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The impact of physicochemical 
features of carbon electrodes 
on the capacitive performance 
of supercapacitors: a machine 
learning approach
Sachit Mishra 1,2,6, Rajat Srivastava 1,3,6, Atta Muhammad 1,4, Amit Amit 1, Eliodoro Chiavazzo 1, 
Matteo Fasano 1* & Pietro Asinari 1,5

Hybrid electric vehicles and portable electronic systems use supercapacitors for energy storage owing 
to their fast charging/discharging rates, long life cycle, and low maintenance. Specific capacitance 
is regarded as one of the most important performance-related characteristics of a supercapacitor’s 
electrode. In the current study, Machine Learning (ML) algorithms were used to determine the impact 
of various physicochemical properties of carbon-based materials on the capacitive performance of 
electric double-layer capacitors. Published experimental datasets from 147 references (4899 data 
entries) were extracted and then used to train and test the ML models, to determine the relative 
importance of electrode material features on specific capacitance. These features include current 
density, pore volume, pore size, presence of defects, potential window, specific surface area, oxygen, 
and nitrogen content of the carbon-based electrode material. Additionally, categorical variables 
as the testing method, electrolyte, and carbon structure of the electrodes are considered as well. 
Among five applied regression models, an extreme gradient boosting model was found to best 
correlate those features with the capacitive performance, highlighting that the specific surface area, 
the presence of nitrogen doping, and the potential window are the most significant descriptors for 
the specific capacitance. These findings are summarized in a modular and open-source application 
for estimating the capacitance of supercapacitors given, as only inputs, the features of their carbon-
based electrodes, the electrolyte and testing method. In perspective, this work introduces a new wide 
dataset of carbon electrodes for supercapacitors extracted from the experimental literature, also 
giving an instance of how electrochemical technology can benefit from ML models.

Electrochemical capacitors (supercapacitors) are electrochemical devices that are extensively used for energy stor-
age due to promising characteristics such as high-power density, electrochemical stability, fast charge/discharge 
rates, safe operation mode, high power density, and long cycle life1–3. These characteristics enable their use in a 
broad range of energy storage applications, e.g., for hybrid electric vehicles, portable electronics, and memory 
backup systems4–6. Other than energy storage, there are some further interesting applications of supercapaci-
tors such as heat-to-current conversion of low-grade thermal energy7 and renewable energy extraction using 
a supercapacitor from water solutions8. Supercapacitors have been primarily classified into two types based on 
their charge storage mechanism: (i) electric double-layer capacitors (EDLCs), which store electrical charge via 
ion adsorption at the electrode surface, and (ii) pseudo-capacitors, which store charges via reversible Faradaic 
redox reactions (see Fig. 1). Generally, EDLCs have superior cycle stability but lower specific capacitance in 
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comparison to pseudo-capacitors, which have a high specific capacitance but a low power density and poor cycle 
stability instead9,10. The current study focuses on EDLC supercapacitors and their optimization.

For the optimization of the electrochemical performance of EDLC supercapacitors, it is critical that the elec-
trode materials have commendable physicochemical properties, including appropriate pore size distribution, 
high specific surface area, high electrical conductivity, as well as electrochemical and mechanical stability for 
good cycling performance9. Numerous materials have been synthesised and used as supercapacitor electrodes in 
recent years, including porous carbon11–13, hierarchical porous carbon14–16, activated carbon10,17,18, graphene9,19,20, 
rGO-PANI nanocomposite21, carbon nanotubes22–24, In2O3-loaded porous carbon25, and carbon aerogels26,27. 
Among these electrode materials, carbon is the most frequently used due to its versatility and uniqueness28. 
It exists in various forms (e.g., graphite, diamond), dimensionalities (fibres, fabrics, foams, and composites), 
ordered and disordered structures (depending on the degree of graphitization), with commendable electrical 
conductivity29,30. The catalytic, optical, mechanical, and electrochemical properties of carbon make it an excel-
lent material for energy conversion and storage applications31. Additionally, its well-established synthesis and 
activation methods enable its use as an electrode in supercapacitors with an appropriate pore size distribution32.

Porous and activated porous carbon (AC) and hierarchical porous carbon (HPC) have been proposed in the 
literature for carbon electrodes (see Supplementary Note 1 for a detailed review). Because of its high specific 
surface area (SSA), improved electrical conductivity, adjustable pore sizes, electrochemical stability and low cost, 
porous carbon offers significant promise for use as the electrode33–36. These properties make AC an excellent 
material for a variety of applications, including water purification, gas separation and storage, and electrode mate-
rials for capacitors, fuel cells and batteries37. Differently from AC, hierarchical porous carbon material contains 
pores in a wide range of length scales, namely macro- (> 50 nm), meso- (2–50 nm), and micro- (< 2 nm) scales. 
The presence of macropores in HPC allows high-rate ion transport and acts as an ion reservoir. Furthermore, 
the interconnected mesopores provide low resistance pathways for the diffusion of ions; whereas the high SSA of 
micropores enhances the adsorption of ions at the pore surface38. These unique properties of HPC gained recent 
interest in the selection of electrode materials for supercapacitors.

