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Abstract—Self-Test Libraries (STLs) are widely used for in-
field fault detection in processor-based systems. Currently, their
adoption is being extended to Graphics Processing Units (GPUs),
due to their increasing usage in the safety-critical domain, and
the demand for effective in-field functional safety mechanisms
mandated by the functional safety standards (e.g., ISO 26262 for
automotive). This work describes a method to develop suitable
STLs resorting to High-Level Languages (HLLs) (e.g., CUDA)
for some modules in GPUs, thus reducing the complexity of the
STLs development process. We also discuss the method’s main
advantages/limitations, as well as the challenges and constraints
when developing HLL STLs for GPUs. Furthermore, we outline
those cases demanding the usage of Low-Level Languages (LLLs)
for the implementation of STLs. The evaluation and validation of
the method resort to the FlexGripPlus GPU model, implementing
one micro-architecture of NVIDIA. The experimental results
show that HLL STLs can be effectively developed for regular
modules in the GPU.

Index Terms—In-field Testing, Graphics Processing Units
(GPUs), High-Level Programming Languages, Self-Test Libraries
(STLs), Software-Based Self-Test (SBST).

I. INTRODUCTION

The programming flexibility and the performance of
Graphic Processing Units (GPUs) promote their adoption in
the systems’ domain (e.g., self-driving and robotics), where
reliability and safety are sensitive issues. Both factors are
fundamental when dealing with GPUs implemented using
cutting-edge technology-scaling nodes. In fact, these semi-
conductor technologies might be affected (among the others)
by permanent faults arising during the operational phase due
to premature aging or wear-out [1]. Hence, suitable safety
mechanisms are required to detect faults in GPUs and prevent
catastrophic effects.

Among the available mechanisms, this paper focuses on
functional testing solutions based on software-based tech-
niques (Software-Based Self-Test, or SBST). This strategy is
flexible and non-invasive and offers in-field testing capabilities
while demanding zero hardware costs [2]. The SBST strategy
is based on the development of specialized routines (Test
Programs, or TPs) resorting to the programming capabilities
(i.e., Instruction Set Architecture, or ISA) and the architecture
of the device. These TPs can excite the internal faults and
propagate their effects to visible locations for detection pur-
poses. Groups of TPs compose a Self-Test Library (STL) [2].
Currently, several Intellectual Property (IP) core vendors and
device developers/manufacturers offer STL solutions for their
processor-based products and support their usage in safety-

critical applications [3]. These STLs are integrated by the
system company in the application code and activated with the
required frequency. Moving to GPUs, several works already
demonstrated that effective STLs can be developed, targeting
functional units, memory modules, and scheduler controllers
[4]–[6].

Until now, STLs for GPUs have been developed at machine
level (e.g., using assembly languages, Low-Level Languages,
or LLLs) [3]. This approach requires significant engineering
effort, development time, as well as deep architecture knowl-
edge of the target device, and is characterized by a limited
re-usability. The development of STLs using LLLs (LLSTLs)
is particularly demanding for GPUs, due to the difficulties
in handling implicit parallelism at the fine-grain level. As a
result, the design, implementation, and validation of TPs for
GPUs is highly critical, due to the lack of detailed information
about the ISA, so involving long development times, even
when assisted by specialized tools. The structural and ISA
differences between GPU products also significantly reduce
the portability of LLSTLs. In contrast, HLLs for GPUs (such
as CUDA or OpenCL) simplify the programming effort and
are the best (sometimes the only!) method to develop and
encode applications. In fact, adopting HLLs (instead of LLLs)
may increase the programmer’s productivity (from 3 to 10
times depending on the target platform [7], [8]). Moreover,
the increasing complexity of modern GPUs can be handled
straightforwardly with HLLs, allowing an easier maintenance
process. Additionally, some features of HLLs, such as the pro-
gramming scalability and flexibility, encourage test specialists
to adopt HLLs for STL’s development. Unfortunately, there
are still several challenges and open questions when resorting
to HLLs for the development of TPs and STLs (leading to
HLTPs and HLSTLs).

