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Abstract—Distributed caching systems such as content distri-
bution networks often advertise their content via lightweight
approximate indicators (e.g., Bloom filters) to efficiently inform
clients where each datum is likely cached. While false-positive
indications are necessary and well understood, most existing
works assume no false-negative indications. Our work illustrates
practical scenarios where false-negatives are unavoidable and
ignoring them has a significant impact on system performance.
Specifically, we focus on false-negatives induced by indicator stal-
eness, which arises whenever the system advertises the indicator
only periodically, rather than immediately reporting every change
in the cache. Such scenarios naturally occur, e.g., in bandwidth-
constraint environments or when latency impedes each client’s
ability to obtain an updated indicator.

Our work introduces novel false-negative aware access policies
that continuously estimate the false-negative ratio and sometimes
access caches despite negative indications. We present optimal
policies for homogeneous settings and provide approximation
guarantees for our algorithms in heterogeneous environments. We
further perform an extensive simulation study with multiple real
system traces. We show that our false-negative aware algorithms
incur a significantly lower access cost than existing approaches
or match the cost of these approaches while requiring an order of
magnitude fewer resources (e.g., caching capacity or bandwidth).

I. INTRODUCTION

Caches are extensively used in networking environments
such as Content Delivery Networks [1]–[3], Named Data
Networks [4], 5G networks [5], and Information Centric
Networks [6]. In such networks, accessing caches often incurs
some overhead in terms of latency, bandwidth, or energy [3],
[7]. On the other hand, fetching a datum without caches usually
incurs a larger miss penalty, e.g., for retrieving the requested
item from a remote server [2].

In large distributed systems, caches often optimize perfor-
mance by advertising their content [1]–[4], [6], [8]. Such
advertisements allow clients to minimize costs by selecting
which cache to access for a requested datum. Ideally, the
advertisement policy would always accurately reflect the up-to-
date content at every cache. However, such a solution requires
a prohibitive amount of memory, computation, and bandwidth
resources. Hence, systems often compromise some accuracy
for efficiency by advertising periodical approximate indicators.
Indicators are data structures that trade accuracy for space
efficiency. Common embodiment of such indicators are Bloom
filters [7], [9]–[11], and fingerprint hash tables [12].

* The work was done while this author was with Ben-Gurion University.

Such approximations commonly introduce the risk of false-
positive errors, i.e., the indicator sometimes wrongly indicates
that a datum is stored in the cache. In such a case, accessing the
cache results in an unnecessary cache access, which translates
to an excessive cost. Consequently, the problem of advertising
space-efficient indicators while keeping a low false-positive
rate has attracted a bulk of research effort [7], [9]–[11], [13].
Other works addressed the cache selection problem, namely,
selecting which cache to access when there exist one (or more)
positive indications, where some of them may actually be
false-positives [7], [14].

Most previous works [3], [7], [14] assume that there are
no false-negative indications. Indeed, there exist indicators
that theoretically guarantee a false-negative ratio of zero (e.g.,
simple Bloom filter [9]), or a negligible false-negative ratio
(e.g., a Counting Bloom Filter (CBF) [10]). However, to
manifest this guarantee in practical distributed environment,
every cache should advertise its indicator to all the clients in
the network upon every change in the cached content, usually
resulting in prohibitive bandwidth consumption. For instance,
a leading CDN provider reports using Bloom filters of about
70MB in size in every cache [2]. Insisting on sending an
update upon every change in the cached content in such a
system may result in having the advertised indicators consume
more bandwidth than the cached content itself. Hence, caches
commonly advertise their content only periodically.

When using periodical updates, the advertised content
gradually becomes stale. Namely, it takes time for the indicator
available at the clients to reflect changes in the cached content.
Unfortunately, such staleness may lead to a significant increase
in false-negative indications. To illustrate the problem, consider
a cache that advertises a fresh indicator, and later admits a
new item x. When the client tests for x, the indicator is likely
to wrongly indicate that x is not in the cache (as it wasn’t
in the cache when the advertisement was sent), resulting in
a false-negative error. Such scenarios are quite common in
highly dynamic networks, such as 5G networks [5].

To explore the significance of false-negatives caused due
to staleness, consider Fig. 1a. The figure presents the false-
negative ratio indications as a function of the time between
subsequent advertisements, referred to as the update interval
(both axes are in logarithmic scale). We measure the update
interval by the number of cache changes (insertions of new
items). The indicator used is an optimally configured simple
Bloom filter [9], where the figure shows distinct indicators with
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(a) Effect of the update interval on the false-negative ratio. Both axes are
in log-scale, the cache size is 10K, and policy is LRU. The traces are Wiki
and Gradle (described in Sec. VI). The distinct plots for increasing values of
bits-per-cached-element (bpe), correspond to increasing indicator sizes, with
decreasing false-positive ratios, respectively.

Cache 1 Cache 2 Cache 3
Cost 10 20 1

Indication I(x) = 0 I(x) = 1 I(x) = 0
True answer C(x) = No C(x) = No C(x) = Yes

(b) The client is looking for item x and needs to select a cache. Accessing each
cache incurs some known access cost. Each cache j provides an indication
w.r.t. item x, where I(x) = 1 means that the item is likely to be cached, and
I(x) = 0 means that it is likely not cached. The true answer is captured by
C(x), which is “Yes” iff x is found in the cache. The indications of caches
1, 2 and 3 for item 3 are true-negative, false-positive, and false-negative,
respectively. Failing to retrieve x from a cache incurs a miss penalty of 100.

Fig. 1. Motivation for a false-negative aware approach.

varying number of Bits Per cached Element (bpe); a higher bpe
implies a larger indicator, that is guaranteed to provide a lower
false-positive ratio [13]. Fig. 1a shows that the false-negative
ratio dramatically increases for all indicator sizes. Furthermore,
this phenomenon is manifested for various types of workloads,
where Fig. 1a shows this for two specific traces, Wiki and
Gradle (which represent significantly distinct workloads, as
described in Sec. VI-A). For instance, it is not uncommon to
have a false-negative ratio as high as 10% when the update
interval is above 1K. Most interestingly, using a larger indicator,
which guarantees a lower inherent false-positive ratio [13],
results in a higher false-negative ratio. We discuss and explain
this phenomenon with more detail in Sec. VI-C.

Fig. 1b exemplifies the potential benefit of a false-negative
aware access strategy. A false-negative oblivious strategy would
access only caches with positive indication, i.e., cache 2.
However, this indication is a false-positive, thus incurring
a miss penalty of 100 for a total cost of 120. In contrast, a
false-negative-aware approach may access both caches 2 and
3, implying an access cost of 21 and a hit. Intuitively, as the
miss penalty is 100 while the access cost of cache 3 is only 1,
it is beneficial to access cache 3 despite a negative indication
if the likelihood of a false-negative event is more than 1%.