Besides the SSA and pore volume, there are also several other factors that influence performance of electrodes 
in supercapacitors, such as surface functional groups and conductivity. These can be modified by introducing 
heteroatoms—HA (nitrogen, oxygen, sulphur, etc.) in the carbon electrodes, which do not only enhance the 
wettability, but also improve electronic conductivity of activated carbon39. Nitrogen doping on carbonaceous 
material as electron donor is useful for enhancing the specific capacitance via faradaic reaction and enhancing 
wettability16. Similarly, oxygen doping improves the surface wettability, which in turn improves the supercapaci-
tor performance39. Sulphur doping on carbonaceous material increases its bandgap, thus enhancing the electron 
donor properties and changing the electronic density of state. Sulphur doping also increases wettability, which 
in turn decreases the diffusion resistance that occurs between the electrode and electrolyte ions40.

In perspective, graphene is a promising electrode material for supercapacitors too, due to a high electrical 
conductivity, high SSA, and excellent mechanical strength41,42. Its porous structure also facilitates charge transport 
in the supercapacitor. The SSA of graphene is highly tuneable according to the requirement of supercapacitor 
electrode for energy storage applications. Also, the presence of highly movable free π electrons on its orbital are 
responsible for the exceptionally high electrical conductivity41. Furthermore, the electrical behaviour of graphene 
can be improved through functionalization43 and heteroatom doping44.

Numerous attempts have been made to increase the specific capacitance of supercapacitors by utilizing differ-
ent types of carbon electrodes with varied pore size distributions, high specific surface area, diverse morphologies, 
and modified surface chemistry45. However, the influence of these physicochemical parameters on the specific 
capacitance of supercapacitors has not been completely understood. Additionally, conventional theories and 
models are incapable of capturing with sufficient accuracy the microscopic details of the underlying physical 
mechanisms affecting ion transport, which are essential for accurately predicting the capacitive performance of 
supercapacitors. Recent advances in machine learning (ML) algorithms and their application to physics-based 
systems have made it possible to recognize the effects of various physicochemical features of carbon-based 
electrode materials in enhancing the specific capacitance of supercapacitors. In detail, Zhu et al.46 used artificial 

Figure 1.   Schematic diagram of supercapacitors: (a) Electric double-layer capacitor (EDLC); (b) example of 
pseudocapacitor based on ruthenium oxide.
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neural network (ANN) algorithm to predict the specific capacitance of carbon-based supercapacitors. They 
collected 681 data entries from the published experimental papers, with information about specific surface 
area, pore size, presence of defects, nitrogen doping level, and potential window. The authors concluded that 
ANN yields better predictability of specific capacitance than linear regression and Lasso methods. However, the 
ANN method could not discriminate the impact of each feature separately. Instead, Su et al.47 interpolated the 
specific capacitance of carbon-based electric double layer capacitors using four different ML models, namely 
linear regression (LR), support vector regression (SVR), multilayer perception (MLP), and regression tree (RT). 
The authors ranked the performance of the different ML models as follows: RT > MLP > SVR > LR. They found 
out that the specific surface area, potential window, and heteroatom doping enhance the specific capacitance 
of EDLC supercapacitors. Nevertheless, the authors did not analyse the effect of pore volume and size of elec-
trodes. Finally, Zhou et al.48 proposed a ML model to determine the features with stronger impact on the specific 
capacitance and power density of supercapacitors, limiting their analysis only to activated carbon materials for 
the electrodes and a 6 M KOH electrolyte.

Although some data-driven analyses of the relation between a few features of supercapacitors and their 
specific capacitance have been reported in previous studies, a comprehensive study on more physicochemical 
features, electrode materials, methods of testing and electrolytes has been hindered by the limited number of 
entries in the considered database. In this work, we first created a larger dataset by extracting data from 147 
experimental research articles on supercapacitors comprising carbon-based electrodes. The resulting curated 
dataset is made of 4899 entries and primarily contains information about the specific surface area, the presence 
of defects, the pore volume and size of pores, the potential window, the current density as well as the nitrogen 
and oxygen content of the carbon-based electrode materials. Additionally, the importance of categorical vari-
able such as testing method, electrolyte, and carbon structure of the electrode on the specific capacitance was 
studied for the first time. ML algorithms were then applied to this dataset to identify those characteristics of the 
electrode material that significantly affect their capacitive performance, and to develop the best model possible 
for predicting the specific capacitance of supercapacitors. To ease the transferability of results, we developed 
SUPERCAPs, an open-source software to estimate the specific capacitance of carbon-based EDLC according to 
the structural features of electrodes, the electrolyte solution and method of testing.

