
and additive noise, i.e.

dZ; = AZ.dt + eBdW, 2)

Practical manipulation of the equations is more convenient
in case of dimensionless variables, and dimensionless time.
To this aim, we consider a linear variable transformation y =
Pz, where P is a constant, invertible real matrix. In practical
cases, P is diagonal with entries represented by normalizing
parameters of the original variables. Using It6’s lemma [9],
[15], the following SDE system for the stochastic processes
Y, is obtained:

dY; = PAP'Y,dt + ePBdW; 3)

As a dimensionless time, we introduce the new time variable
7(t) = wt, where w > 0 is a frequency. If Y, solves (3), then
Y, solves the SDEs system

1
dY, = “PAP 'Y dr + PBdW, 4)
w

The time change theorem for Ito integrals [9, page 156] shows

that
Wey ~ VT () We = VW, %)

Denoting as X, the solution to the SDE system
€ A

—BdW; (6)

Vw

where A = PAP~!, and B = PB, it follows that X, ~ Y,

because they are solutions for the same SDEs system, for two

different realizations of the Wiener process.

It is important to stress that X, and Y, only coincide in
distribution. In practical application this information is the
most relevant, because knowledge of the statistical properties,
in particular the moments of the distribution, is more important
that the knowledge of the detailed solution for a single specific
realization of the noise process.

dX, = lAXTdT +
w

B. Harvester electro-mechanical model

Concerning the electro-mechanical system that forms the
harvester, we can give an explicit form to the SDE system
(1) starting from the laws of classical mechanics, from the
characterization of piezoelectric materials, and from the circuit
description of the electrical load [11], [12], [14].

An energy harvester for ambient mechanical vibrations is
typically composed by an oscillating structure responsible
for capturing mechanical kinetic energy. A schematic rep-
resentation is shown in figure 1. The oscillating structure
is represented by a cantilever beam, fixed at one end to a
vibrating support and with an inertial mass at the opposite
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Fig. 2. Circuit representation of the LC' matching network and of the elctrical
load Ry,.

end. Random vibrations of the support induce oscillations of
the beam-mass system, that behaves as an inverted pendulum.
The beam is covered with layers of piezoelectric materials that
convert the mechanical stress and strain into electrical power

Coupling the mechanical oscillator to a lumped description
of the piezoelectric material leads to

mi +y& + U'(z) + ae = fex(t)
CPZé"f‘OéCI'?-FIL:O

(7a)
(7b)

where the first equation (7a) describes the mechanical part,
while (7b) represents the mechanical-electrical conversion. In
system (7), m is the inertial mass, = is the state variable
corresponding to the displacement of the mass from the rest
position,  is the internal friction constant, U (x) is the elastic
potential of the beam, « is the electro-mechanical coupling
constant, e is the output voltage of the piezoelectric transducer,
fext(t) is the external force due to the vibrating support (a
white Gaussian noise according to the previous discussion),
Cp, is the electrical capacitance of the transducer, and I
is the current through the electrical load. In the previous
equations dots denote time derivative, while symbol ’ refers
to the derivation with respect to the function explicit variable.

For the sake of simplicity, it is assumed that the mechanical
system is single-degree-of-freedom, that is oscillations occur
along a single direction and the arc shaped motion can be
approximated by a straight line. These approximations are
justified if the beam has a rectangular cross-section, and if the
oscillation amplitude is small enough with respect to the beam
length. Moreover, the small oscillation assumption allows to
use a linear pendulum model, assuming a quadratic form for
the energy elastic potential of the beam, i.e. U(z) = k22 /2.

C. Harvester and matching network model

The last stage of the model is the load. In the simplest (and
most common) case, the electrical power must be provided to
a device represented by an equivalent resistance Ry, which
value is normally fixed by the nature of the load itself, and
thus it cannot be tailored in the design procedure. However, as
previously remarked, an LC matching network, ideally made
of reactive elements only in order to avoid the introduction of
losses, can be exploited to reduce the mismatch between the
output of the transducer and Ry, as shown in Fig. 2 where Lg
and C'p are the elements of the matching network. For the sake
of simplicity, parasitic effects are assumed to be negligibly

small, and the reactive components in the matching networks
are assumed to be ideal elements. Notice that such matching
network is characterized by a low-pass behavior, consistent
with energy contents of mechanical vibrations that is usually
concentrated at low frequencies. Notice also that perfect power
transfer matching can be exactly obtained only at a single
frequency, even if a wide body of literature suggests how to
achieve a non ideal, however advantageous, matching over a
wider bandwidth.