Designing an access strategy that considers both false-
positives and false-negatives is a challenging task. In particular,
it is unclear whether, or when, it may be beneficial to access a
cache despite a negative indication. Furthermore, it is unclear

even how to estimate the probability of a false-negative event.
However, to the best of our knowledge, despite its importance,
this problem has never been studied.

We stress that we do not address cache replacement policies,
the design of new indicators, or optimizing update intervals.
We focus our attention on a false-negative-aware cache access
strategy, namely, which cache(s) should the client access, being
aware to the non-negligible probability of false-negatives, which
naturally arises in scenarios where indicators become stale.

A. Our Contribution

We consider the problem of accessing a multi-cache system
while using indicators that exhibit both false-positive and false-
negative indications. We challenge the common practice, which
assumes that it is always better not to access caches with
negative indications. Specifically, we develop a framework that
supports false-negative awareness, and design policies that
actively access caches with negative indications, aiming at
minimizing the overall access cost.

After presenting our system model and some preliminaries in
Sec. II, we turn to consider Bloom filters in Sec. III, which serve
as our main example of indicators. Specifically, we discuss
how staleness affects the false-negative and false-positive ratios
manifested in such indicators. We then turn to present an
algorithm for fully-homogeneous environments, and show that
it is optimal in terms of the overall access cost, assuming
that the false-negative ratio, the false-positive ratio, and the
hit ratio, are all known to the client. These results appear in
Sec. IV. Later, in Sec. V, we develop a strategy for realistic
environments which are both heterogeneous (i.e., distinct caches
have distinct attributes) and dynamic (i.e., the client may not
know the precise attributes of each cache). We show how
both the cache and the client may cooperate, allowing the
client to estimate some of the underlying distributions (which
may depend inter alia on the system configuration and the
workload being served). We make explicit use of our analysis
of Bloom filters, to serve as a concrete example of how to
implement our approach. Our suggested false-negative aware
(FNA) approach makes deliberate accesses also to caches
with negative indications. Furthermore, we show that any
approximation guarantee provided by a false-negative oblivious
(FNO) access strategy (in our model), can be used by our
false-negative aware framework. In particular, we show how to
employ known FNO strategies as subroutines, which induce
their performance guarantees on our proposed FNA solution.

Finally, in Sec. VI, we present the results of our in-depth
simulation study, where we evaluate the performance of our
proposed solution in varying system configurations. We show
that our FNA strategy implies a significant reduction in access
costs in many real-life scenarios, compared to state-of-the-art
FNO approaches. Furthermore, our results show that our FNA
strategy with minimal resources obtains comparable results to
those obtained by FNO strategies that use considerably more
resources. For instance, our results indicate that to match the
performance of our FNA strategy, an FNO approach might
require as much as an order of magnitude more resources (e.g.,



in terms of system caching capacity or the bandwidth required
for indicator advertisement).

B. Related Work

As previously described, indicators are commonly used to
periodically advertise the content of caches in an efficient
manner. Since indicators are of bounded size, they usually
fail to provide a precise representation of the cache content
and exhibit false-positive indications [9], [13]. The pioneering
work of [7] shows that due to these false-positives, sometimes
naively relying on an indicator for accessing even a single cache
may do worse than not using an indicator at all. Subsequent
works [14], [15] tackle a distributed scenario where multiple
caches advertise indicators, and develop access strategies that
take into account both the access cost, and the false-positive
rate in each cache, to minimize the overall expected cost.
However, [7], [14], [15] disregard false-negative indications.

The work of [16] studies the problem of false-negatives in
practical deployment of Counting Bloom Filters [10]. Other
techniques to reduce the false-negative ratio in numerous
variants of Bloom filters are surveyed in [11]. These works
address false-negatives that stem from architectural design, i.e.,
from concrete data structures used to implement indicators.
Consequently, these works focus on developing enhanced data
structures that reduce such false-negatives. In contrast, we focus
on false-negatives caused by staleness, i.e., false-negatives that
follow from the operational usage of the system. Such false-
negatives may occur in any indicator, even if its design is
false-negative-free, such as a simple Bloom filter [9], [13].
In this sense our approach is orthogonal to previous work
targeting the reduction of false-negatives [11], [16], and these
approaches may be seamlessly combined with our solutions.

Since constantly advertising a fresh indicator might be
prohibitively costly, in practice caches commonly advertise
fresh indicators only periodically [1], [17]–[19], where one
usually refers to the period between the advertisements of fresh
indicators as the update interval. Several works addressed the in-
terplay between the update interval and performance by means
of simulations [1], [18]. The work [19] presented an algorithm
that dynamically scales the update interval and the indicator
size, to comply with a budget constraint. The work [20] reduces
the transmission overheads by accurately advertising important
information, while allowing less important information to be
stale, or less accurate. The work [17] analyzed the impact of
stale Bloom filter replicas on the false-positive ratio and the
false-negative ratio. However, the framework of [17] implicitly
assumes that requests are drawn from a uniform distribution,
and that each object is stored in a single cache. This framework
conforms primarily with distributed storage systems. However,
in many (if not most) real-life distributed caching environments,
requests need not be drawn from a uniform distribution, and
furthermore objects may be found in either a single cache,
multiple caches, or no cache at all [3], [4], [6]. Part of our
analysis of such general environments is inspired by ideas
introduced in [17] (see, e.g., Sec. V-A1).

TABLE I
LIST OF SYMBOLS. THE TOP PART CORRESPONDS TO OUR SYSTEM MODEL
(SEC. II), THE MIDDLE PART CORRESPONDS TO THE STRUCTURE OF BLOOM

FILTERS (SEC. III), AND THE BOTTOM PART CORRESPONDS TO THE
FULLY-HOMOGENEOUS CASE (SEC. IV), AND THE HETEROGENEOUS

SETTINGS (SEC. V-VI)

.

