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Abstract
Domain and trial-dependent mismatch between training and
evaluation data can severely affect the performance of speaker
verification systems, and are usually addressed either at embed-
ding level, with methods that try matching the distribution of
in-domain and out-of-domain data, or at score level by means
of calibration and score normalization approaches. In this work
we propose an alternative to score normalization that leverages
the adaptive cohort selection of Adaptive S-norm (AS-norm),
but performs normalization at embedding rather than at score
level. Experimental results on SRE 2016 and SRE 2019 show
that the proposed method is able to outperform other approaches
in presence of severe mismatch, and achieves similar perfor-
mance in scenarios where score normalization is less important.
Furthermore, in contrast with AS-norm, our approach allows in-
dependently normalizing the enrollment and test segments, and
has negligible computational cost at scoring time.
Index Terms: speaker recognition, score normalization, adap-
tive score normalization, speaker embeddings.

1. Introduction
Off-the-shelf speaker verification systems are typically required
to cope with scenarios characterized by significant mismatch
between the use-case data and the data employed to train the
recognizer. The domain mismatch is often coupled with trial-
level mismatch, i.e. mismatch due to different utterances be-
ing characterized by different nuisance factors such as duration,
noise type, noise level or similar. These two factors can signif-
icantly decrease the performance of the recognizer. Several ap-
proaches have been proposed to address domain mismatch, ei-
ther by adapting the classification models [1, 2] or by applying a
transformation to the evaluation data [3, 4, 5, 6, 7] to reduce the
distribution mismatch between evaluation and training popula-
tions. These transformations usually try to match the population
means [7] and, in some cases, also the corresponding covariance
matrices [4, 5, 6]. The transformed data can then be classi-
fied with the off-the-shelf recognizer, trained on out-of-domain
data. While effective, these methods do not address trial-level
mismatch, i.e. they apply a single, trial-independent transfor-
mation to the data. Alternative to domain compensation ap-
proaches, score normalization [8, 9, 10, 11, 12, 13] has proven
to be effective at compensating both domain and trial-level mis-
match [14, 15, 16, 17]. Score normalization techniques employ
an unlabeled normalization set to estimate impostor score statis-
tics that are used to normalize the impostor score distribution for
a given trial. Particularly successful are adaptive methods such
as Adaptive S-norm (AS-norm) [11, 12], which combine score
normalization with a cohort selection strategy that aims at iden-
tifying impostor utterances that are similar to the trial at hand.

This allows obtaining well-matched cohort sets and provides
significant improvements with respect to methods that employ
a fixed impostor cohort.

In this work we investigate an approach that exploits the
effective cohort selection strategy of AS-norm to perform nor-
malization at embedding, rather than score level. In particular,
we propose to employ an adaptive cohort, estimated as in AS-
norm, to estimate an utterance-dependent mean vector in em-
bedding space. The computed mean vector is then used to nor-
malize a speaker embedding, and the out-of-domain classifier is
employed to classify normalized trials. Our approach is simi-
lar to the work [7], which also proposes an utterance-dependent
mean compensation. In [7] the authors employ an ad-hoc back-
end to assess whether utterances belong to similar conditions,
a condition being a set of characteristics such as noise type,
noise level, gender and similar. The condition back-end is used
to select an impostor set to compute utterance-dependent mean
vectors, which, as in our case, are used to normalize the eval-
uation population. Our work differs from [7] in that we em-
ploy a selection strategy that is derived from score normaliza-
tion techniques. Our approach therefore does not require train-
ing a condition-similarity back-end, which may be difficult in
case conditions are not well defined even for the training popu-
lation, or when conditions significantly differ between training
and evaluation data. On the contrary, our selection mechanism
directly exploits score similarities to automatically extract im-
postor sets that properly characterize an utterance, and is able
to significantly improve recognition performance, as confirmed
by our experimental results.

The work is organized as follows. Section 2 recalls AS-
norm and its cohort selection mechanism. Section 3 presents
our model, highlighting the relationship with AS-norm and pro-
viding an intuitive explanation behind the use of AS-norm co-
hort selection to compute the utterance-dependent means re-
quired by our approach. Section 4 illustrates our experimental
results. Finally, Section 5 presents our conclusions.

