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A B S T R A C T

The potential and promise of deep learning systems to provide an independent assessment and relieve
radiologists’ burden in screening mammography have been recognized in several studies. However, the low
cancer prevalence, the need to process high-resolution images, and the need to combine information from
multiple views and scales still pose technical challenges. Multi-view architectures that combine information
from the four mammographic views to produce an exam-level classification score are a promising approach to
the automated processing of screening mammography. However, training such architectures from exam-level
labels, without relying on pixel-level supervision, requires very large datasets and may result in suboptimal
accuracy. Emerging architectures such as Visual Transformers (ViT) and graph-based architectures can poten-
tially integrate ipsi-lateral and contra-lateral breast views better than traditional convolutional neural networks,
thanks to their stronger ability of modeling long-range dependencies. In this paper, we extensively evaluate
novel transformer-based and graph-based architectures against state-of-the-art multi-view convolutional neural
networks, trained in a weakly-supervised setting on a middle-scale dataset, both in terms of performance and
interpretability. Extensive experiments on the CSAW dataset suggest that, while transformer-based architecture
outperform other architectures, different inductive biases lead to complementary strengths and weaknesses, as
each architecture is sensitive to different signs and mammographic features. Hence, an ensemble of different
architectures should be preferred over a winner-takes-all approach to achieve more accurate and robust results.
Overall, the findings highlight the potential of a wide range of multi-view architectures for breast cancer
classification, even in datasets of relatively modest size, although the detection of small lesions remains
challenging without pixel-wise supervision or ad-hoc networks.
1. Introduction

Mammography is the main imaging modality for breast cancer
screening, and hence one of the most important tools available to
reduce breast cancer mortality (Broeders et al., 2012; Morra et al.,
2015). Given the high reading volumes, combined with a well-defined
diagnostic task and a fairly standardized acquisition process, screening
mammography is an ideal candidate for automated or semi-automated
reading. The promise of deep learning systems to provide an inde-
pendent assessment that could relieve the burden on radiologists has
been recognized in several recent studies (Rodríguez-Ruiz et al., 2019;
Kyono et al., 2018; Dembrower et al., 2020). However, designing deep
learning systems for mammography remains a challenging problem
due to a number of issues: with a cancer prevalence lower than 1%,
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mammography screening is the typical needle-in-the-haystack search
problem, requiring very large and enriched datasets to achieve high
performance (Wu et al., 2020; Schaffter et al., 2020); the need to pro-
cess high-resolution images (Wu et al., 2020); and the need to combine
information at multiple scales (Shen et al., 2021b; Pinto Pereira et al.,
2009), and from multiple views (Van Schie et al., 2011; Samulski and
Karssemeijer, 2011; Perek et al., 2018; Famouri et al., 2020; Ren et al.,
2021).

One of the most complete approaches for automated processing
of screening mammography are so-called multi-view architectures that
combine information from the four views typically included in a screen-
ing exam and produce an exam-level classification score indicating,
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e.g., the probability of the exam containing a cancer. Multi-view archi-
tectures are able to perform both ipsi-lateral and contra-lateral analysis:
the former searches for lesions on either breast by combining the
cranio-caudal (CC) and medio-lateral-oblique (MLO) views to com-
pensate for the effects of high breast density and tissue superposi-
tion (Sacchetto et al., 2016; Wei et al., 2011; Van Gils et al., 1998;
Ren et al., 2021; Samulski and Karssemeijer, 2011); the latter combines
information from both breasts and can, for example, detect asym-
metries that would not emerge if individual views were separately
considered (Rangayyan et al., 2007).

Another promising aspect of these architectures is that, in principle,
they can be trained from exam-level labels, bypassing the need to
acquire costly pixel-level supervision. In the first large-scale attempt
to train deep neural networks (DNNs) from weak image-level labels,
the DREAM challenge, DNNs trained using strongly annotated exter-
nal data significantly outperformed DNNs trained on image labels
alone (Schaffter et al., 2020). With advances in deep learning archi-
tectures, breast cancer detection from image-level supervision appears
to be substantially improved (Wu et al., 2020; Shen et al., 2021b).
Yet, while most state-of-the-art solutions for mammography are based
on deep convolutional neural networks (CNNs), and especially residual
networks, alternative deep architectures are emerging in the literature.
On the one hand, Visual Transformers (ViT) are outperforming CNNs
in several medical and non-medical tasks (Dosovitskiy et al., 2020;
He et al., 2022; Xu et al., 2022; Matsoukas et al., 2022). Compared
to CNNs, transformers are particularly promising for three properties:
(i) optimal computational allocation on relevant regions of the image
(pixels are not all equal paradigm), (ii) optimal semantic encoding; (iii)
relating spatially distant semantic features through the so-called self-
attention mechanisms (Dosovitskiy et al., 2020). The ability to model
long-range dependencies through cross-view attention allows to nat-
urally integrate information from multiple mammography views (van
Tulder et al., 2021).