Symbol Meaning
N Set of caches.
n Number of caches: n = |N |

x (xt) Item request (issued at time t)
Nx Set of caches with positive indications for requested item x
nx Number of positive indications for requested item x
Sj The set of data items in cache j
hj Hit ratio of cache j: hj = Pr(x ∈ Sj)
Ij Indicator of cache j

Ij(x) Indication of indicator Ij for item x
FPj False-positive ratio for Ij
FNj False-negative ratio for Ij
πj Probability of a miss in cache j given a positive indication
νj Probability of a miss in cache j given a negative indication
qj Probability of a positive indication in indicator Ij
cj Access cost of cache j
M Miss penalty
φ Cost function. See Eq. (4).
k Number of hash functions in the Bloom filter
Cj Size of cache j (|Sj | ≤ Cj )
bpe Bits per cached element in the Bloom filter
B1(t) Number of ’1’ bits in the updated Bloom filter at time t
B0(t) Number of ’0’ bits in the updated Bloom filter at time t
∆1(t) Number of bits that are ’1’ in the updated Bloom filter,

but ’0’ in the stale Bloom filter at time t
∆0(t) Number of bits that are ’0’ in the updated Bloom filter,

but ’1’ in the stale Bloom filter at time t
r0 Number of caches with negative indication accessed
r1 Number of caches with positive indication accessed
φ̂ Cost function for the fully-homogeneous case. See Eq. (7).
r∗0 Optimal choice of r0. See Eq. (8).
r∗1 Optimal choice of r1. See Eq. (8).
ρj Probability of a miss in cache j given its indication
δ Smoothness parameter of moving average. See Eq. (9).

The problem of stale indicators relates to other problems of
decision making under uncertainty. In particular, our problem
is closely related to the concept of the Age of Information
(AoI). The AoI quantifies the time since the generation of the
last successfully received information from a remote system.
The AoI paradigm was applied to numerous environments,
e.g. vehicular networks, scheduling, and buffer management;
a detailed survey can be found in [21]. The AoI was applied
also to caches [22], but in the context of the coherency of the
cached data, while we focus on the coherency of the indicators.

II. SYSTEM MODEL AND PRELIMINARIES

This section formally defines our system model and notations,
which are summarized in Table I. We consider a set N of
n = |N | caches, containing possibly overlapping sets of items.
We associate each time t with a unique item request xt issued
at time t, and we refer to the entire sequence of requests as
σ. Let Sj,t denote the set of items stored at cache j at time
t, prior to handling request xt. For every request xt issued at
time t, drawn from some distribution, we let hj,t denote the
probability that xt ∈ Sj,t. This probability depends both on the
distribution of the requests, as well as on the cache policy. The



average hj,t over the entire sequence is commonly referred to
as the hit ratio, i.e., the fraction of requests in σ that were
available in cache j, upon being issued. Similarly to previous
works, we assume that the past hit ratio is a reasonable estimate
of hj,t [23], [24]. We refer to this estimation as the probability
that the next accessed item xt is available in Sj,t.1

Each cache j maintains an indicator Ij,t, which approximates
the set of items in cache j at time t; given an item x, Ij,t(x) = 1
is referred to as a positive indication while Ij,t(x) = 0 is
considered a negative indication.

The false-positive ratio of Ij,t is defined by FPj,t =
Pr(Ij,t(x) = 1|x /∈ Sj,t). It captures the probability that given
a request x issued at time t, the indicator would mistakenly
indicate that it is in Sj,t. Similarly, the false-negative ratio
of Ij,t, defined by FNj,t = Pr(Ij,t(x) = 0|x ∈ Sj,t), is the
probability that the indicator mistakenly indicates that a request
for x, issued at time t is not in Sj,t.

For every cache j, and every time t, we denote by πj,t =
Pr(x /∈ Sj,t|Ij,t(x) = 1) the positive exclusion probability, that
is, the probability that a requested item x is not in the cache,
despite a positive indication. Similarly, we let νj,t = Pr(x /∈
Sj,t|Ij,t(x) = 0) denote the negative exclusion probability, that
is, the probability that a requested item x is not in the cache,
given a negative indication. We denote by qj,t the probability
of a positive indication for an item requested from cache j,
and refer to qj,t as the positive indication ratio. When clear
from the context, we abuse notation and omit the time t.

Positive indications occur when either x ∈ Sj and no false-
negative occurs; or x /∈ Sj , and a false-positive occurs. Hence,
qj = Pr(Ij(x) = 1) = hj · (1− FNj) + (1− hj) · FPj . (1)

Using Bayes’ theorem it follows that
πj = Pr(x /∈ Sj |Ij(x) = 1) = FPj ·(1− hj)/qj (2)
νj = Pr(x /∈ Sj |Ij(x) = 0)

= (1− FPj) · (1− hj)/(1− qj), (3)
for qj as defined in Eq. (1).

We say that a system is sufficiently-accurate if for every
indicator of cache j, FPj + FNj < 1.2 We note that in most
real-life scenarios, both the false-positive ratio FPj , and the
false-negative ratio FNj , are well below 0.5, and therefore
such systems are sufficiently-accurate.

The following simple condition characterizes sufficiently-
accurate systems. Due to space constraints, some of the proofs
are omitted, and available in [26].

Proposition 1. A system is sufficiently-accurate iff for every j
it holds that νj > πj .

The proof of Prop. 1 follows from algebraic manipulation.
Intuitively, the condition νj > πj implies that an item is more
likely to be in the cache given a positive indication than its
likelihood of being in the cache given a negative indication.
This condition states that indications (either positive or negative)
are more likely to be correct than incorrect.

1We provide further details of how to obtain such an estimation in Sec. V-A2.
2This definition is inspired by the notions of accuracy and informedness [25].

For any query x, let Nx denote the set of caches with positive
indications, i.e., Nx = {j|Ij(x) = 1}, and nx = |Nx|.

A request for datum x triggers a data access which consists
of (i) querying for x in all the n indicators, (ii) selecting
a subset D ⊆ N of caches, and (iii) accessing all the |D|
selected caches in parallel. Accessing each cache incurs some
predefined access cost, cj . For ease of presentation, we assume
without loss of generality that minj cj = 1. The overall access
costs of accessing a set D of caches is cD =

∑
j∈D cj .

A multi-cache data access is considered a hit if the item
x is found in at least one of the accessed caches, and a miss
otherwise. A miss incurs a miss penalty of M , for some M ≥ 1.

In our model, we do not assume any specific sharing
policy among the caches. Yet, in the analysis of our system
(Sections IV-V) we assume that the exclusion probabilities
are mutually independent. Under this assumption, our analysis
provides a baseline for understanding the performance of such
systems. However, in the evaluation of our algorithms, we
consider environments where the exclusion probabilities are
not necessarily mutually independent (Sec. VI).

For a subset of caches D, we define its (expected) miss cost
for a query x by M ·

∏
j∈D

Ij(x)=1

πj ·
∏

j∈D
Ij(x)=0

νj.

The (expected) service cost of a query is the sum of the
access cost and the miss cost, namely,

φx(D) =
∑

j∈D
cj +M

∏
j∈D

Ij(x)=1

πj ·
∏
j∈D

Ij(x)=0

νj.
(4)

The Cache Selection (CS) problem is to find a subset of
caches D ⊆ N that minimizes the expected cost φx(D). 3

In what follows we refer to an access to a cache with a
positive indication as a positive access, and refer to an access
to a cache with a negative indication as a negative access. In
particular, we consider two types of approaches to solving the
CS problem: (i) false-negative oblivious (FNO) schemes, which
only perform positive accesses, and (ii) false-negative aware
(FNA) schemes, which may also perform negative accesses.
While the former may be viewed as the traditional manner
in which access strategies are designed, the latter is a more
speculative approach, which sometimes accesses a cache even
with no positive indication, risking an increased access cost.