Materials and methods
Dataset creation.  To develop the dataset, we extracted information from 147 research articles on carbon-
based electrode supercapacitors, collecting 4899 data entries (see the Supplementary Note 2 for a detailed list 
of data sources). Each data entry includes information related to carbon electrodes (i.e., pore size, pore volume, 
etc.), the test system (i.e., electrolyte, potential window, current densities), and the resulting specific capacitance. 
The latter is defined as C =

εS
d , where, C, ε, S, and d, are the specific capacitance, permittivity of electrolyte, sur-

face area of electrode–electrolyte interface, and charge separation distance, respectively.
The various parameters included in the dataset that characterize the electrodes and the test system are as 

follows:

1.	 Specific surface area (SSA, [m2/g]) The specific capacitance of EDLC supercapacitors depends on the adsorp-
tion of electrolyte ions on the electrode surface and directly depends on the surface area of the electrode 
material. Thus, to enhance the specific capacitance, a high specific surface area of electrode material is 
preferable1,29.

2.	 Pore size (PS, [nm]) The presence of micro/mesopores in carbon-based electrodes provides efficient pathways 
for the electrolyte ions transports, which leads to rapid ionic diffusion in the supercapacitor49–51.

3.	 Pore volume (PV [cm3/g]) This feature is related to PS, with an additional normalization with respect to the 
mass of the electrode.

4.	 Ratio between D and G peaks (ID/IG, [-]) The high ratio of intensities between peaks D and G represents 
the increase in defects, which leads to a decrease in the electrical conductivity of carbon-based electrodes. 
The decrement in the electrical conductivity of electrode material affects the capacitive performance of the 
supercapacitor49.

5.	 Nitrogen content in the electrode (N%, [%]) The nitrogen doping in the carbon matrix electrode material 
improves the specific capacitance by Faradaic reaction. It does not only enhance the charge mobility on 
carbon surfaces, but it also increases its wettability16,52.

6.	 Oxygen content in the electrode (O%, [%]) The oxygen content in the electrode material improves the wet-
tability of the electrode surface in the electrolyte, which enhances the electrochemical performance of the 
supercapacitor39.

7.	 Sulphur content in the electrode (S%, [%]) Sulphur is most reactive element among heteroatom doping ele-
ments due to its unpaired electrons and wider bandgap. Increased specific capacitance results from the 
sequence of Faradaic reactions on sulphur doped carbonaceous materials40.

8.	 Potential window (PW, [V]) Potential window is a range of potentials in which no Faradaic reaction occurs, 
implying that material and electrolyte are stable when the potential is applied in this range. It is dependent 
on the type of material and electrolyte.

9.	 Current density (I, [A/g]) In porous carbonaceous electrodes, ions of the electrolyte do not have sufficient 
time to reach the microporous surface of the electrode at a high current density due to a fast-charging rate. 
Therefore, increasing current density degrades the capacitive performance of the supercapacitor53,54.

Furthermore, the following categorical variables have been also included in the dataset:
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1.	 Electrolyte type The type of electrolyte is crucial to supercapacitor performance. A good electrolyte has a broad 
potential window, strong electrochemical stability, high ionic concentration, and conductivity. Electrolytes 
are classified into three types: aqueous, organic liquid and ionic liquid55.

2.	 Method of testing specific capacitance Two-electrode and three-electrode method are the two methods for 
evaluating the specific capacitance. The two-electrode method consists of working and counter electrodes, 
where the potential is supplied, and the resultant current is obtained at either working or counter electrode. 
The three-electrode system consists of working electrode, counter electrode, and reference electrode. The 
reference electrode serves as a reference for measuring and adjusting the working electrode potential, without 
transmitting any current.

3.	 Electrode structure AC, HPC, and heteroatom (HA)-doped electrodes have a significant effect on their per-
formance, as comprehensively discussed in the Supplementary Note 1.

Figure 2a–g shows the influence of the various physicochemical parameters on the specific capacitance of 
supercapacitors at a current density of 1 A/g for the whole dataset (note that, due to lack of data at 1 A/g, the 
relationship between specific capacitance and sulphur doping percentage is not presented); whereas Fig. 2h 
shows the relationship between specific capacitance and different current densities. While SSA shows a certain 
correlation with C in agreement with previous results1,29, the other features of carbon-based supercapacitors 
have a less clear and nonlinear influence on the specific capacitance, therefore requiring advanced data analysis 
tools to fully understand it.

Prior to applying the regression algorithms to the dataset containing the physicochemical properties and spe-
cific capacitance of carbon-based electrodes, it is necessary to pre-process the data to remove possible gaps and 
outliers. The process of improving data quality is known as data curation, and it entails the following activities:56

•	 Data integration The raw data entries in the dataset were derived from various research articles that use a 
variety of physical units to represent parameters (for example, SSA can be expressed in m2/g or in cm2/g). 
We maintained consistent physical units across the dataset and converted them whenever needed.