In the literature, some authors explored the development of
HLSTLs for GPUs. In [6], several OpenCL microbenchmarks
were discussed to test intermittent faults produced by the
device’s stress or temperature changes. On the other hand,
authors in [5] combined CUDA with an Intermediate Language
(IL) ISA (PTX) to test permanent faults in functional units
and register files. Unfortunately, none of the mentioned works
addresses other sensible modules inside the GPU, such as
controllers, memories, and pipeline registers, nor discusses the
compiler intervention during the test.

This paper extends our preliminary work [9], in which
we introduced a method to develop HLSTLs for GPUs. We
now extend and generalize the methodology and analyze the
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main benefits and constraints when using ILs (i.e., virtual
assembly languages, such as PTX or AMD IL) to support
the development of HLSTLs. In detail, the method pursues
the complexity reduction in the development flow of STLs
using LLLs. Furthermore, we describe and analyze the main
advantages and constraints when developing TPs adopting
HLLs, LLLs, ILs, or a combination of them when required.
The main contribution of this work can be summarized as
follows:

• The description of a method to develop suitable STLs
targeting the detection of permanent faults and resorting
to HLLs and ILs in selected GPU units.

• The identification of challenges and constraints when
developing HLTPs and HLSTLs for GPUs.

• The coding guidelines to suppress the main limitations
when adopting HLLs and ILs to develop TPs and STLs
for GPUs.

The experimental validation resorts to one microarchitec-
tural GPU model (FlexGripPlus [10]) and two GPU devices
(NVIDIA’s Jetson Nano, and GeForce GTX 960M). The
results show that HLTPs and HLSTLs are suitable when
targeting regular units (e.g., those composing the datapath
of a GPU core, such as the functional units and the register
file). On the other hand, a combination of different abstraction
levels (HLLs, ILs, and LLLs) is necessary to develop STLs for
other modules, such as controllers and programmer’s hidden
units, due to the compiler features, observability constraints,
and architectural characteristics of such units.

In this work, we used NVIDIA’s concepts and tools to
develop and validate the proposed method. However, the
proposed techniques and results can be adapted and extended
into other GPU architectures.

II. ORGANIZATION OF GPUS

A. GPU Architecture

In NVIDIA’s terminology, GPUs are massively parallel
processors organized as cluster arrays of units called ‘Stream-
ing Multiprocessors’ (SMs). An SM implements the Single-
Instruction Multiple-Thread (SIMT) paradigm (an extension
of ‘Single-Instruction Multiple-Data’, or SIMD). Each SM
includes several functional units (‘Streaming Processors’ or
SPs) to perform the same operation in parallel on several
threads, as well as supplementary units, such as Special
Function Units (SFUs) and Tensor Core Units supporting
multimedia and artificial intelligence applications.

Moreover, the GPU’s memory hierarchy is organized nto
several levels, such as a General-Purpose Register File
(GPRF), a shared memory, a local memory, a constant mem-
ory, and an external global/main memory. Additionally, the
GPU includes several hidden units, such as the pipeline
registers, located across the architecture and storing sensitive
information for its operation.

The execution of a parallel program (kernel) in a GPU is or-
chestrated by hierarchical hardware-based schedulers handling
the thread execution and managing divergent paths among the
threads inside each SM. The schedulers fetch, decode, and
execute kernel instructions in parallel using the available cores.

This execution flow is conducted in small parallel units (e.g.,
32 or 48 threads) called warps.

B. GPU programming model

The GPU’s programming model is based on environments
(such as the ‘Compute Unified Device Architecture’ or CUDA)
abstracting and hiding the compilation and programming com-
plexity, and providing code flexibility and portability (compat-
ibility across generations), so simplifying the programmer’s
task. Other abstraction levels, such as ILs and virtual In-
struction Set Architectures ( ‘vISAs’), offer the flexibility and
portability benefits of HLLs, and the fine-grain control of a
LLL. Thus, a kernel requires minimal description changes
to be used in different GPU architectures, keeping the same
programming model of previous hardware versions. Clearly,
an optimized backend compiler is used.