III. BLOOM FILTERS AND STALENESS

In this section, we consider Bloom filters [9], which we
use as a primary example of indicators. In particular, we will
discuss how staleness affects false-negatives and false-positives
in such indicators. We note that our approach described
hereafter can also be applied to other types of indicators (e.g.,
TinyTable [12]).4

A Bloom filter is a randomized data structure that approxi-
mately represents a set of items. A Bloom filter I consists of
a bit array of size |I|, as well as k independent hash functions.
When adding an item to the filter, each of the k hash functions

3When clear from the context, we will omit the subscript x from φx.
4In general, the false-negative and false-positive ratio are strongly related to

the structure of the indicator, and at times even to its specific implementation.



B0(t) B1(t)
updated BF 0 . . . 0 0 . . . . . . . . . 0 1 . . . 1 1 . . . 1

stale BF 1 . . . 1 0 . . . . . . . . . 0 0 . . . 0 1 . . . 1
∆0(t) B0(t)−∆0(t) ∆1(t) B1(t)−∆1(t)

Fig. 2. An example of an updated and a stale Bloom filter at time t.

is applied to the item, and the corresponding bit in the array is
set. When testing for an item’s existence, we apply the k hash
functions and test the corresponding bits. If all bits are set, the
Bloom filter replies with a positive indication. Otherwise, the
indication is negative.

In a fresh Bloom filter, which is updated upon every insertion
of an item to the set, positive indications may be false due to
hash collisions, but negative indications are guaranteed to be
correct. However, in a stale Bloom filter, negative indications
may also be erroneous. Such false-negatives occur, e.g., when
indicators are advertised to the clients only periodically. In
such a scenario, when a new item is admitted, but the updated
indicator is not yet advertised, the stale indicator available to
the client fails to represent this change.

To allow a meaningful analysis of the trade-off between
accuracy and memory footprint, it is useful to express the size
of Bloom filters using the notion of Bits Per Element (bpe).
Intuitively, optimally configured Bloom filters of the same bpe
have the same false-positive accuracy, regardless of the size of
the set being approximated by the Bloom filter. More formally,
given the value of bpe, one can calculate the optimal number
of hash functions k, minimizing the false-positive ratio [13].

In the context of caches, let Cj denote the size of cache
j, i.e., the maximum number of elements that can be stored
in cache j. The actual size of the bloom filter indicator Ij
associated with cache j is therefore |Ij | = bpe ·Cj . Each cache
manages its own Bloom filter, and occasionally advertises the
indicator to the client. At any time t, we consider the updated
Bloom filter maintained by the cache, and let B1(t) and B0(t)
denote the number of bits set (i.e., with value 1) and reset
(i.e., with value 0), at time t, respectively, in the Bloom filter
approximating the content of the cache. A client uses a replica
of the cache’s Bloom filter, representing a snapshot of the
Bloom filter that the cache advertised at some time t′ ≤ t. We
refer to this replica as the stale Bloom filter. Let ∆1(t) denote
the number of bits that are set in the updated Bloom filter
but are reset in the stale Bloom filter. Similarly, we let ∆0(t)
denote the number of bits that are reset in the updated Bloom
filter, but are set in the stale Bloom filter. Fig. 2 illustrates this
situation. For clarity of presentation, and WLOG, we group
together all the bits contributing to ∆0(t); and group together
the bits accounted by ∆1(t).

The false-negative ratio: Consider a query for an item x
that is stored in the cache at time t. Recall that an updated
Bloom filter never exhibits false-negatives. Hence we know
that all the k hashes of x are mapped to the bits that are
set in the updated Bloom filter. The query for x in a stale
indicator is a true positive iff all the hashes are mapped to
the set of B1(t) − ∆1(t) bits that are also set in the stale
indicator; by the fact that the k hash functions are independent,

and uniformly distributed over their range, this happens with

probability
[
B1(t)−∆1(t)

B1(t)

]k
. Otherwise, the query for x is a

false-negative. It follows that the false-negative ratio of the
cache at time t can be estimated by

FNt = 1−
[
B1(t)−∆1(t)

B1(t)

]k
. (5)

The false-positive ratio: Consider a query for an item
y that is not stored in the cache at time t. For uniformly
distributed and independent hash functions, the hashes of y
are mapped to arbitrary locations in the Bloom filter. The stale
Bloom filter exhibits a false-positive iff all the k hashes of y
map to bits that are set in the stale Bloom filter. Hence, the
probability of a false-positive in the stale indicator at time t
can be estimated by:

FPt =

[
B1(t)−∆1(t) + ∆0(t)

|Ij |

]k
. (6)

We note that Eqs. (5) and (6) are only estimations, while the
exact miss probabilities strongly depend upon the workload,
and the cache policy. For instance, consider the case where
immediately after cache j sends an update, it caches an item x.
Then, any subsequent requests for x, until the cache advertises
the next update, are false-negatives. However, until the cache
advertises the next updated indicator, x may be accessed many
times, or not accessed at all, according to the concrete workload.

To conclude this section, we note that the above analysis
may be applied to more complex filters. One such example,
which we use in Sec. VI, is a compressed Counting Bloom
Filter (CBF) [10], which behaves similarly to a simple BF,
while supporting also the removal of objects.

IV. THE FULLY HOMOGENEOUS CASE

In this section, we focus on a simplified fully-homogeneous
case. In such settings, the access cost of all caches is the same,
and is normalized to one (c = 1). The per-cache hit ratio,
false-positive ratio, and false-negative ratio, are identical for
all caches. I.e., for each cache j, hj = h, FPj = FP and
FNj = FN for some constants h,FP,FN ∈ [0, 1].

We use this homogeneous setting to explore the challenges
and potential benefits arising from developing a false-negative
aware cache selection strategy. We first describe the aspects
specific to such homogeneous settings, and then describe
and analyze our false-negative aware Homogeneous Cache
Selection policy, HoCSFNA. Our analysis shows that HoCSFNA

minimizes the service cost in the fully-homogeneous case.
Later on, we use HoCSFNA to derive insights as to when it is
beneficial to access a cache despite a negative indication.