•	 Outlier detection The dataset was analysed to identify missing values, erroneous values extracted from research 
articles, or values that are incorrectly formatted, which could skew the results.

Once data curation is completed, the clean dataset (4538 data entries) can be used to train and test the regres-
sion algorithms.

Regression model and metrics.  Five approaches were adopted to carry out the regression of the target 
specific capacitance from the physicochemical features of the supercapacitors (see Supplementary Note 3 for 
details), namely the Ordinary Least Square Regression (OLS) method and four ML approaches: Support Vector 
Regression (SVR); Regression Decision Tree (DT); Random Forest Regression (RF); Extreme Gradient Boosting 
Regression (XGBoost).

OLS is one of the most common regression models, where the unknown parameters of linear regression are 
estimated by lessening the sum of the squares of the differences between the target responses of the sample data 
and the value foreseen by a linear function of explanatory variables57.

SVR is a well-established supervised machine learning approach for predicting discrete values. SVR oper-
ates on the same principle as Support Vector Machine (SVM). The primary principle of SVR is to determine 
the best fit line. Support vectors are the results of ideal hyperplanes, which classify unseen datasets that support 
hyperplanes58. SVM defines an optimal hyperplane as a discriminative classifier, whereas—in SVR—the best fit 
line is the hyperplane with the most point. The hyperplane in a two-dimensional region is a line separating into 
two segments wherein each segment is placed on either side. For instance, multiple line data classification can be 
done with two distinct datasets (i.e., green and red) and used to propose an affirmative interpretation. However, 
selecting an optimal hyperplane is not an easy job, as it should not be noise sensitive, and the generalization of 
datasets should be accurate59. Pertinently, SVM is used to determine the optimized hyperplane that provides 
considerable minimum distance to the trained dataset58,59. SVR attempts to minimize the difference between 
the real and predicted values by fitting the best line under a certain threshold value. The distance between the 
hyperplane and the boundary line is the threshold value60.

DT constructs the regression or classification models based on the data features in the tree’s configuration. In 
a tree, every node is related to the property of a data feature. Moreover, it either predict the target value (regres-
sion) or predict the target class (classification). The closer the nodes in a tree are, the greater their influence61. 
Some benefits of the DT include the capability of handling both categorical and numerical data.

RF is an ensemble learning technique that can perform both regression and classification tasks utilizing the 
multiple decision trees. During training, the algorithm generates a large number of decision trees using a proba-
bilistic scheme62; every tree is trained on a bootstrapped sample of the original training data and finds a randomly 
selected subset of the input variables to determine a split (for each node). Every tree in the RF makes its own 
individual prediction or casts a unit vote for the most popular class at input x. These predictions are then averaged 
in case of regression or the majority vote determines the output in case of classification62. The core concept is to 
use numerous decision trees to determine the final output rather than depending on individual decision trees.

XGBoost is one of applications of gradient boosting machines mainly designed for speed and performance in 
supervised learning. In supervised learning, various features in the training data are utilized to predict the target 
values. XGBoost applies the tree algorithms to a known dataset and categorises the data accordingly63. In this 
model, decision trees are constructed sequentially. Weights are very significant in XGBoost: they are assigned to 
all the independent variables which are then input into the decision tree which determines the outcomes. The 
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Figure 2.   Relation between the specific capacitance of supercapacitors in the curated dataset and (a) potential 
window, (b) specific surface area, (c) pore volume, (d) pore size, (e) ID/IG, (f) N-doping (wt%), and (g) O-doping 
(wt%) at current density of I = 1 A/g. (h) Relationship between specific capacitance and different current 
densities.
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weight of variables predicted wrong by the tree is increased and these variables are fed to the second decision 
tree. These distinct classifiers are then combined to form an efficient and precise model. XGBoost can be used 
for both classification and regression problems64.

To predict the performance of the regression models, the n predicted results ( yi ) were compared to the original 
ones ( ̂yi ) using the following metrics:65.

•	 Root mean square error (RMSE):

A RMSE value closer to zero denotes a better prediction.

•	 Coefficient of determination (R2):

where y is the mean of ŷi values. An R2 value closer to one represents better prediction.

•	 Bias factor (b′):

The value predicted by the model is unbiased if b′ = 1.

•	 Mean absolute percentage error (MAPE):

A MAPE value closer to zero denotes a better prediction.