In detail, the program’s compilation requires two phases:
i) from HLL to IL (also known as Parallel Thread Execution
languages or ‘vISA’), and ii) from IL to LLL (machine level
or ‘mISA’). In the first phase, most compiler settings (e.g.,
optimizations flags, maximum register usage, granted fast math
features, etc.) take effect to increase the performance in the
parallel execution, so creating a compressed version of the
HL program at the IL-level (e.g., PTX). The second phase
uses the IL program to produce a device-specific program
at the mISA level and its binary executable, which may
change among GPU generations and devices. In the second
phase, additional compiler optimizations include: i) implicit
management of memory resources, ii) software-based out-of-
order organization of mISA instructions, and iii) selection of
suitable instructions to perform an intended functionality. In
the first case, the compiler evaluates the performance trade-off
and selects the best memory resource for operand placement
(e.g., small arrays are stored in the local memory). Similarly,
the compiler organizes unrelated instructions, removing or
modifying the sequence of instructions in a program but
preserving the intended functionality. Unfortunately, these
compiler’s optimizations are restrictions when focusing on
testing objectives.

III. A METHOD FOR DEVELOPING PARALLEL HLSTLS

The proposed method exploits the divide-and-conquer strat-
egy by splitting the architecture of a GPU into modules
developing individual STLs by resorting to HLLs and ILs.
Fig.1 depicts the flow of the proposed method, which includes
three main steps: 1) Modular test generation, 2) Programming
language mapping, and 3) Test program evaluation.

A. Modular test generation

This step evaluates i) the functional characteristics of the
unit (e.g., arithmetic, control, or storage), ii) the architecture
specifications inside the GPU (e.g., data path or control path
units), and iii) the controllability and observability constraints
(i.e., how the program instructions can activate the unit).
These attributes are crucial to identify proper test methods
(e.g., automatic, deterministic, or custom) [4] as well as their
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Fig. 1. A general scheme of the proposed methodology to generate HLL TPs and to translate LLL into equivalent HLL STLs

implementation feasibility at HLTPs or ILTP. For testing pur-
poses, each module can be classified into one of the following
three types: 1) Regular, 2) GPU’s distinctive, and 3) Hidden
structures.

Regular modules correspond to replicated units inside the
architecture, which perform the same functionality in parallel
(i.e., functional units and register files). These structures
(belonging to the data-path) are visible resources of the GPU,
allowing the application of any test data at the input of the
unit (i.e., high controllability) and then observing its results
after issuing an operation (i.e., high observability). Automated
or deterministic testing methods are suitable approaches for
them.

GPU’s distinctive modules correspond to special modules
(e.g., schedulers, divergence controllers, and decoders) located
both in the data path and control path of the GPUs. Their
functional features and complex organization impose testing
restrictions (i.e., low controllability or observability), demand-
ing additional efforts to generate and apply the test data as well
as to guarantee the propagation of the fault effects up to an
observable point. Combinations of automated, deterministic,
and custom methods are suitable testing solutions for these
units.

Finally, the third unit type corresponds to hidden modules
for the programmer, which refer to hardware structures invis-
ible to the programmer (e.g., pipeline registers and embedded
controllers). The inherent complexity of these units demands
customized testing algorithms and especially elaborated test
methods.

B. Programming Language Mapping

Mapping TP specifications into HLLs can be easier and
faster since high-level constructs (e.g., nested for loops) can
describe complex specifications with a reduced engineering
effort. Unfortunately, mapping effective test algorithms into
HLLs or ILs is not a straightforward task since compilation
stages apply optimizations seeking the maximum execution
performance and security of the device. In fact, HL optimiza-
tions are in opposition to testing objectives by limiting the
programmer’s control. Nevertheless, these compiler constraints

can be avoided by adopting adequate coding styles and com-
pilation settings for test purposes.