On the other hand, several architectures have been proposed to
explicitly mimic the radiologist’s interpretation pattern for both ipsi–
lateral and contra–lateral analysis (Ren et al., 2021; Du et al., 2019;
Liu et al., 2021b; Zhang et al., 2021; Yang et al., 2021). These archi-
tectures integrate information from ipsi-lateral views to solve the tissue
superposition problem, and thus search for structures that are both
spatially co-located and with similar visual features as potential lesion
candidates (Wei et al., 2011; Samulski and Karssemeijer, 2011; Van Gils
et al., 1998; Ren et al., 2021; Yang et al., 2021). Contra-lateral analysis,
on the other hand, aims at detecting asymmetries and dissimilarities
between the two breasts. These architectures are typically composed
of a convolutional backbone followed by a module that is more apt for
relational reasoning, such as graph convolutional networks (GCNs) (Liu
et al., 2021b) or relational networks (Yang et al., 2021; Ren et al.,
2021).

Direct comparison of architectures with different inductive biases
from existing studies is hindered by their different experimental set-
tings, not only in terms of dataset size and composition, but also
in terms of task, learning setting, and performance metrics. For in-
stance, van Tulder et al. (2021) evaluated transformers in a dual-view
setting, thus performing only ipsi-lateral analysis, whereas CNN-based
architectures are often evaluated on the four mammographic views (Wu
et al., 2020). Radiologist-inspired architectures were instead evaluated
on lesion detection tasks (Liu, 2010). In this paper, we aim to compare
multi-view architectures characterized by different inductive biases,
trained under a comparable weakly supervised setting. Specifically, our
contributions are three-fold:

• we extend existing architectures based on transformers (van Tul-
der et al., 2021; Matsoukas et al., 2022) and graph convolutional
networks (Liu et al., 2021b) to handle four mammographic views;

• we introduce a new transformer-based architecture with ipsi-

lateral and contra-lateral cross-view attention;
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• we evaluate different architectures not only performance-wise,
but also with respect to how they integrate local and global
features. Our results suggest that different architectures are com-
plementary in nature, in the sense that they are preferentially sen-
sitive to specific signs, and that breast cancer detection could ben-
efit from their integration even though transformers outperform
convolution-based architectures.

The rest of the paper is organized as follows. Section 2 reviews the
main architectures that were proposed for exam-level mammography
analysis. The architectures explored in our experiments are analyzed
in Section 3. Datasets and experimental settings are described in Sec-
tions 4 and 5, respectively. Results are presented and discussed in
Sections 6 and 7, respectively. Finally, brief conclusions are drawn in
Section 8.

2. Related work

Applications of deep learning in mammography have flourished in
the past five to ten years: as a result, reviewing all possible architectures
and applications would be beyond the scope of this section (Morra
et al., 2019; Ou et al., 2021; Jiménez-Gaona et al., 2020). Here we
summarize currently available multi-view architectures for breast can-
cer detection and triage, divided in three broad categories: CNN-based,
radiologist-inspired and transformer-based.

2.1. Models based on convolutional neural networks

CNNs are the de facto standard in many application domains for
medical and non-medical image interpretation. In mammography, re-
cent CNN models have reached performance close to human radiolo-
gists, or even outperformed them, in laboratory conditions (Rodríguez-
Ruiz et al., 2019; McKinney et al., 2020). Both single-view (Maq-
sood et al., 2022; Lotter et al., 2021; Samee et al., 2022) and multi-
view (Carneiro et al., 2017; Khan et al., 2019; Kyono et al., 2018;
Nawaz et al., 2018) architectures have been proposed to detect and
classify malignant lesions. However, in many multi-view architectures
the image is aggressively downsized in order to reduce the compu-
tational and memory footprint of the network. Downscaling is not
desirable as many lesions signs are typically only discernible at higher
resolution. Wu et al. (2020) show the possibility of training multi-view
models for high resolution images from weak image-level labels. They
based their architecture on a ResNet-22 backbone modified to cope
with high resolution images, and fuse the features from multiple views
by simple concatenation. This architecture was chosen as the baseline
in our study, with some adjustments to account for the different settings
in which the training datasets were acquired.