Results and discussion
Correlation analysis.  The correlation analysis is a statistical technique used for determining the strength 
of a relationship between a pair of parameters (variables)66. To estimate the correlations between each pair of 
parameters, the Spearman’s rank correlation coefficient ( rs ) was used, in order to encompass nonlinear relations 
as well67. The correlation (absolute values of rs ) between the various supercapacitor’s parameters (i.e., possible 
descriptors) and their specific capacitance (i.e., figure of merit) at different intervals are presented in Table 1. 
This dataset analysis revealed that the specific capacitance of the supercapacitor had a moderate correlation 
with the SSA, a weak correlation with the nitrogen and oxygen content of the carbon electrode, and a very low 
or negligible correlation with the remaining parameters. These findings suggest that SSA, N%, and O% are 
important parameters for the enhancement of the capacitive performance of supercapacitors. In addition, the 
cross-correlation analysis between all considered parameters depicted in Fig. 3 shows that the physicochemical 
parameters of carbon electrodes are largely independent of one another, except for SSA, PV, and PS, which have a 
weak or a moderate geometrical intercorrelation. As a result, we can assert that the physicochemical parameters 
of the carbon electrode have mostly an independent effect on the supercapacitor’s specific capacitance, thus they 
should be better considered separately from each other.

(1)RMSE =

√√√√ 1

n

n∑

i=1

(
yi − ŷi

)2
.

(2)R2
= 1−

∑(
yi − ŷi

)2
∑(

yi − y
)2 ,

(3)b′ =
1

n

n∑

i=1

yi

ŷi
.

(4)MAPE =

100%

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣.

Table 1.   Spearman’s rank correlation coefficient between the specific capacitance and different features of 
carbon supercapacitors in the considered dataset.

|rs| Level Parameters

0.0–0.19 Very weak C versus PW, C versus PV, C versus PS, C versus ID/IG, C versus I

0.2–0.39 Weak C versus N%; C versus O%

0.4–0.59 Moderate C versus SSA

0.6–0.79 Strong –

0.8–1.00 Very strong –
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Comparison between regression methods.  After completing data profiling and correlation analysis, 
we applied five different regression models to the dataset: ordinary least square regression, support vector regres-
sion, decision tree, random forest, and extreme gradient boosting. The dataset was divided into two parts: 70% of 
the data were randomly selected for training the regression models and the remaining 30% for testing. The total 
number of data entries used for training and testing was 3176 and 1362, respectively. The nine physicochemical 
characteristics of the carbon electrodes of supercapacitors in the dataset were considered as independent varia-
bles, while the resulting specific capacitance as the dependent one. The results are depicted in Fig. 4 as a compari-
son between the real specific capacitance ( CReal ) obtained from the literature articles in the dataset and the values 
of specific capacitance predicted by the regression models ( CML ). In each panel, the perfect match between the 
actual specific capacitance and the predicted one is shown via the straight diagonal line, where CReal = CML.

As illustrated in Fig. 4a, the matching between the actual and predicted values of specific capacitance using 
OLS method was low, as evidenced by the significant deviation of numerous data points from the diagonal line 
and the R2 value of 0.32. Additionally, the large RMSE and MAPE values in Table 2 indicate that OLS regression 
achieves inferior prediction capability when compared with DT, SVR, RF, and XGBoost approaches.

The performance analysis of the tree-based model indicates that the DT model in Fig. 4c does not accurately 
predict the actual specific capacitance. Instead, the SVR, RF and XGBoost models were more accurate at predict-
ing the specific capacitance. As illustrated in Fig. 4b,d,e, most data points lie near the diagonal line, indicating 
prediction accuracy as supported by the R2 values of 0.72, 0.75 and 0.79 for the SVR, RF and XGBoost models, 
respectively. Moreover, other performance parameters (RMSE, b′ and MAPE) also indicate that the SVR, RF and 
XGBoost models yielded superior regression capabilities when compared to the OLS and DT models. Since the 
performance analysis in Table 2 revealed that the XGBoost model showed the best R2 and RMSE values, only this 
regression was employed in the following analyses on the dataset. Notice that XGBoost showed better prediction 
performance than an artificial neural network as well (see Supplementary Note 4 for details).

Influence of specific capacitance testing method.  It is well established that the method of experimen-
tal testing can influence the magnitude of specific capacitance of supercapacitors. For instance, for the AC-based 
electrode developed by Meng et al.68 specific capacitance values of 225 F/g and 465 F/g were measured using 
two-electrode and three-electrode testing methods, respectively. Therefore, to investigate the effect of testing 
method on specific capacitance, the primary dataset generated in the current study was divided into two differ-
ent subsets, wherein one contained the specific capacitance values obtained using the three-electrode method of 
testing (2754 data entries) and the other comprised the specific capacitance values obtained using the two-elec-
trode method (1784 data entries). The XGBoost model was trained again on each of these two subsets of data.