Preliminaries: In fully-homogeneous settings, the task of
selecting a subset of the caches D ⊆ N that minimizes the
service cost is reduced to selecting two integers: 0 ≤ r1 ≤ nx,
the number of caches with positive indication to access; and
0 ≤ r0 ≤ n−nx, the number of caches with negative indication
to access. The objective function φ (Eq. (4)) is reduced to

φ̂(r0, r1) = r0 + r1 +M · νr0 · πr1 . (7)



Algorithm 1 HoCSFNA

1: r∗0 = 0; r∗1 = arg minr1∈[0,nx] [r1 +M · πr1 ]

2: if M · πr∗1 > 1 then
3: r∗0 = arg minr0∈[0,n−nx]

[
r0 +M · πr∗1 νr0

]
4: return r∗0 , r

∗
1

We let r∗0 and r∗1 denote the values of r0 and r1 that minimize
the service cost, namely

φ̂(r∗0 , r
∗
1) = min

0≤r0≤nx,
0≤r1≤n−nx

φ̂(r0, r1) (8)

In our analysis of φ̂, we use the extension of φ̂ over the
reals, which we hereafter denote by φ̃. Observe that for any
fixed constants a, b, the functions φ̃(a, r1), and φ̃(r0, b) are
strictly convex. Throughout our analysis we will be using the
following proposition.

Proposition 2. Let f̃ : R → R be a strictly convex function,
and let f̂ be its restriction over the integers. If f̂ obtains its
minimum value at some integer â ≥ 1, then f̂(1) < f̂(0).

Intuitively, Prop. 2 stems from the fact that a strictly convex
function obtains its minimum in a single point. When applied
to integers, we can determine whether it is beneficial to access
some â ≥ 1 caches by only checking whether f̂(1) < f̂(0).

We recall that the function φ̃(r0, r
∗
1) is strictly convex. By

applying Prop. 2, we therefore obtain the following corollary.

Corollary 3. If r∗0 ≥ 1, then φ̂(1, r∗1) < φ̂(0, r∗1).

An Optimal Strategy: Our algorithm for the fully-
homogeneous settings, HoCSFNA, is formally defined in
Algorithm 1. The algorithm first calculates the number of
caches with positive indication to access, r∗1 , assuming no
cache with negative indication is accessed (line 1). Next, if the
expected miss cost is still higher than accessing an additional
cache (the condition in line 2), the algorithm also considers
caches with negative indications (line 3). The following theorem
shows that HoCSFNA is optimal in the fully-homogeneous case.

Theorem 4. If a fully-homogeneous system is sufficiently-
accurate, then HoCSFNA minimizes the service cost.

Proof. By Prop. 1, we have ν > π. In addition, of φ̂ (Eq. (7)),
the objective function φ̂(r0, r1) is symmetric in r0, r1. It
follows that assigning r0 > 0 may reduce cost only if r1 is
maximized, namely, if r1 = nx. Hence, line 1 indeed calculates
the optimal value of r∗1 .

If M · πr∗1 > 1, then the algorithm sets r∗0 to a value which
minimizes the total cost (line 3). Else (namely, if M ·πr∗1 ≤ 1),
accessing cache(s) with negative indications can only increase
the total cost, as it increases the aggregate access cost by
at least 1, which is at least as high as the potential marginal
decrease in the miss cost, which is at most M ·πr∗1 ≤ 1. Hence,
when the if-condition (line 2) is not met, it is best to keep the
default value r∗0 = 0.

The following proposition characterizes cases where it is
better to access a cache in spite of a negative indication.

Proposition 5. Assume ν, π ∈ (0, 1). (i) If nx = 0, then
accessing at least one cache with negative indication strictly
reduces the service cost iff ν < 1 − 1

M . (ii) If nx > 0, then
accessing at least one cache with negative indication strictly
reduces the service cost iff ν < 1− 1

Mπnx and M ·πnx−1(1−
π) > 1.

Proof sketch. Note that ν is a proxy to the true negative rate.
Hence, the conditions in cases (i) and (ii) reflect the fact that
if the expected miss cost after accessing all the caches with a
positive indication is high, and the true-negative rate is low,
then it might be beneficial to access a cache with a negative
indication. The proof follows by using Theorem 4, Prop. 2, and
Cor. 3, while considering the properties of the convex function
φ̃(0, r1), and applying some algebraic manipulation.

The following proposition characterizes cases where it is
better to access no cache, even if there exist positive indications.

Proposition 6. If positive indications exist but (1− h) FP ≥
h(1−FN)(M − 1), then the best policy is to access no cache.

Proof sketch. Observe that in a system where (1 − h) FP is
large, a positive indication is very likely to be false-positive.
Hence, it may be beneficial not to access a cache despite a
positive indication. This is true especially if the miss penalty
is small, as reflected by the right-hand-side of the condition.
The proof follows from combining Theorem 4 and Prop. 2,
and applying some algebraic manipulation.

V. DYNAMIC AND HETEROGENEOUS SETTINGS

In Sec. IV we assumed that all caches have the same
false positive/negative ratios and hit ratios. In this section,
we consider more realistic settings where cache attributes are
dynamic, implying that they might not be accurately available
at the client, and heterogeneous, i.e., caches may have distinct
attributes. Such an extension poses two main challenges for
solving the CS problem. The first challenge is dealing with
incomplete information, which requires estimating the exclusion
probabilities πj and νj . This is presented in Sec. V-A. The
second challenge is dealing with heterogeneity, which calls for
efficient algorithms for choosing the set of caches to access.
This is presented in Sec. V-B.

The algorithm executed by the client, which we dub CSFNA,
is formally defined in Algorithm 2. In a nutshell, the algorithm
periodically obtains information from the caches (lines 1-2),
and then uses this information in order to estimate the exclusion
probabilities for each cache (lines 3-10). Using these values,
CSFNA runs a cache selection algorithm (e.g., one of the
algorithms in [14]). In what follows, we provide a detailed
description of our algorithm’s inner workings and analysis.

A. Estimating the Exclusion Probabilities

We now show how one can collect recent statistics of the
various parameters governing system behavior, which allow
the client to obtain good estimates of the current caches’



Algorithm 2 CSFNA (N,~c,M,Alg)

1: periodically obtain updated FPj ,FNj from each cache j
2: periodically obtain updated indicator Ij from each cache j
3: estimate qj for each cache j
4: for every request for datum x do
5: for j = 1, . . . , n do
6: hj =

qj−FNj

1−FPj −FNj
. Eq. (1)

7: if Ij(x) == 1 then . should calculate πj
8: ρj = FPj ·(1− hj)/qj . Eq. (2)
9: else . should calculate νj

10: ρj = (1− FPj) · (1− hj)/(1− qj) . Eq. (3)
11: D = Alg(N,~c, ~ρ,M) . reduction of Theorem 7
12: access D

attributes. Our solutions use the insights presented in Sec. III.
In particular, we will use Eqs. (5) and (6) for estimating the
false-positive ratios and the false-negative ratios of the distinct
caches, enabling us to compute πj , and νj .