2. Adaptive score normalization
Let (e, t) represent a trial composed of an enrollment seg-
ment e and a test segment t. Typically, e and t are the
speaker embeddings for the enrollment and test audio. Stan-
dard back-ends such as Probabilistic Linear Discriminant Anal-
ysis (PLDA) [18, 14] and Pairwise Support Vector Machines
(PSVM) [19, 20] allow computing a score s(e, t) that, after a
calibration step, can be interpreted as a log-likelihood ratio be-
tween the target and non-target trial hypotheses. In presence
of severe mismatch between the training and evaluation pop-
ulation and differences in the characteristics of the evaluation
utterances, however, global calibration is usually not sufficient
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to obtain good performance. In these cases, score normaliza-
tion can improve performance by partially compensating both
dataset and intra-trial mismatch [15, 16, 17]. The most common
techniques for score normalization are derived from Symmetric
normalization (S-norm) [21], that computes a normalized score
as

ssnorm(e, t) =
s(e, t)− µ(e)

2σ(e)
+

s(e, t)− µ(t)

2σ(t)
, (1)

where µ(e), σ(e), µ(t), σ(t) are the mean and standard
deviation of the set of impostor scores {s(e,xi)}Ni=1 and
{s(xi, t)}Ni=1, respectively, computed from a set of N (unla-
beled) impostor segments {x1 . . .xN}. In [11] and [12] S-
norm was extended to incorporate an adaptive cohort selec-
tion step derived from Adaptive T-norm [10]. Adaptive S-norm
computes utterance dependent cohort sets C(e) and C(t) that
contain utterances that are similar to the enrollment or test seg-
ments, respectively, and employs these cohort sets to compute
the statistics required to normalize the trial score. Let

vt =
[
s(x1, t) s(x2, t) . . . s(xN , t)

]

vi =
[
s(x1,xi) s(x2,xi) . . . s(xN ,xi)

]
(2)

be the vectors of scores of test segment t and of normalization
segments xi w.r.t the whole impostor set. The cohort set C(t)
is selected by computing the squared Euclidean distance1

di = ‖vi − vt‖2 (3)

between score vectors vi and vt, and keeping the K impos-
tor utterances corresponding to the lowest difference (typically,
K ranges from 200 to 400). The set C(t) contains utterances
that are similar to the test segment, and is employed to compute
the enrollment normalization statistics µ(e|t) and σ(e|t), cor-
responding to the mean and standard deviations of the scores
{s(e,xi)|xi ∈ C(t)} obtained by comparing the enrollment
segment with the utterances in C(t). The test statistics µ(t|e)
and σ(t|e) are computed in a similar way, reversing the role of
enrollment and test. Finally, the normalized score is given by

sasnorm(e, t) =
s(e, t)− µ(e|t)

2σ(e|t) +
s(e, t)− µ(t|e)

2σ(t|e) (4)

3. Adaptive data normalization
Although score normalization techniques are usually effective
at reducing significant trial-level mismatch, it can be shown that
these approaches are not optimal and can actually reduce perfor-
mance for well-behaved (i.e. well-calibrated) scores. We refer
to [17] for further analysis of this phenomenon. On the other
hand, directly reducing the mismatch between training and eval-
uation embeddings distribution on a per-trial basis would natu-
rally reduce dataset-level and trial-level mismatch by providing
a more accurate match between the back-end model assump-
tions and the evaluation data. Similarly to Adaptive Mean nor-
malization (AM-norm) [7], we propose to replace normalization
at score level with a method that directly normalizes the enroll-
ment and test embeddings by re-centering the embeddings with
respect to a mean vector computed from a set of impostor ut-
terances. In contrast with [7] we select an utterance-dependent
impostor cohort using the same mechanism of AS-norm. In par-
ticular, for each enrollment and test segment we independently

1The original formulation employs an L1-distance, but in practical
use-cases L2 distances provide very similar results [15, 17]

compute the corresponding cohort sets C(e) and C(t) as de-
tailed in the previous section, and we independently normalize
each embedding by removing the mean of the corresponding
cohort

ê = e−me , me =
1

|C(e)|
∑

i|xi∈C(e)

xi ,

t̂ = t−mt , mt =
1

|C(t)|
∑

i|xi∈C(t)

xi . (5)

The normalized enrollment and test segments are then scored
using the standard back-end, as

sadnorm = s
(
ê, t̂

)
= s(e−me, t−mt) , (6)

where s(·, ·) is the scoring function of the off-the-shelf recog-
nizer. We refer to our approach as Adaptive Data normaliza-
tion (AD-norm). In practice, many back-ends employ length
normalization to pre-process the embeddings. In this case, we
re-center the L2-normalized embeddings, but we also apply a
second L2-normalization step to better match the classifier as-
sumptions.