Kirchhoff laws and the characteristic relations of the reactive
elements of the matching network yield

—I;, +Cp0, +Grv, =0 (8)
LSjL+UO—€=O )

Combining (7), (8) and (9), and rewriting as an SDE system,
finally provides the stochastic model

dZ, =Zy dt (10a)
1
AZy =— (~U'(Z)) — v Zo — a Z3)dt + —dW,  (10b)
m m
1
AZs =—— (aZs — Z4) dt (10¢)
Cp,
1
A2y =— (Z3 — Zs) dt (10d)
Lg
1
dZ5 =— (Z4 — GL Z5) dt (10e)
Cp
where Z; = [Z1,...,Z5)7 = [x,@,e,11,v,)7T is the state vec-

tor of electro-mechanical variables, and e dW; is the external
forcing, that models ambient vibrations as a white Gaussian
noise process with intensity e.

The equations for the harvester in the absence of the
matching network (i.e., the case of a purely resistive load
directly connected to the harvester) can be easily recovered
from (10). In particular, multiplying both sides of (10d) for
Lg and setting Lg = 0 yields Zs = Zs. Analogously,
multiplying both sides of (10e) for C'p and setting Cp = 0
gives Z4 = G Z5. Substituting these results into (10c) we
obtain the following equations for the energy harvester with
resistive load:

le :Z2 dt (lla)

1
4Zy =— (~U'(Z1) — 7 Zo — a Z3)dt + —dW,  (11b)
m m

1

dZ3 = (OzZQ - GL Zg) dt (11C)
Cp,

The mathematical models for the energy harvester with resis-

tive load has been extensively studied, and has been validated

experimentally by several works [23]-[27].

III. POWER BALANCE, OUTPUT VOLTAGE AND
CONVERSION EFFICIENCY

Due to power balance, we can write the instantaneous
power absorbed by the transducer as combination of the power
transferred from the mechanical section to the transducer, and



of the electrical power transferred from the transducer to the
electrical load. Using the passive sign convention, considering
the force fi;(t) = o e = o Z3 exerted by the mechanical part,
we find

pe(t) = fu(t) @ —elp =Cpeé (12)

where the last result follows from (7b). Integrating with respect
to time and using an arbitrary constant K g yields the energy
stored in the transducer Ey(t) = Cp, Z2/2 + Kg.

The total energy stored in the harvester is the sum of the
mass kinetic energy, of the elastic potential energy, and of
the energy stored in the piezoelectric transducer and in the
matching network elements. It takes the form

B(t) = %mZ22+U(Z1)+%CpZ Z§+%LS Z§+%Cp Z2+FE
(13)
where Ej is an arbitrary constant.
Differentiating FE(t), exploiting (10) and applying Ito’s
lemma provides (G, = 1/Ry)

2
ap <7222GLz§+26m> At +e ZodW,  (14)

After taking stochastic expectation and using the martingale
property of Ito stochastic integral, we find the power balance
equation

2
. {dE(t)] = E[Z] -GLE[Z]+ - (9

dt

At steady state, the harvester reaches an equilibrium where the
average power injected by ambient vibrations: P, = €2/(2m),
equals the average power (internally dissipated by friction and
absorbed by Ry) Py =~ E [Zzz} + G E [Zg]

Finally, the power efficiency 7 is defined as the ratio
between the average power absorbed by the load and injected
by the ambient vibrations

QmGL
= 2

U E [Z3] (16)

€
A. Estimation of the second-order moments

The previous equations are a function of the second order
moments of the solution of the SDE system (10), that in
the case of a linear harvester can be found as follows.
Substituting the quadratic elastic potential for the beam in the
SDE system and deriving the dimensionless version using as
a normalization diagonal matrix

P =diagll; ' Tl ", Cr,Qp . TQ0 ', CrQ0 '] (17)
where [p = 1 and )y = 1 are normalizing constants with
dimension of a length and of a charge, respectively, and 7" =
1/w = y/m/k is a normalization time. The dimensionless
SDE system is

dX; = AX,dt + ¢BdW, (18)

where
[0 1 0 0 0] [0]
-1 —p - O 0 o
A=|0 a 0 -1 0 B= (0| (19

0 0 o 0 —u 0
10 0 0 n 0] 10|

having defined the positive parameters

y @ m
0=V PO T RGLs
Cpz G |m 1 /m\3
1= =T (%)

Taking stochastic expectation in (18), we obtain the ordinary
differential equation (ODE) system