2.2. Radiologist-inspired models

Several architectures have been designed to more closely mimic the
way radiologists integrate information from contra–lateral and ipsi–
lateral views (Yang et al., 2021; Ren et al., 2021; Du et al., 2019; Zhang
et al., 2021; Liu et al., 2021b). Broadly speaking, these architectures
attempt to explicitly match corresponding regions from the different
views, based on their geometrical and visual properties, to emphasize
either abnormalities that appear consistently in the CC and MLO views,
or asymmetries between the left and right breasts. To avoid the need
to register the four views, which may be unfeasible due to the effect
of compression on soft tissues (Famouri et al., 2020), researchers have
sought to introduce additional modules into CNN-based architectures,
such as relational networks (Ren et al., 2021) or graph convolutional
networks (GCNs) (Zhang et al., 2021; Liu et al., 2021b; Du et al., 2019).
In the latter case, a weighted graph models the relationship between
local regions from different views.

Numerous GCNs have been proposed in mammography, for exam-

ple Du et al. (2019) combine a CNN with two graph attention networks,
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the first classifying each node to predict ROIs and the second classifying
the entire image. Instead, Zhang et al. (2021) use a CNN to extract
features and a GCN to learn the relationships between views, each
represented as a node in a graph.

A particularly promising approach is the Anatomy-aware Graph
convolutional Network (AGN) (Liu et al., 2021b) which introduces
two graph-based modules, each dedicated to modeling either ipsi-
lateral or contra-lateral analysis. The original AGN architectures takes
as input three views – an examined view (e.g., the right CC view),
the contra-lateral view (e.g., the left CC view) and the ipsi-lateral
view (e.g., the right MLO view) – and produces as output a combined
feature map for the examined view. Liu et al. (2021b) demonstrated
that an object detector based on the proposed network outperformed
standard architectures for mammographic mass detection. In this work,
the architecture was extended to support the simultaneous analysis of
four views for the task of weakly supervised exam-level classification.

2.3. Transformers-based models

Transformers have revolutionized language modeling, and Vision
Transformers (ViTs) are steadily and increasingly outperforming convo-
lutional networks in computer vision. More recently, researchers have
started investigating the relative performance of ViTs and CNNs on
medical image analysis (He et al., 2022; Matsoukas et al., 2021; Li
et al., 2023; Matsoukas et al., 2022). Due to their weaker inductive
biases, ViTs can scale up to much larger datasets than their CNN
counterparts, but at the same time require a larger amount of training
data to achieve desirable performance, which can be a significant
challenge in medical image analysis. To address this, many methods
have combined convolutional layers with ViTs to improve performance
with limited medical images, or have extensively leveraged transfer
learning and self-supervised learning to reduce data requirements (He
et al., 2022). However, existing research has not yet shown that ViTs
outperform CNNs in all scenarios, particularly in low-resolution and
few-shot medical image analysis.

On the specific task of mammographic image interpretation,
transformer-based models have been compared to CNNs with mixed
results, also due wide differences in experimental setups and archi-
tectures (He et al., 2022; van Tulder et al., 2021; Miller et al., 2022;
Matsoukas et al., 2021, 2022). Most studies have compared ViTs to
CNNs on the task of single-view image classification in a transfer
learning setting, e.g., when fine-tuning from ImageNet1K. Architectures
such as DeiT (Touvron et al., 2021) and Swin Liu et al. (2021a) are
the best candidates for high resolution medical images (Matsoukas
et al., 2022; Betancourt Tarifa et al., 2023; Cantone et al., 2023; Li
et al., 2023). In particular, the latter is the prime candidate due to its
hierarchical nature and associated lower computational requirements.
However, the performance gap between ViTs and CNNs in typical
mammography datasets, such as CBIS-DDSM and OmniDB, was either
small (Matsoukas et al., 2022) or in favor of CNNs (Cantone et al.,
2023). In Cantone et al. (2023), the hierarchical Swin-v2 transformer
was the only architecture that achieved competitive results (that in-
creased with higher input resolution), indicating an advantage in
incorporating a locality bias. In a self-supervised setting, Miller et al.
(2022) found that pre-training ViTs using the masked autoencoder
framework had poor performance compared to pre-training CNNs using
contrastive self-supervised techniques.