Our approach is able to automatically select the impostor
segments that are similar to the trial segments, without requir-
ing an ad-hoc condition classifier as in [7]. As shown in the next
section, this allows for a significant improvement with respect
to AM-norm. Since the normalization is applied independently
to the enrollment and test embeddings, it can be computed at
embedding extraction time, with no impact on scoring costs. Fi-
nally, we note that, in contrast with AS-norm, AD-norm can be
effectively paired with the clustering feature framework of [22]
for large-scale clustering of speaker vectors.

In the following we analyze the similarities between the
AD-norm and AS-norm scoring functions to provide an intu-
itive justification for using the AS-norm selection criterion. In
particular, we show that we can interpret part of the effects of
AS-norm as a sub-optimal proxy of embedding-level normaliza-
tion. We start consider a zero-mean PLDA (or PLDA-derived
model) with scoring function [19, 20]

s(e, t) = eTAe+ tTAt+ eTBt (7)

and we assume that the distribution of training and evaluation
data is the same up to a shift of the evaluation mean. The opti-
mal scoring strategy would then consist in re-centering the eval-
uation data. Let me and mt be the mean vectors of the distri-
butions of the enrollment and test segments, respectively. The
optimal score for trial (e, t) would be

sopt(e, t) = s(e−me, t−mt)

= (e−me)
TA(e−me) + (t−mt)

TA(t−mt)

+ (e−me)
TB(t−mt) , (8)

For the AD-norm approach we would replace me and mt with
the estimates obtained from the impostor sets C(e) and C(t).
We now consider the scoring function of AS-norm, restricted to
centering of the scores (i.e., we ignore the variance normaliza-
tion of AS-norm):

sasnorm(e, t) =
1

2
(st(e, t)−µ(e|t))+ 1

2
(st(e, t)−µ(t|e))

(9)
where the score statistics µ(e|t) and µ(t|e) are computed from
impostor sets C(t) and C(e). In the following we do not re-
quire the cohort sets to be the same as for AS-norm, but we
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Figure 1: Minimum C∗
llr for different normalization approaches, out-of-domain training set (Switchboard + Mixer 04, 05, 06)

SRE16 - PLDA SRE16 - PSVM SRE19 - PLDA SRE19 - PSVM

0.41 0.42

0.34

0.26

0.38

0.30 0.31

0.21

0.36
0.31 0.32

0.25

0.32

0.25

0.35

0.23

0.30
0.26 0.24

0.19

0.27
0.23 0.23

0.19

0.27
0.23 0.23

0.18

Baseline Global centering FDA AM-norm
AS-norm AD-norm AD+AS-norm

assume that they properly characterize the utterances, so that
both (6) and (8) represent the optimal scoring function for the
trial. The AS-norm statistics are given by

µ(e|t) = 1

|C(t)|
∑

i|xi∈C(t)

s(e,xi) = eTAe+ eTBmt + ξ1

µ(t|e) = 1

|C(e)|
∑

i|xi∈C(e)

s(t,xi) = tTAt+ tTBme + ξ2 ,

where mt and me are defined as in (5), and ξ1, ξ2 collect all
terms that do not depend on e or t, and thus do not contribute to
the intra-trial calibration compensation of score normalization2.
The normalized score is given by

sasnorm(e, t) =
1

2

(
tTAt+ eTB(t−mt)

)

+
1

2

(
eTAe+ tTB(e−me)

)
(10)

Comparing (10) with the optimal scoring functions (6) and (8)
we can observe that they have similar expressions, however AS-
norm is not properly accounting for all terms that appear in the
AD-norm expression. The following table compares the terms
that appear in either function and depend on the embeddings e
or t:

sadnorm(e, t) sasnorm(e, t)

eTAe 1
2
eTAe

−2eTAme

tTAt 1
2
tTAt

−2tTAmt

eTBt eTBt
−eTBme − 1

2
eTBme

−tTBmt − 1
2
tTBmt

We observe that the most important term3 eTBt is the same
in both expressions, whereas the other terms are (mostly) both
present, but with a different weight. If we also assume that the
dataset shift is not too large, then the contribution of the terms
that do not appear in sasnorm but appear in sadnorm or sopt
can be considered small. We therefore conclude that for PLDA
or PLDA-derived models the mean normalization component
of AS-norm can be interpreted as an approximation of the cor-
rect scoring function for the given trial. The effectiveness of

2These terms contribute as a global shift of the scores and do not
affect the discrimination capabilities of normalized scores.