1) Cache-side Algorithm: The cache maintains both the
stale Bloom filter (i.e., the most recently advertised Bloom
filter, which is also available at the client) and the updated
Bloom filter. Along a sequence of requests σ, each cache j
estimates the false-negative ratio and the false-positive ratio,
according to Eqs. (5) and (6), by comparing the stale and
updated Bloom filters. We note that these estimations can
be done periodically to reduce the computational overhead of
comparing the stale and updated bloom filters. These estimates
are sent (periodically) to the client (line 1 of CSFNA). Each
cache further (periodically) sends an updated indicator to the
client (line 2 of CSFNA). We note that these updates are sent
in an arbitrary asynchronous manner to the client.

2) Client-side Algorithm: We now show how the client may
estimate the exclusion probabilities πj and νj for every cache j,
given the estimations of FPj and FNj which are periodically
provided by the cache.

For evaluating qj , the client periodically estimates the
probability Pr(Ij(x) = 1) empirically, using a weighted
exponential moving average. Formally, consider a sequence
of requests σ, and consider epochs of T requests. Let aj(s, t)
denote the number of positive indications of indicator Ij for
requests s + 1, . . . , t made by the client. For any t ≤ T
we let the estimated positive indication ratio after handling
request t be qj,t =

aj(0,t)
t . For every i = 1, 2, . . . and every

iT < t < (i+1)T , we let qj,t be the most recent estimate over
epochs of T requests, i.e., qj,t = qj,bt/Tc·T , and the estimate
is updated at t = (i+ 1)T such that

qj,(i+1)T = δ · aj(iT, (i+ 1)T )

T
+ (1− δ) · qj,iT , (9)

where δ ∈ (0, 1) is some constant governing the dynamics of
the estimate change. We note that only the client can perform
such an estimation since it requires knowing all the requests in
σ, and not only requests for which the cache has been accessed.

Given the current values for FPj , FNj , and qj , for every
item being requested in the sequence σ, the client estimates the

hit ratio hj (line 6), and the exclusion probabilities πj (line 8)
and νj (line 10) using Eqs. (1), (2), and (3), respectively.

B. Choosing the Caches to Access

This section shows how to use the estimations of the
exclusion probability of each cache j to develop a false-
negative-aware access strategy. In particular, we show how
to extend any false-negative-oblivious access strategy (e.g.,
those in [14]), to consider a non-zero false-negative ratio.

For any set of caches D, the client’s estimations of the
exclusion probabilities essentially determine the expected miss
cost. We let ρj denote the probability of a miss while accessing
cache j, given its indication for the requested item. Formally,
ρj = πj if Ij(x) = 1, and ρj = νj if Ij(x) = 0. Then, the
expected miss cost can be expressed by M ·

∏
j∈D ρj , and the

objective function defined in Eq. (4) translates to finding the
set of caches D minimizing

φx(D) =
∑

j∈D
cj +M ·

∏
j∈D

ρj . (10)

The problem of finding a set of caches D (out of those
with a positive indication) minimizing an objective of the form
depicted in Eq. (10) has been studied in [14], where they
present several approximation algorithms for the problem. The
problem studied in [14] is essentially equivalent to assuming
that there are no false-negative indications, and therefore it
sufficed to consider only caches for which Ij(x) = 1. We refer
to this special case as the restricted CS problem.

When considering the restricted CS problem within our
model, the framework of [14] can be viewed as assuming that
all caches have a positive indication, and ρj represents the
positive exclusion probability of cache j. Equivalently, the
model of [14] essentially assumed that νj = 1 for all j, which
is fundamentally not the case in the CS problem.

Our proposed algorithm CSFNA selects the set of caches to
access as follows: (i) CSFNA gets as input an algorithm Alg for
solving the restricted CS problem (assuming all caches have a
positive indication), (ii) generates the appropriate input for this
algorithm (as described above) in lines 7-10, and (iii) accesses
the set of caches prescribed by algorithm Alg.

The following theorem serves to analyze the worst-case
performance guarantees of CSFNA.

Theorem 7. If there exists an algorithm Alg that is an α-
approximation algorithm for the restricted CS problem, then
there exists an α-approximation algorithm for the general CS
problem (with arbitrary values of νj).

Proof sketch. Assume an input to the CS problem such that
every cache j has its indicator Ij , and its positive and negative
exclusion probabilities πj and νj , respectively. In what follows
we abuse notation, and refer to φx,~π,~ν,~I as the expected service
cost for an input x, given these system parameters.

Let Alg be an α-approximation algorithm for the restricted
CS problem. Assume each cache j has some arbitrary negative
exclusion probability, νj . For every cache j, we let π∗j = πj if
Ij(x) = 1, and let π∗j = νj if Ij(x) = 0. Furthermore, we let
ν∗j = 1 for all j. Finally, for every cache j we define indicator



I∗j such that I∗j (x) = 1, implying that the set of caches with a
positive indication according to ~I∗ is the set of all caches, N .

We define algorithm Alg∗ such that Alg∗ returns the output
of Alg for the inputs of ~π∗ (for the positive exclusion
probabilities), ~ν∗ (for the negative exclusion probabilities),
and the set of all caches with a positive indication according
to ~I∗ (i.e., N ). We now show that the solution returned by
Alg∗ is an α-approximate solution for the CS problem with
negative exclusion probabilities νj .

By the assumption on Alg, its output D satisfies
φx,~π∗,~ν∗,~I∗(D) ≤ α · φx,~π∗,~ν∗,~I∗(D∗) (11)

where D∗ is the optimal solution to the CS problem with ~π∗,
~ν∗, and the set of caches induced by ~I∗ as inputs. Since by
the definition of ~π∗, ~ν∗, and ~I∗ it follows that

φx,~π∗,~ν∗,~I∗(D̃) = φx,~π,~ν,~I(D̃) (12)

for every set of caches D̃, we are guaranteed to have that D∗

is also the optimal solution to the CS problem with ~π, ~ν, and
~I as inputs. The theorem follows.

The proof of Theorem 7 implies the following corollary.

Corollary 8. If the estimations of πj and νj produced
by CSFNA are precise, and Alg used by CSFNA is an α-
approximation algorithm for the restricted CS problem, then
CSFNA produces an α-approximate solution to the CS problem.

Combining Corollary 8 with the results of [14], we obtain a
myriad of tradeoffs and possible approximation guarantees for
CSFNA. In particular, in Sec. VI we consider the performance
of one specific realization of CSFNA, which uses algorithm
DSPGM for the restricted CS problem presented in [14].