In the proposed method, a bottom-up approach evaluates
and translates TP specifications as one or a set of test routines
in the adopted programming language (e.g., HLL, IL, or LLL).
For this purpose, several iterations might be needed to verify
the testing features of the HLTPs. Table I summarizes the
mapping strategies that can be adopted to implement test
methods into HLLs and ILLs for a given GPU module. The
reported information covers diverse modules and test methods
organized by unit type, GPU module, test method, detailed test
strategy, HLL mapping strategy, and ILL mapping strategy. For
example, a GPU’s divergence stack memory module (DSm)
handles the thread divergence operations in the SM. The
test of this unit resorts to several deterministic algorithms
implementing control-flow operations addressing each location
in the stack. There are two specific tests strategies adopted for
this module: i) pyramidal nested divergency management and
ii) synchronism management (SyncTrick) [11]. The first test
strategy requires indirect usage of conditional branches, con-
trolled divergences, nested divergences, and function calling,
forcing the device to address a new line in the stack.

These TP specifications are mapped into an HLL or ILL,
taking care of the following considerations: i) definition of
operands location (i.e., main, shared, or constant memory). It
is worth noting that some of the operands can be defined as lit-
erals embedded in the code for the HLL mapping or immediate
operands in the case of ILL mapping. ii) Repeat a consecutive
evaluation of nested conditional statements for each thread in a
warp and for each available stack entry. For the HLL mapping
case, the STL developer can resort to “if” statements. On the
other hand, the ILL mapping implements a combination of
control-flow vISA instructions (i.e., comparison instructions,
branch instructions, and predicated instructions). iii) For each
conditional path, a Signature-per-Thread (SpT) mechanism
[12] is adopted to enhance test observability and efficiently
report the test results.

Fig. 2 shows a snippet sample code describing the sequence
of conditional statements implemented in CUDA and PTX, re-
spectively. The mapping of the second test solution (syncTrick)
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1 global void Warp Scheduler T(int* SpT, int* vars){
2 ...
3 int Tid = blockDim.x * blockIdx.x + threadIdx.x;
4 ...
5 if (Tid == vars[0]) {
6 . . . } ⇐ SpT update(fault-free value);
7 else{
8 . . . } ⇐ SpT update(fault value);
9 . . .
10 if (Tid == vars[n]) {
11 . . . } ⇐ SpT update(fault-free value);
12 else{
13 . . . } ⇐ SpT update(fault value);
14 }

(a)

1 .entry Warp Scheduler T(.param, .u64 SpT .param .u64 vars){
2 ... 18 <SpT update fault free path ops>
3 cvt.u32.u16 %r1, %tid.x; 19 continue:
4 mov.u16 %rh1, %ctaid.x; 20 ...
5 mov.u16 %rh2, %ntid.x; 21 add.u64 %rd4, %rd4, N;
6 mul.wide.u16 %r2, %rh1, %rh2; 22 ld.global.u32 %r5, [%rd4+0];
7 add.u32 %r3, %r1, %r2; 23 setp.eq.u32 p, %r3, %r5;
8 mul.wide.s32 %rd2, %r3, 4; 24 @p bra SpT update FF;
9 ... 25 <SpT update faulty path ops>
10 ld.param.u64 %rd3, [vars]; 26 bra continue;
11 add.u64 %rd4, %rd3, %rd2; 27 SpT update FF:
12 ld.global.u32 %r5, [%rd4+0]; 28 <SpT update fault free path ops>
13 setp.eq.u32 p, %r3, %r5; 29 continue:
14 @p bra SpT update FF; 30 ...
15 <SpT update faulty path ops> 31 }
16 bra continue;
17 SpT update FF:

(b)
Fig. 2. An example of mapping the test strategies for the Divergence Stack
into HLLs and ILLs. (a) CUDA implementation (b) PTX implementation

is not feasible at HLL (even using ILs) since the explicit use
of some control-flow mISA instructions to optimize the stack
addressing is not allowed at these programming levels. After
compilation, the binary executable object is used to validate
and evaluate the test capabilities of each TP.

C. Test Program Evaluation

This step validates the functionality of a TP or STL (as a
binary executable). This validation is divided in three stages: i)
Compilation results checking, ii) Test Program validation, and
iii) Test program refinement, as depicted in Fig. 1. The first
stage verifies the compilation results by checking the content
of an Executable and Linkable Format (ELF) file. This file
contains information about the device’s resources usage that
allows identifying significant compiler optimizations for a TP
or STL, which may lead to removing, compaction, or replacing
testing features (i.e., conditional statements generating TPats
or different data allocation).