Figure 3.   Spearman’s correlation between the physicochemical characteristics of the carbon electrodes of 
supercapacitors in the considered dataset.
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The actual specific capacitance and the predicted results by XGBoost model were found to strongly match 
for the three-electrode method of testing, as evident in Fig. 5a. Such good prediction capability is also high-
lighted by the statistical performance parameters viz. R2 = 0.89, RMSE = 28.71, b′ = 0.98, and MAPE = 28.71, being 
improved with respect to the regression analyses on the whole dataset reported in “Comparison between regres-
sion methods” Section. Hence, the testing method has a significant effect on the specific capacitance value, being 
a further (categorical) variable to be considered in the prediction of specific capacitance. Thus, we investigated 
the significance of the different independent variable on the trained XGBoost model, which indicates how the 
physicochemical parameters of carbon electrodes influence the specific capacitance. Figure 5b depicts the feature 
importance analysis for the three-electrode testing method, where higher shares are associated to more influence 

Figure 4.   Comparison between the actual specific capacitance from literature research articles in the dataset 
and the predicted specific capacitance from (a) OLS, (b) SVR, (c) DT, (d) RF, and (e) XGBoost models.
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of variables on specific capacitance: the SSA, heteroatom doping (N%), and PV were found to be the major fac-
tors influencing the specific capacitance.

The correlation between the actual and predicted specific capacitance for the datasets obtained using the 
two-electrode method of testing is shown in Fig. 5c, instead. Again, the regression accuracy is improved by 
considering the subset of data measured with two-electrode method rather than the whole dataset. In fact, the 
performance parameters for the XGBoost regression of the two-electrode dataset are R2 = 0.93, RMSE = 19.45, 
b′ = 0.989, and MAPE = 31.07, thus better with respect to the analyses carried out on the whole dataset. In this 
case, the PW, SSA, and the ID/IG ratio of the carbon electrode were found to contribute most towards enhanc-
ing the supercapacitors’ specific capacitance, as observed from the feature analysis in Fig. 5d. Interestingly, the 
SSA is found as an influential physicochemical characteristic of supercapacitors in both testing methods, while 
small discrepancies emerge for the other variables. PW is found as a relevant parameter of specific capacitance 
only in case of two-electrode measures, thus appearing as a possible descriptor able to discriminate between the 
adopted method of testing.

Table 2.   Performance analysis of the different regression models on the collected dataset of carbon-based 
supercapacitors.

Model R2 RMSE b’ MAPE

OLS 0.32 71.52 1.00 100.62

SVR 0.72 46.3 0.98 31.59

DT 0.60 55.63 1.00 36.28

RF 0.75 43.96 0.98 27.09

XGBoost 0.79 40.27 0.95 30.08

Figure 5.   (a) Comparison between the predicted and actual capacitance values obtained by the three-electrode 
method; (b) feature analysis for the three-electrode method of testing. (c) Comparison between the predicted 
and actual values for the two-electrode testing method; (d) feature analysis for the two-electrode method of 
testing.
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Influence of electrolyte.  The specific capacitance of a supercapacitor is determined not only by the phys-
icochemical behaviour of the electrode material and the testing method, but also by the type of electrolyte used. 
For instance, Zhou et al.52 synthesised hierarchical nitrogen-doped porous carbon and demonstrated a specific 
capacitance of 339 F/g in 6 M KOH and 282 F/g in 1 M H2SO4, respectively, at a current density of 0.5 A/g. Thus, 
to decouple the effect of different electrolytes from our analyses, we considered configurations with either 6 M 
KOH or 1 M H2SO4. Consequently, we extracted only data entries characterized by 6 M KOH (2819 entries) 
and 1 M H2SO4 (471 entries) from the overall dataset. In these cases, 80% of dataset was considered for train-
ing and 20% for testing the XGBoost model. The accuracy of the obtained regression is corroborated by the 
improved statistics of XGBoost model fitting for the 6 M KOH electrolyte (R2 = 0.81, RMSE = 33.86, b′ = 1.01, 
and MAPE = 16.75) and the 1 M H2SO4 electrolyte (R2 = 0.87, RMSE = 36.48.44, b′ = 0.98, and MAPE = 116.24), 
as depicted in Fig. 6a,c. The feature analyses carried out on supercapacitors with 6 M KOH and 1 M H2SO4 
electrolytes demonstrate that the SSA, nitrogen doping, and PV were the major contributors to the capacitive 
performance in the 6 M KOH electrolyte, whereas the SSA, nitrogen doping, and PW in the 1 M H2SO4 electro-
lyte, as evident from Fig. 6b,d.