VI. SIMULATION STUDY

In this section, we evaluate the performance and trade-offs
of our proposed false-negative aware algorithm, CSFNA, in a
variety of scenarios, using traces of real-life workloads. Our
evaluation shows that false-negative awareness improves the
oblivious approach across the board. In some cases, one needs
an order of magnitude more bandwidth or more cache entries
to match our false-negative aware approach’s service cost. The
effect is consistent for diverse cache sizes, workloads, and when
increasing the number of caches. The difference is especially
significant when the miss penalty and update interval are large.
We begin by describing our evaluation settings and parameters.

A. Simulation Settings

Traces: We use the first 1M requests from each of these
real workload traces. (i) Wiki: Read requests to Wikipedia
pages [27]. (ii) Gradle: Gradle is a build tool for caching
compiled libraries in large projects. The traces was provided
by [28]. (iii) Scarab: A trace from Scarab Research, a personal-
ized recommendation system for e-commerce sites [28]. (iv) F2:
Traces from a financial transaction processing system [29].

Caches: We consider a system-wide request distribution
where a missed item is placed in a single cache that is chosen by
the controller. Such an approach is common in large distributed
systems, such as Memcached [30], and Kademlia [31] for load
balancing, and for maximizing the cached content.

Each cache applies the Least Recently Used (LRU) eviction
policy which is arguably the most commonly used policy.

Indicators: Each cache j of size Cj periodically advertises
an indicator Ij of size bpe ·Cj . For computing the indicator,
cache j maintains a Counting Bloom Filter (CBF) [10] with
3-bit counters, where the number of counters is bpe ·Cj . The
advantage of the CBF over a simple Bloom filter [9] is that the
CBF supports also removal of items. Thus, we add an item to
the CBF upon admission to the cache and remove an item from
the CBF upon eviction. The cache constructs the advertised
indicator by compressing the CBF to a simple (1 bit-counter)
Bloom filter where a bit is set iff the respective counter in the
CBF is strictly positive. We pick the number of hash functions
that minimizes the false-positive probability [11].

Access Strategy Algorithms compared: Recall that CSFNA

makes use of an algorithm for solving the CS problem for
the case where indicators exhibit no false-negatives. In our
evaluation, we make use of the DSPGM algorithm from [14].
This strategy was shown to produce a (logM)-approximation
for the CS problem with no false-negatives. By Theorem 7 this
guarantee also applies to the general CS problem. Furthermore,
this algorithm exhibits close-to-optimal results in practice, when
tested on real-world workloads [14].

We consider two benchmarks for evaluating the performance
of CSFNA: (i) applying the vanilla DSPGM algorithm (CSFNO),
which only considers accessing caches with a positive indication
(albeit stale), using only the estimates of πj for every cache j,
and using νj = 1 for all j, and (ii) the ideal strategy that uses
perfect information (PI), i.e., a strategy that always has access
to the precise cache content, which accesses the cheapest cache
containing an item if such a cache exists, and doesn’t access
any cache otherwise.

Throughout our evaluation, both CSFNA and CSFNO evaluate
qj with a time horizon of T = 100 requests and using δ = 0.25
for the weighting of the moving average. Furthermore, each
cache j re-estimates the false-positive ratio FPj and the false-
negative ratio FNj once every 50 insertions to the cache.

Evaluation metric: We consider the mean service cost per
request over the entire input. We also consider the normalized
cost where we divide each algorithm’s mean cost by that of
the PI strategy. While infeasible, it is instructive to use it as
a lower bound on the cost of any policy for solving the CS
problem.

Baseline scenario: Unless stated otherwise, our evaluation
considers three 10K elements caches whose access costs are
1, 2, and 3, and a miss penalty of 100 (i.e., 50 times the
average cache access cost). Similar cache sizes were considered
by existing works in the field [23], [24], and can further be
motivated, e.g., by Trivago’s Memcached [32] that utilizes
a distributed system of caches, each of size 4GB, containing
items with a typical size of about 1MB.
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Fig. 3. Normalized cost of the heterogeneous 3-caches baseline scenario for
varying traces and miss penalty values.

The update interval is measured by the number of insertions.
In our baseline scenario, 0.1 · Cj insertions are performed
between subsequent indicator advertisements. This translates
to an advertisement once every 1K insertions for the default
10K-items cache. This is in accordance with previous work
evaluating such systems [1]. Note that periodically advertising
the indicator is sometimes done once in every fixed time interval
(e.g., by Squid [33]). However, the optimal time interval length
strongly depends on the workload being served. Our approach
removes this dependency on the characteristics of the workload,
and allows for a clearer evaluation of the effect the various
system parameters have on performance, in scenarios where
indicators become stale.

The advertised indicator of each cache j uses bpe = 14,
which implies an indicator size of 14 · Cj , where the number
of hash functions is optimized to minimize the false-positive
ratio. In particular, in our baseline scenario, this translates
to a designed false-positive ratio of 0.1% [13]. In each
evaluation, we explore the impact of varying one of the system’s
parameters, where the remaining parameters are set according
to our baseline scenario. Our Python code is available in [34].

B. Impact of Miss Penalty and Workload Diversity

We first compare the performance of CSFNO and CSFNA

when varying the miss penalty values M in the range
{50, 100, 500}. The results in Fig. 3 show that while the
performance of the false-negative oblivious policy CSFNO

degrades as the miss penalty increases, the performance of
our proposed false-negative aware algorithm CSFNA improves
significantly. Furthermore, the performance of CSFNA tends
to the optimal performance as the miss penalty increases. This
behavior follows from the fact that a higher miss penalty
accentuates the impact of false-negative events. In particular,
ignoring negative indications (as is done by CSFNO) is severely
penalized by an increased expected miss cost in cases where
the miss penalty is large.

Fig. 3 also demonstrates significant differences across distinct
workloads. CSFNO’s worst performance is exhibited for the
Gradle trace, whereas its best performance is obtained for the
Wiki trace. To understand this phenomenon, we observe that
Gradle exhibits a high recency-bias, where items are requested
shortly after their first appearance. As false-negatives occur
when the indicator does not reflect the insertion of new items,
CSFNO, which never accesses caches with a negative indication,
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Fig. 4. Normalized cost of the heterogeneous 3-caches baseline scenario for
varying update intervals. Update intervals are measured by the number of
cache insertions between subsequent updates.

fails to take advantage of this recency-bias. In contrast, the
Wiki trace is more frequency-biased, which implies that popular
items do not rapidly change over time and that the impact of
false-negatives is less pronounced. We continue with the Wiki
and Gradle traces which are more sensitive to false negatives.