3This term is related to the similarity of the samples, whereas the
terms that contain matrix A are related to the rarity of the trial.

AS-norm thus suggests that the cohort selection of the latter is
providing an effective, back-end-independent approach for esti-
mating normalization data that provide a good characterization
of the test and enrollment utterances, and motivates our deci-
sion to employ the same methodology for computing the cohort
sets C(t) and C(e) for AD-norm.

4. Experimental results
To assess the effectiveness of AD-norm we consider a scenario
where an off-the-shelf recognizer is employed to evaluate pos-
sibly mis-matched trials. The evaluation sets are SRE 2016 [23]
and SRE 2019 Evaluation datasets [24]. We consider two dif-
ferent back-ends, PLDA and PSVM, trained on (i) Switchboard
and Mixer 04, 05 and 06 data (out-of-domain scenario), or (ii)
the same datasets with the addition of the SRE 2018 evaluation
set (partially in-domain data for SRE 2019). The normaliza-
tion sets are the unlabeled portion of SRE 2016 data (2472 seg-
ments) and a subset of the SRE 2019 Progress test data (2000
segments), respectively. The embedding extractor is based on
the ECAPA architecture [25], trained as in [17]. The 192-
dimensional embeddings are normalized by means of Linear
Discriminant Analysis, reducing the dimension to 150, and L2-
normalization. For PSVM Within Class Covariance Normaliza-
tion (WCCN) [26] was applied after L2-normalization. In both
cases, AD-norm scores are computed by re-centering the em-
beddings with respect to the mean of the respective cohort set,
selected according to the AS-norm criterion as detailed in the
previous section. The re-centered embeddings are further L2-
normalized. For PSVM, WCCN is applied to the re-centered,
L2-normalized embeddings. Experimental results are provided
in Figure 1 and Table 1. Figure 1 compares the minimum Cost
of Log-Likelihood Ratio [27, 28, 29] C∗

llr, which measures the
performance of the compared approaches over a wide range of
operating points. Table 1 additionally reports Equal Error Rate
(EER) and minimum primary cost Cmin

prim as defined by NIST
for the two evaluations. We compare our models with five base-
lines: (i) non-normalized scores, (ii) global mean normaliza-
tion, computed from the whole impostor set, followed by L2-
normalization, (iii) the FDA approach of [5], (iv) AM-norm [7],
and (v) AS-norm. For the latter three methods the size of the
adaptive cohort set has been set to 200, based on the average
results of the better performing baseline, AS-norm. The SRE
2016 results show that all adaptive approaches perform better
than global ones regardless of the classification back-end. AM-
norm provides results that are very similar to those published
by the authors of [7], but performs significantly worse than AS-
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Table 1: Comparison of different normalization approaches on SRE 2016 and SRE 2019 datasets. In bold (i) results of the best single
method for each training list and back-end combination, and (ii) fusion results equal to or improving those of the best single method.

SRE 2016 SRE 2019
PLDA PSVM PLDA PSVM

Training Normalization EER Cmin
prim C∗

llr EER Cmin
prim C∗

llr EER Cmin
prim C∗

llr EER Cmin
prim C∗

llrlist method

Switchboard
+

Mixer

None 11.3% 0.97 0.41 12.2% 0.99 0.42 9.7% 0.59 0.34 7.1% 0.59 0.26
Global 11.0% 0.81 0.38 8.1% 0.74 0.30 9.0% 0.56 0.31 5.6% 0.49 0.21
FDA [5] 10.5% 0.62 0.36 9.0% 0.58 0.31 9.0% 0.58 0.32 6.9% 0.50 0.25
AM-norm [7] 9.1% 0.67 0.32 6.9% 0.62 0.25 10.3% 0.67 0.35 6.2% 0.50 0.23
AS-norm [11] 8.7% 0.52 0.30 7.3% 0.47 0.26 6.5% 0.52 0.24 4.9% 0.43 0.19
AD-norm 7.6% 0.52 0.27 6.6% 0.49 0.23 6.2% 0.46 0.23 5.1% 0.41 0.19