In addition, this step considers further checks to program-
ming structures and mISA instruction formats (i.e., call to
routines, miscellaneous instructions, etc). When the initial
checking does not succeed, the TP requires improvements
through a refinement process.

The second stage (Test program validation) is divided into
two sub-stages: logic simulation and fault simulation. The
logic simulation verifies the correct functional execution of
a TP using an RTL GPU model. Firstly, the ELF file is trans-
formed into a GPU model-compliant Test-Bench containing
the TP’s information. Secondly, the GPU model executes the
TP and captures the Signature per Thread (SpT) that indicates

the fault-free status of the GPU and, in turn, serves to verify
the program’s correct operation. The fault simulation resorts
to a customized simulation environment that takes the GPU’s
RT-level model and evaluates the Test Programs, targeting one
GPU module and injecting stuck-at-faults (SAFs), one at a
time. The fault simulation considers a fault as detected when
at least one mismatch exists between the fault-free and the
faulty SpT.

Finally, a given TP is considered valid if it is compliant
with the TP specifications and fulfills minimum fault detection
capabilities. Otherwise, the refinement step is used to provide
changes to the algorithm, described functions, or compiler
settings to improve the fault coverage.

D. Defeating compiler and architectural constraints for test-
ing purposes

Developing STLs using HLLs or ILs presents challenges
related to the constraints imposed by the compiler and the
structural features of certain GPU modules. In order to solve
such mapping constraints, several techniques can be applied
to reduce or bypass the compiler optimization’s effects and
preserve testing capabilities in a TP. A first strategy requires
the adoption of adequate coding styles to force the compiler
to preserve test functionalities. These techniques include the
efficient use of ‘device intrinsic functions’ from libraries
(e.g., math.h). For example, HLTPs for SFUs require intrinsic
functions to guarantee the generation of mISA instructions
addressing the modules and applying the desired Test-Patterns
(TPats). Fortunately, in the case of IL instructions for the SFU,
these are directly mapped as vISA ones.

Other techniques manipulate the arguments (inputs/outputs
of a kernel) to preserve instructions or routines targeting GPU
module. e.g., testing the GPRF requires several individual
arguments (from 3 to 127) to force the compiler to allocate and
address all possible registers per thread. Then, these arguments
are loaded with external patterns. Similarly, testing the Scalar-
Proessors (SPs) include additional arguments to generate most
mISA formats and preserve TPats. Moreover, reducing the use
of local variables and augmenting the input arguments in a
kernel, help to suppress the instruction’s replacement and the
out-of-order organization on HLTPs. Alternatively, including
explicit references to memory (e.g., global or shared) in at least
one of the HLL’s or ILL’s operands, prevents the compiler
to optimize the usage of immediate operands. In addition,
the manipulation of variables in the shared memory reduces
the compression, replacement, and reordering of instructions
during compilation.

Other strategies require the creation of data dependencies
between consecutive operations/instructions, the usage of the
global memory to store partial results, and barrier synchro-
nizations force the compiler to remove instructions to assure
that processed values are available for the next instructions. It
is worth noting that these strategies can be used individually
or in combination with mapping test specifications as HLTPs
and ILTPs.
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TABLE II
GPU MODULES FEATURES AND STL DEVELOPMENT APPROACH

Unit
Type Module Num of

cells (*)
Test

Method
STL Mapping

CUDA PTX SASS

Regular

Scalar Processor (SP) 206,824 A F F F
Special Function Units (SFU) 90,982 A F F F
General-Purpose Reg File (GPRF) 524,288 D F F F
Predicate Reg File (PRF) 16,384 D P P F
Address Reg File (ARF) 131,072 D - - F

Specific
Warp Scheduler mem (WSm) 5,118 D P P F
Divergency Stack mem (DSM) 273,600 D P P F