S pix,] = AEX,]

dt 0)

where, due to the positive parameters, matrix A has negative
eigenvalues. Thus, E[X,] — 0 for { — +o0.
Concerning the second order moments, we have

d (X X7) = dX; X7 + X, dX{ + dX;dX]
= (A X, XTI + X, XTAT + 2B BT> dt

te (EXtT + XtBT) aw, Q1)
where we used Itd’s lemma, e.g. dt? = dtdW, = 0, and
dW? = dt. Taking expectations on both sides, using the
martingale property of Itd’s integral and the fact that asymp-
totically E[X;] — 0, yields the Lyapunov equation

d . . L
@ =Aoc+ocAT +2BBT
dt

where o = E[X,X[] is the symmetric covariance matrix.

Since A is a stable matrix, and BB7 is symmetric, the

solution of (22) is unique. The asymptotic value is obtained

solving the stationary Lyapunov equation

AU+UAT+€2]:))BT:O

(22)

(23)

For an effective design of the matching network, we solved
the stationary Lyapunov equation (23) for several values of
the parameters Lg and Cp. Fig. 3 shows the root mean
square value of the output voltage vo(ms) = +/E[v2(t)] as
a function of the values of Lg and Cp. The other parameters
are summarized in Table I, and they are well comparable
to those used in several other recent works [28]-[31]. The
output voltage shows a maximum for Lg’p ) = 22,91 H, and
CEP) = 8.53 nF, with v = 20.59 V.

It is worth mentioning that the relatively high optimum
value of the inductance in the matching network is a con-
sequence of the normalization assumed for the mass, set
to the relatively high value of 1 g. It is well known that
piezoelectric transducers require high inductance values for
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Fig. 3. Root mean square of the output voltage as a function of the matching
network parameters Ls and Cp.

TABLE I
VALUES OF THE ENERGY HARVESTER PARAMETERS

Parameter Value

m lg

¥ 0.012 Ns/m

k 5.4046 - 10> N/m
[ 80 nF

Ry, 1 MQ

« 0.0042 N/V  (As/m)
€ 10—3 (dimensionless)

shunting and matching. Realization of high value inductances
is an important research topic, and very promising results have
been recently obtained, see for example [32].

For the sake of comparison, the energy harvester with
resistive load (i.e., C;, = Lg = 0) shows an output voltage
v?&ls) = 4.43 V. The average output voltage, average output
power and power efficiency for the two harvesters are sum-
marized in Table II.

IV. CONCLUSIONS

Energy harvesting from ambient mechanical vibrations is
a promising technology to solve the problem of powering
miniaturized, remote located and difficult to access electronic
systems for the Internet of Things applications.

Energy harvesters should have very high efficiency, to
cope with the limited energy density of ambient vibrations.
Their design is particularly challenging, not only because
the random nature of mechanical vibrations demands for a

TABLE II
ROOT MEAN SQUARE VALUE OF THE OUTPUT VOLTAGE, OUTPUT AVERAGE
POWER AND POWER EFFICIENCY FOR THE ENERGY HARVESTER WITH THE
TWO DIFFERENT LOAD SETUPS.

Configuration | Voltage (rms) | Maximum power | Efficiency
Resistive load 443V 19.61 pW 39 %
Matched load 20.59 V 424.1 uW 84.8 %

mathematical modelling in terms of stochastic processes, but
also because they are electro-mechanical systems, with a
significant impedance mismatch between the mechanical and
the electrical domains.

In this work we have presented a detailed analysis of linear
energy harvesters for ambient mechanical vibrations based on
stochastic calculus. Parasitic vibrations have been modelled
as a white Gaussian noise. A system of stochastic differential
equations have been derived for the mechanical part of the
harvester, the piezoelectric transducer and the electrical load.
The system performance, namely the average electrical power
provided to the load and the power conversion efficiency, have
been traced back to the second order moments of the stochastic
differential equations system model. We have shown that first
and second order moments can be calculated using stochastic
calculus, solving a stationary Lyapunov equation.

To cope with the impedance mismatch problem, we have
designed a matching network that can be interposed between
the energy harvester and the electrical load. The matching
network parameters have been optimized in order to maximize
the two performance indicators above, evaluating the covari-
ance matrix expressed in the form of a stationary Lyapunov
equation for a linear harvester. This approach permits to avoid
Monte-Carlo analysis, based on long, resource demanding
numerical simulations.

Our analysis shows that application of the matching net-
work significantly boosts the performance, thus demonstrating
the importance of this stage in the design of an optimized
harvester.
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