AD+AS-norm 7.9% 0.50 0.27 6.6% 0.46 0.23 6.1% 0.46 0.23 4.7% 0.39 0.18

Switchboard
+

Mixer
+

SRE18

None 10.2% 0.87 0.37 8.5% 0.71 0.30 6.4% 0.44 0.23 3.6% 0.36 0.14
Global 9.7% 0.75 0.35 7.2% 0.60 0.26 6.3% 0.45 0.23 3.8% 0.34 0.15
FDA [5] 10.3% 0.62 0.36 9.1% 0.58 0.31 8.7% 0.57 0.31 6.8% 0.49 0.25
AM-norm [7] 8.0% 0.63 0.29 6.5% 0.53 0.24 7.4% 0.51 0.27 4.4% 0.38 0.17
AS-norm [11] 7.8% 0.50 0.27 7.0% 0.47 0.25 4.7% 0.40 0.18 3.9% 0.35 0.15
AD-norm 6.9% 0.52 0.25 6.4% 0.50 0.23 5.0% 0.38 0.19 4.1% 0.36 0.16

AD+AS-norm 7.2% 0.49 0.25 6.3% 0.46 0.23 4.7% 0.37 0.18 3.8% 0.33 0.15

norm in terms Cmin
prim. The two methods achieve similar perfor-

mance, on average, in terms of EER and C∗
llr . AD-norm consis-

tently outperforms both approaches in terms of C∗
llr and EER,

although it incurs in a small degradation in terms of Cmin
prim with

respect to AS-norm. This suggests that our approach is sig-
nificantly more effective on a wide range of operating points,
although AS-norm performs slightly better in very low false
acceptance regions. For SRE 2019 we can observe that AM-
norm provides significantly worse results, whereas AS-norm
and AD-norm are both competitive. AD-norm is more effec-
tive in the mis-matched scenario, whereas AS-norm provides
slightly better results for partially matching training and evalu-
ation data. As reference, in-domain PLDA trained on SRE 18
data only achieves an EER of 4.4%, a Cmin

prim of 0.38 and a C∗
llr

of 0.17. Finally, we observe that for PSVM trained with par-
tially matched data none of the considered normalization ap-
proaches is able to improve performance with respect to the
non-normalized scores, whereas the proposed approach is ef-
fective in the mis-matched use-case.

Since AS-norm incorporates a variance normalization ef-
fect that has no equivalent in AD-norm, we also evaluated a
simple score fusion that computes the average scores of the two
models after standardizing non-target scores to unit variance.
The results are reported in rows “AD+AS-norm” of Table 1.
The fusion proves effective, allowing us to achieve results that
are either similar or even slightly better than the best normal-
ization approach, and provides systematic improvements over
AS-norm. This motivates us to further investigate possible ex-
tensions of AD-norm that incorporate similar effects at embed-
ding rather than score level.

Adaptive approaches require specifying the selected cohort
set size K. Figure 2 shows the effects of using different values
for K. We can observe that the cohort size has a relevant im-
pact for SRE 2016, whereas the results are more stable on SRE
2019. In practice it may be difficult to select optimal K for a
specific dataset without cross-validation data. For some com-
binations of back-end and normalization model smaller cohort
sizes may be more effective, although the relative performance
of the approaches remains similar. A cohort size of K = 200
provides a good trade-off for the different datasets.

100 200 300 400 600 800
0.2

0.25

0.3

0.35

Adaptive cohort size

C
∗ ll
r

AD-norm (PLDA) AD-norm (PSVM)
AM-norm (PLDA) AM-norm (PSVM)
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100 200 300 400 600 800
0.15

0.2

0.25
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Adaptive cohort size

C
∗ ll
r

Figure 2: C∗
llr as a function of the cohort size. Top: SRE 2016.

Bottom: SRE 2019.

5. Conclusions

We have presented a framework for the normalization of
speaker embeddings that employs the AS-norm cohort selec-
tion mechanism to select effective normalization cohorts. These
cohort sets are then used to estimate an utterance-dependent
mean vector that is employed to re-center the enrollment and
test speaker embeddings. The proposed AD-norm allows im-
proving the accuracy of a speaker recognition system in case
of severe mismatch between training and evaluation data, pro-
viding similar or better performance with respect to AS-norm
without the AS-norm scoring-time computational costs.
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