Decoder Unit (DU) 1,896 A
D P P F

Others Pipeline Regs (PRs) 2,382 C P P F
(*) Combinational and sequential cells using the synthesis library 15nm NanGate OCL
(F) Test algorithm fully mapped into the target programming language
(P) Test algorithm Partially mapped into the target programming language
(-) Test algorithm not mapped into the target programming language
A: Automated; D: Deterministic; C: Custom

TABLE III
MAIN FEATURES OF THE IMPLEMENTED STLS FOR REGULAR UNITS OF

THE GPU

GPU
Module

HLSTLs (CUDA) ILSTLs (PTX) LLSTLs (SASS)
Duration

(cc)
Size

(instr)
FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

SP 5,366,208 76,513 86.95 5,922,414 1079 81.94 4,881,855 74,604 87.20
SFU 1,331,200 16,856 94.30 212,914 117 94.30 212,914 117 94.30

GPRF 3,256,058 698 100.00 - - - 108,958 82 100.00
ARF - - - - - - 338,240 122 100.00

IV. EXPERIMENTAL RESULTS

The FlexGripPlus GPU model was used to validate the
proposed approach, and several ‘High-Level-Test-Programs’
HLTPs and ‘Intermediate-Level-Test-Programs’ ILTPs were
developed targeting different modules inside it. The effec-
tiveness of the developed TPs has been evaluated through
fault simulation experiments resorting to commercial EDA
tools and considering the stuck-at-fault (SAF) model. These
fault simulation campaigns were performed on a workstation
with two AMD EPYC 7301 16-core processors running at
2.2GHz and equipped with 128 GB of RAM memory. The
FlexGripPlus GPU was configured with one SM, 8 SPs, and
2 SFUs.

The HLTPs and ILTPs were written in CUDA and PTX
and compiled using CUDA toolkit SDK 5.0 with a Compute
Capability 1.0. Additionally, two GPUs (NVIDIA Jetson Nano
and GeForce GTX 960M) were employed to evaluate the
TP’s execution and observe the compilation impact of various
coding styles in different environments (CUDA SDK 11.2 and
CC 5.3, and CUDA SDK 5.0 and CC 5.1).

Table II reports the evaluated modules inside one SM of the
GPU, their size, the used test method for TP development, and
the mapping features as HLLs, ILs and LLLs. Table III reports
the implementation details and the Fault Coverage (FC) results
of the developed and implemented STLs in regular units. The
results show the effectiveness of STLs using HLL and IL for
units that are fully controllable and observable (e.g., SPs and
GPRF).

The duration of the HLSTLs (CUDA) is longer than its
equivalent LLSTL (SASS) version (from 1.1 to 6 times for SPs
and SFUs). This cost can be explained by the required memory
operations (reading and writing) in the HLTPs to prevent
compiler optimizations. Moreover, the TPats are replicated
inside each block of threads to produce redundancy in the
operations inside the SM, avoiding the scheduling intervention
during the test of these units. Similarly, the ILSTL duration is
longer than the equivalent LLSTL for ‘Scalar-Processors’ SPs.

TABLE IV
MAIN FEATURES OF THE IMPLEMENTED STLS FOR THE SPECIAL UNITS OF

A GPU

GPU
Module

CUDA PTX SASS
Duration

(cc)
Size

(instr)
FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

Duration
(cc)

Size
(instr)

FC
(%)

WSm 98,480 276 38.20 - - - 112,200 392 100.00
DU 2,150,612 12,354 68.75 1,589,678 12,116 73.74 6,125,561 65,653 80.10

DSM 987,526 875,422 35.10 - - - 1,030,473 12,524* 98.40
PRF 1,750,023 392 28.00 - - - 1,890,106 434 100.00
PRs 649,400 22,292 80.20 - - - 1,204,097 27,492 95.10

(*) The use of SASS instructions allowed a significant reduction in the total size of a TP