C. Impact of Advertisement Policy and Indicator Parameters

1) Update interval: We now turn to study the effect of
staleness on the performance of our algorithm. To this end,
we let the update interval, which is the number of insertions
between indicator advertisement, vary between 16 and 8K
(8192), and consider the normalized cost of both CSFNA

and CSFNO. These results are presented in Fig. 4, where we
consider the performance for the Gradle and Wiki workloads.

Our results show that both algorithms’ performance degrades
as the update interval increases. When updates are relatively
frequent (i.e., up to 128), the performance of CSFNA and
CSFNO is similar. However, a significant gap emerges between
the performance of both algorithms for larger update intervals.
In particular, the performance of CSFNO, which ignores
negative indications, quickly degrades, whereas CSFNA shows
a considerably milder degradation. This phenomenon is directly
related to the fact that when the update interval is large, the
false-negative ratio increases significantly (as demonstrated
in Fig. 1a). Under such regimes, CSFNO fails to access a
cache even when the item is available at the cache, whereas
CSFNA relies on its false-negative awareness to make accesses
even in cases of negative indications, taking into account the
false-negative ratio estimation provided by the caches. Our
results imply that CSFNA matches the performance of CSFNO

while using a significantly lower bandwidth overhead for cache
advertisements. For instance, for the Wiki workload CSFNA

matches the service cost as CSFNO while using 16x less
bandwidth for indicator advertisements. To see this, notice
that CSFNA’s cost using an update interval of 8K is on par
with that of CSFNO with an update interval of 512.

2) Indicator size: Fig. 5 illustrates our results for varying
the size of the indicator being used and advertised by the cache.
We vary the number of indicator bits per cached element (bpe)
and study the impact of the indicator’s size on the service cost.
In our evaluation, we compare the performance of CSFNO and
CSFNA with update intervals of 256 and 1024.
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Fig. 5. Normalized cost of the heterogeneous 3-caches baseline scenario for
varying indicator sizes, measured by bits-per-cached-element (bpe).

As expected, CSFNA’s performance improves when increas-
ing the indicator size as larger indicators exhibit fewer false-
positive errors. Interestingly, and somewhat counter-intuitively,
there exist cases where the performance of CSFNO does not
improve when increasing the indicator size, and in some cases,
performance actually degrades. To explain this anomaly, let
us understand the impact of false-positive and false-negative
indications and their interplay. First, note that the false-positive
rate is often inversely proportional to the false-negative rate.
I.e., a constant decrease in the false-positive ratio is usually
associated with an increase in the false-negative ratio. An
extreme case occurs when all indications are negative, thus
exhibiting a false-positive ratio of 0 and a sizeable false-
negative ratio. Next, note that a false-positive event typically
translates to unnecessary cache access, resulting in a relatively
small penalty (e.g., an access cost of 1, 2, or 3 in our evaluation).
However, a false-negative event typically translates to a “non-
compulsory” miss, translating to a high miss penalty (e.g.,
100, in our evaluation). It follows that even a mild decrease in
the false-positive ratio may result in a non-negligible increase
in the false-negative ratio that may nullify its benefits. Such
effects are especially significant when the miss penalty is high,
which is common as misses often result in accessing memories
whose access time may be orders of magnitude higher than
that of the cache [23], [35]. Still, our proposed false-negative
aware algorithm CSFNA handles such scenarios seamlessly and
benefits from the reduced false-positive ratio without adverse
performance impact.

D. Impact of Caching Capacity

We now study the effect of having a larger or more
diverse caching capacity on system performance. For such
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Fig. 6. Cost of the heterogeneous 3-caches baseline for varying cache size.
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an evaluation, we use a 4.3M requests from the Wiki trace
(instead of 1M). Further, we now consider the actual mean
cost per request (and not the normalized service cost) as the
cost of PI decreases when increasing the caching capacity.

1) Scaling the cache size: We study the impact of the
cache size on the performance of CSFNO and CSFNA with
update interval of 256 and 1024. The results in Fig. 6 show
that, as could be expected, for every given setting, scaling-up
the caches’ capacities decreases the service cost due to the
improved hit ratio. Our results show that when updates are
relatively frequent (e.g., the case where the update interval
is 256), the performance of CSFNO is comparable to that of
CSFNA and they both exhibit a performance close to that of the
ideal PI strategy. However, once the updates are less frequent
(e.g., the case where the update interval is 1024), CSFNO

exhibits a significant degradation in performance. CSFNA, on
the other hand, is far less affected by the increase in the
update interval, and is still quite comparable to PI. In general,
CSFNA shows up to 25% reduction in cost compared to CSFNO.
The differences between CSFNO and CSFNA become more
accentuated when one considers the cache size required to
maintain a certain level of cost; CSFNA performs better with
4K items caches, than CSFNO with caches of size 32K.

2) Scaling the number of caches: We now vary the number
of caches in homogeneous settings. All caches have an access
cost of 2, ensuring that the average access cost is the same as



in other scenarios examined in our evaluation. Fig. 7 shows
the results for update intervals of 256 and 1024. Notice that
CSFNA consistently outperforms CSFNO, and the difference
is more significant for large update intervals. The results also
imply that having more caches may hinder the performance of
CSFNA and CSFNO. Intuitively, in such a case there are more
false positives, and it is harder to guarantee that we access true
positive items. Similarly, there are more negative indications
which makes it harder for CSFNAto identify a false-negative.

VII. CONCLUSIONS

This work studies the cache selection problem while using
approximate indicators exhibiting both false-positive and false-
negative errors. The client in such a system selects a subset
of the caches to minimize the expected service cost. While
there is extensive work in this field, all previous access
strategies do not access caches with negative indications.
While reasonable at first glance, our work shows that such an
omission severely hinders the system performance. We argue
that caches that periodically advertise their content indicators
inherently introduce false-negative indications, and the rate
of such indications is non-negligible. In particular, we show
that it is sometimes advisable to access caches with a negative
indication, as it may reduce the overall system cost.

We devise false-negative-aware access strategies in two main
scenarios: (i) fully-homogeneous settings, where we show a
policy that attains the optimal (minimal) access cost, and
(ii) general heterogeneous environments, where we present
a strategy for which we can bound its approximation guarantee
compared to the optimal solution. We complete our study
through an extensive evaluation based on real system traces. Our
results show that our proposed methods perform significantly
better than the state-of-the-art in diverse settings. Furthermore,
our false-negative aware solutions can match the cost of
competitive false-negative oblivious approaches while requiring
an order of magnitude fewer resources (e.g., caching capacity
or bandwidth required for indicators advertisement).

Our results demonstrate the potential benefits of embracing
false-negative awareness into the algorithmic design space.
We expect our work to further induce both analytic and
experimental research on the role of false-negatives in large
distributed systems, including dealing with non-homogeneous
object size, adhering to bandwidth constraints, and studying
correlated distributed caching schemes.
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