Due to the limited data entries for the 1 M H2SO4 electrolyte, then we considered only the aqueous electrolyte 
6 M KOH—which has also the additional benefits of being inexpensive, safe, and with a high dielectric constant 
and specific capacitance—to discriminating again between two-electrode and three-electrode testing methods. 
Refining the datasets considering a specific electrolyte (6 M KOH) and method of testing further improved the 
regression performance with respect to results in “Comparison between regression methods” Section (overall 
dataset) and Influence of specific capacitance testing method (datasets separated for three- and two-electrode 
testing methods). This is evident from Fig. 7a,b, where most data points are located near the diagonal line, 
indicating a strong correlation between the actual and predicted specific capacitance values. Furthermore, the 
accuracy of regression is corroborated by the improved statistics of XGBoost model fitting for both the two- 
(R2 = 0.95, RMSE = 16.56, b′ = 0.97, and MAPE = 10.15) and the three-electrode method (R2 = 0.91, RMSE = 24.08, 
b′ = 0.985, and MAPE = 12.88). Similarly to Fig. 5, the feature analysis carried out on supercapacitors with 6 M 

Figure 6.   (a) Comparison between predicted and actual specific capacitance and (b) feature analysis for the 
subset of data having 6 M KOH electrolyte. (c) Comparison between predicted and actual specific capacitance 
and (d) feature analysis for the subset of data having 1 M H2SO4 electrolyte.
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KOH electrolyte demonstrate that the SSA, PV, and nitrogen doping were the major contributors to the capacitive 
performance in the three-electrode testing method (Fig. 7b), whereas the PW, PS, and SSA in the two-electrode 
one (Fig. 7d). Hence, the regression performed on the limited dataset of supercapacitors with 6 M KOH elec-
trolyte does not change the relative influence of physicochemical characteristics of supercapacitors on their 
performance discussed in “Influence of specific capacitance testing method”, therefore showing the robustness 
of the feature analysis.

Notice that, due to limited data entries for different concentrations of electrolyte in the current database 
(1 M KOH has 12 entries, 2 M KOH has 169 entries and 3 M KOH has 132 entries), we could not train a robust 
XGBoost model specifically dedicated to exploring also this effect on the specific capacitance of supercapacitors.

Influence of carbon electrode structure.  Carbon exists in various allotropic forms with distinct mor-
phologies and physicochemical properties. Activated carbon, hierarchical porous carbon, heteroatom doped 
porous carbon and graphene derived carbon are mainly employed for carbon electrodes of supercapacitors. The 
different morphological forms of these carbon allotropes may affect the specific capacitance of supercapacitors28. 
ACs possess a large SSA and pore volume, thus easing the accumulation of static charges at the electrode surface 
and the resulting specific capacitance. HPC electrodes, instead, contain pores in a wide range of length scales 
(from micro to macro). The presence of macropores in HPC allows high-rate ion transport and acts as an ion 
reservoir. HA carbon electrodes are generally obtained from AC incorporated with heteroatoms (N, O, S, P), 
which enhance the wettability and electronic conductivity of the base material. Graphene shows also high SSA 
and electrical conductivity.

Therefore, we further split our dataset according to the type of carbon materials used in the construction 
of the electrodes. AC, HPC, and heteroatom (HA)-doped electrodes were differentiated to generate separate 
datasets, and XGBoost trained to best match the capacitive behaviour of supercapacitors made of specific carbon 
structures. Notice that, in this case, datasets have not been subdivided according to different testing methods or 
electrolytes, since the limited number of entries available for some classes of carbon structures did not allow a 
robust training of the regressor. Figures 8a,c,e compare the predicted and actual values of specific capacitance 
for the three types of considered carbon structures, highlighting a good match especially for HA ones (correla-
tion statistics are detailed in Table 3). The feature analysis is done also in this case: Fig. 8b,d,f identify as most 
influential physicochemical features a combination of parameters previously found for two- and three-electrode 
testing methods, such as PW, SSA, and N%.

Figure 7.   (a) Comparison between predicted and actual specific capacitance and (b) feature analysis for the 
subset of data having 6 M KOH electrolyte and measured by three-electrode method. (c) Comparison between 
predicted and actual specific capacitance and (d) feature analysis for the subset of data having 6 M KOH 
electrolyte and measured by two-electrode method.
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Figure 8.   (a) Comparison between the predicted and actual specific capacitance and (b) feature analysis for 
the activated carbon electrodes. (c) Comparison between the predicted and actual specific capacitance and (d) 
feature analysis for the hierarchal porous carbon electrodes. (e) Comparison between the predicted and actual 
specific capacitance and (f) feature analysis for the heteroatom-doped carbon electrodes.
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Overall, the current study focused mainly on the results obtained by applying XGBoost regressors, as their 
accuracy was shown to be superior to that of other ML models. As a result of differentiating datasets according 
to the testing method, electrolyte type or morphology of the carbon electrode material, the accuracy of trained 
XGBoost models was further improved (see R2 values), while the most relevant physicochemical features identi-
fied for these different categorical variables. Considering all the feature analyses shown in Figs. 4, 5, 6, 7, and 8, 
SSA is by far the dominant physicochemical characteristic of electrodes in determining the specific capacitance 
of the supercapacitors in the dataset, followed by N% and PW (which appears to be particularly influent when 
two-electrode methods are employed for the measure). PV, ID/IG and PS follow with decreasing importance, 
while I, O% and S% result to be the least influential features.