However, the required number of instructions in ILSTLs is
significantly reduced, since the TP description in PTX allows
more friendly fine-grain management than mISA descriptions,
allowing the selection of memory and immediates for operand
storage. This memory management also increases the degree of
parallelism in PTX, helping the TPs’ size reduction. For SFUs,
ILTPs description is simple, generating a program remarkably
similar to the corresponding LLTP. Notably, the achieved FC in
HLTPs and ILTPs for SP testing can sometimes be moderately
lower than that achieved by LLTPs. The main responsible
for the slight FC reduction is the SpT computation, which
uses logic/arithmetic instructions in the SPs. Although the
SpT algorithms encoded in HLTPs and ILTPs are functionally
equivalent, the compiler produces different SpT versions in
comparison to those in LLTPs. Hence, the TP’s FC capabilities
vary (the patterns produced by the SpT on SPs strongly depend
on the mISA instructions used for that purpose).

Table IV reports the results for the distinctive units and
the pipeline registers in a GPU. As the reader can notice, the
HLTPs have limited testing capabilities (about 28% to 68.75%
FC) due to the partial mapping of the test algorithms in HLLs,
along with the compilation impact. Indeed, the test of these
modules resorts to specific algorithms, which are functionally
characterized by low performance. Thus, the compiler modifies
the code, following unavoidable optimization philosophies. In
fact, the compiler produces a functional HLTP, but removes or
changes the execution order of operations, so affecting the FC
and producing a negative impact on the testing capabilities of
HLTPs. Nevertheless, a hybrid approach (combining HLTPs
with manually added mISA instructions) increases their FC
to acceptable values (100% for PRFs and up to 98.41% for
the DSM). These instructions are required to inject patterns
by addressing a module in specific conditions (i.e., addressing
memory locations or addressing different stack lines in the
DSM). It is important to mention that for the DSM, the final
insertion of mISA instructions also reduced the routine com-
plexity, so compacting the TP. Nonetheless, the test engineer
decides when such manual addition of instructions is justified
considering the tradeoff between productivity, the effort for the
test program generation, and the test coverage improvement.

On the other hand, the ILTPs to test the WSm, DSM, PRF,
and PRs produced identical results in terms of duration, size,
and FC to the ones by HLTPs. This characteristic behavior
obeys mainly to the deterministic nature of the test methods
used to test such modules, (e.g., based on specific operations,
such as conditional statements to induce controlled diver-
gence). However, the ILTPs for the DU reach higher coverage
(73.74%) than equivalent HLTPs (68.75%). In fact, the direct
usage of some miscellaneous and control-flow instructions at
PTX level provides fine-grain control to produce TPats which
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cannot be generated using CUDA.
Finally, the TPs implemented using only HLLs or ILs can

test around 50.6% of the faults, and represent 9.3% of the
size of the STLs. Moreover, hybrid HLTPs (improved by
additional mISA instructions) can test 45% of the faults,
and occupy 90.6% of the size of the STLs. Additionally,
based on our experience, the adoption of HLLs for STL’s
development decreases the development time by about two
orders of magnitude (for the functional units), and one order
of magnitude (for other modules), resorting to the combination
of CUDA and SASS. Actually, this time reduction is aligned
with the statement [7], [8] regarding improving programmer’s
productivity by adopting HLLs, so demonstrating that this
productivity improvement is achievable in STL development
for GPUs, too. On the other hand, the adoption of ILs for
STL development offers higher flexibility, reducing the devel-
opment effort by around 30% w.r.t. direct machine assembly
implementations of the same TP.

V. CONCLUSIONS

This work introduces a method to develop STLs for in-
field GPU testing resorting to High-level and Intermediate-
level Languages. The proposed method employs a divide-and-
conquer approach to target individual modules in a GPU and
applies specific strategies that, in some cases, can later be
mapped into high-level functions. Constraints and challenges
in the development of high-level STLs require facing some
implicit limitations, such as the controllability and observ-
ability of the different modules, and the optimizations of the
several layers of compilation in a GPU. More in detail, the
compiler constraints can be faced using strict coding styles or
combining several abstraction levels to develop effective TPs
and STLs. Finally, the adoption of HLLs when developing
STLs for GPUs also plays an important role when finding the
best trade-off between time development and execution time
of the STLs.
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