Larger benefits are potentially associated with the use of ViTs in
the multi-view setting, thanks to their ability to model long-range
visual relationships. When training transformers on multiple views
it is important to find a good trade-off between performance and
computational complexity: for instance, for RGB images a reasonable
compromise was obtained by employing a unified backbone to which
each view is passed separately, for then concatenating the individual

output features to perform the final classification (Chen et al., 2001). In v
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Fig. 1. A schematic representation of the NYU model from Wu et al. (2020). The
backbone parameters are shared among images of the same view (CC and MLO), as
indicated by the different colors. The loss is calculated from the softmax output, and
the predictions of the CC and MLO views are averaged at inference time.

the field of mammography, van Tulder et al. (2021) proposed a Cross-
View attention layer to perform inter-view feature mixing based on a
CNN backbone: this solution, while reaching promising results, does
not exploit ViTs to model the content of each breast. On the other
hand, Chen et al. (2022) have proposed a multi-view network based
on the DeiT transformer that can process up to four low resolution
input views, and showed moderate increase in performance compared
to CNNs on a small scale dataset of roughly 1K mammograms. Despite
these promising results, several research gaps need to be addressed
including how transformer-based architectures perform compared to
existing architectures; and what is the influence of different transfer
and self-supervised settings on their relative performance.

3. Architectures

We formulate the overall problem as a multi-task learning frame-
work with two independent classification tasks: malignant vs. normal,
and recalled vs. not recalled. Each breast consists of the standard four
views, denoted in the following as 𝐱R−CC, 𝐱L−CC, 𝐱R−MLO and 𝐱L−MLO.
ach breast side (left and right) is associated with binary labels indi-
ating the presence or absence of malignant cancer (𝑦R,m and 𝑦L,m

)

and
hether the image was recalled by the radiologists for further workup
𝑦R,r and 𝑦L,r). It should be noted that the dataset was collected in
he context of a European screening program, and the recall status
s established based on the consensus of two independent readers.
he task is then formulated as predicting the two labels for each side
�̂�R,m, �̂�L,m, �̂�R,r and �̂�L,r).

.1. Baseline

The first architecture consists of the ‘‘image-wise’’ CNN proposed
y Wu et al. (2020). The architecture comprises a backbone that maps
ach view into a fixed–dimension space, and two fully connected layers
hat convert the representations into the output prediction. Following
he original implementation, the weights of the four backbones (L-
C, R-CC, L-MLO, and R-MLO) are shared, and the representations are
oncatenated to produce four independent predictions for the CC and
LO views. A modified Resnet-22 is used as backbone to compute

he embedding space of 256 dimensions for each view, as documented
y Wu et al. (2020), to obtain an appropriate threshold between the
idth and depth of the model with respect to the high resolution of the

nput image. The final architecture is shown in Fig. 1. Compared to Wu
t al. (2020), the classification head was modified to obtain predictions
or two classification tasks: malignant vs. non-malignant and recall vs.
on-recall.

As in the original architecture, the final prediction (�̂�R,m, �̂�L,m, �̂�R,r
nd �̂�L,r) is determined as the average of the predictions from the two

iews CC and MLO.



F. Manigrasso et al. Medical Image Analysis 99 (2025) 103320 
Fig. 2. A representation of pseudo-landmark and the respective tessellation of the same
breast in the two projections.

3.2. AGN4V

The second proposed architecture, named Anatomy-aware Graph
Convolutional Network Four Views (AGN4V), is an extension of the
AGN introduced in Liu et al. (2021b). The proposed architecture mainly
consists of a backbone and two modules based on GCNs, which receive
graphs obtained from the feature maps through a specific mapping
function. These modules respectively model the geometric relationships
of the ipsilateral views (Bipartite Graph convolutional Network or BGN)
and the structural similarities between left and right breasts (Inception
Graph convolutional Network or IGN). Each node is associated to
a (irregular) region of the breast (tessellation), and each region is
in turn associated to a point in the image, called in the following
pseudo-landmark. An example of pseudo-landmarks with the respective
tessellation can be seen in Fig. 2. Both BGN and IGN include a mapping
function, which produces a graph encoding the pseudo-landmarks,
their features and their geometrical inter-relationships, followed by a
Graph Convolutional Network (GCN), and a reverse mapping function
which projects the processed graph back to an attention map in the
feature space. The mapping function differs between the BGN and IGN
modules, which take as input different images and encode different
geometric and semantic properties, as further detailed in Section 3.2.2.
The main difference with respect to the original architecture is the
duplication of the BGN module, with shared weights, in order to obtain
the prediction for both sides and both tasks simultaneously. For each
side a triplet of images is thus integrated, the examined view (EX) on
which the prediction is performed, the contralateral view (CL) and the
auxiliary view (AUX), setting the MLO as the examined view and the CC
as the auxiliary view. Again, as with the baseline, the loss is calculated
using the softmax output, which contains the probabilities of cancer
presence and recall for each view examined. The overall architecture
can be seen in Fig. 3.