Conclusions
ML models such as OLS regression, SVR, DT, RF, and XGBoost were used to predict the influence of various 
physicochemical parameters and categorical variables of carbon-based electrode materials on the capacitive 
performance of an ELDC supercapacitor. First, a dataset was developed by extracting information from 147 
experimental research articles on carbon-based electrode supercapacitors. This included the presence of defects, 
the pore volume, pore surface, current density, surface specific area, potential window, nitrogen, oxygen, and 
sulphur content in carbon-based electrode materials. Categorical variables such as the testing method, electro-
lyte type or morphology of the carbon electrode material were also considered. These data entries (4538) were 
fed into five regression models, prior to which the dataset was curated to achieve consistent physical units and 
outlier detection. Subsequently, the Spearman’s rank correlation coefficient was used to determine the correlation 
between each pair of parameters, which suggested that all the available physicochemical parameters were not 
dependent from each other. For training the regression models, the datasets were divided into a 70:30 ratio for 
training and testing, respectively. Correlations between the actual specific capacitance and the predicted specific 
capacitance of the five models are ranked as follows: XGBoost > RF > SVR > DT > OLS, thus showing a superior 
regression performance by ML algorithms.

Additionally, we used the XGBoost model to predict the effect of the testing method (two- and three-electrode 
method) on the specific capacitance of supercapacitors. This resulted in acceptable performance parameters for 
both the testing methods. Furthermore, in the three-electrode method, SSA, N%, and PV were identified as the 
major contributors, whereas in the two-electrode method SSA, PW, and ID/IG were observed to significantly 
influence the capacitive performance. To comprehend the impact of the electrolyte on the specific capacitance, 
we further extracted datasets having 6 M KOH in the two-electrode and three-electrode testing methods. The 
performance parameters obtained using the XGBoost method suggested improved statistics for both the testing 
methods. As a result, the PV, SSA, and N% were identified as the significant contributors in the three-electrode 
method, whereas SSA, PS, and PW were confirmed to be the significant contributors in the two-electrode 
method. Finally, using the XGBoost model, we determined the various physicochemical characteristics according 
to the type of electrode materials used for the construction of the electrode that affect the specific capacitance of 
supercapacitor. The heteroatom (HA)-doped carbon exhibited a better regression in comparison to the AC and 
HPC. Overall, SSA appears as the most influential physicochemical characteristic of electrodes in determining 
the specific capacitance, followed by N% and PW. PV, ID/IG and PS have a decreasing importance, while I, O% 
and S% the least.

We highlight that the imperfect matching between the currently trained ML models and the considered 
experiments may be also due to different experimental conditions during the supercapacitor testing. For instance, 
electrode conditioning before property measurements usually involves extensive charge–discharge cycling or 
holding the electrode for some time at an elevated temperature and potential, and it typically decreases or 
even removes certain surface functional groups, which in turn improves storage stability. Unfortunately, not all 
researchers perform electrode conditioning before measuring properties or even identify possible current leak-
ages when reporting measurements. This study, however, is not intended to replace modelling or experimental 
analyses, but rather to provide a preliminary support in the design and development of new supercapacitors, 
with the possibility to re-train and thus refine the presented ML models as soon as further data and descriptors 
will become available in the literature (e.g., extensive data on carbon material percentage in the electrode, cf. 
Supplementary Note 5).

In conclusion, the current study demonstrated the successful utilization of a data-driven method to predict 
the material performance for supercapacitor applications and revealed the most significant parameters that affect 
the specific capacitance of EDLCs. In perspective, the curated dataset developed and shared in this work may 
facilitate further analyses and potential optimization of carbon-based electrodes in different electrochemical 
applications. To ease the exploitation of the trained models (see Supplementary Note 6) by experimentalists, we 
developed a software with a graphical user interface (SUPERCAPs69) that allows to easily provide with an estimate 

Table 3.   Performance analysis of the trained XGBoost models to relate the physicochemical features of carbon 
electrodes with different structures and the measured specific capacitance.

Electrode type R2 RMSE b′ MAPE

AC 0.82 33.85 1.003 23.104

HPC 0.77 44.13 0.97 49.543

HA 0.9 26.78 0.98 16.276
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of the specific capacitance of carbon-based supercapacitors knowing the physicochemical characteristics and 
structure of carbon electrodes, the testing method, and electrolyte.

Data availability
All data collected and analyzed during this study are included in this published article, the related supplementary 
information files and Zenodo archive (https://​doi.​org/​10.​5281/​zenodo.​73469​43).
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