3.2.1. Pseudo-landmark extraction
To extract the pseudo-landmarks, the three guidelines defined in Liu

et al. (2021b) were followed:

• Each pseudo-landmark should represent a region with relatively
similar positions between the same projections of different breasts;

• Distinct pseudo-landmarks should represent distinct regions of the
breast;

• The combination of all pseudo-landmarks should cover the entire
breast.
4 
Fig. 3. A representation of the entire AGN4V model. It is worth noting that this
architecture requires an additional set of inputs (that is, the pseudo-landmarks and
their position), which are used by the IGN and BGN modules to simulate radiologists’
analysis.

For the extraction of the landmarks from CC views, we opted to start
from the only reference point available, namely the nipple. To extract
further landmarks, both the longitudinal position of the landmark just
calculated and the breast contour were used, so that the final pseudo-
landmarks are evenly spaced along both axes. In the MLO views, the
position of the pectoral muscle, together with the nipple, was used
to extract the landmarks. Starting from the position of the nipple
landmark, a line perpendicular to the pectoral muscle is traced to find
the intersection between these two, and subsequently the landmarks
located on the pectoral muscle are placed at even intervals. Finally, as
done for the CC projection using the contour of the breast and, in this
case, two lines parallel to the pectoral muscle, the remaining landmarks
are placed.

3.2.2. Implementation details
The backbone of AGN4V coincides, in this case, with the ResNet-22

described in Section 3.1. The GCNConv layer was selected to implement
the GCNs components for both the IGN and BGN, each consisting of 4
layers. It takes as input a weighted graph in sparse form, i.e., as a pair
of arrays, one encoding the graph arcs as pairs of source/target nodes
(𝐻𝐵 and J for the BGN and IGN, respectively), and one encoding the
corresponding arc weights (𝑊 𝐵 and 𝑊 𝐼 ). 𝐻𝐵 is the combination of
two graphs, the geometric graph, which represents the geometric con-
straints across views and the semantic graph, which characterizes the
semantic similarities between nodes. The two graphs jointly regularize
the propagation of ipsilateral information. Instead, J characterizes the
relations of nodes across different views: since the bilateral views may
not be aligned perfectly due to the inherent geometric distortions, J is
reformulated as 𝐽𝑠 which links each node to its top nearest neighbors
in the contralateral view, in this case 𝑠 is equal to 2. Further details
on the structure of the IGN and BGN modules are defined in Liu et al.
(2021b).

3.3. MaMVT

An overview of the proposed Mammography Multi-View Trans-
former (MaMVT) is shown in Fig. 4. The four input views are separately
fed into a shared backbone network. At the halfway-point of the third
block of the network a cross-view attention layer (defined in Sec-
tion 3.3.3) is applied in order to combine the representations of coupled
views inside the network, i.e., the corresponding views from the left and
right breasts, and the CC and MLO view from each breast. Then, each
view feature vector is output from the backbone network and passed
through a corresponding classification layer, with shared weights for
the CC and MLO views. Based on the findings of Chen et al. (2001),
two additional classification layers with shared weights for the left
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Fig. 4. Representation of the MaMVT architecture used in this work: the four views
are passed through a shared Swin backbone, with an additional cross-attention block
inserted inside the backbone after the 10th layer of the 3rd block to perform cross-
attention between each view. The final output for each view is then passed through
a classification layer and used for additional loss computation. The two left and right
views are additionally concatenated to obtain a left and right representation as well,
which are also passed through a classification layer and are used to perform both loss
computation and to obtain the final classification result for the exam.

breast and the right breast perform classification on the combinations
of L-CC, L-MLO and R-CC, R-MLO, respectively. The latter single view
predictions are only used for loss computation as an additional task.

3.3.1. Backbone
One problem with using high-resolution images with regular vi-

sion transformers like ViT is the fact that these architectures do not
perform any kind of convolutional or pooling operations, thus increas-
ing the computational and memory requirements by processing the
image always at its full size. To tackle this issue and based on the
findings from Matsoukas et al. (2022), the Swin (Liu et al., 2021a)
architecture was selected for the backbone. This architecture aggre-
gates patches at different levels of the network in order to achieve
better performance by increasing cross-patch attention, and at the same
time decrease both computational complexity and memory footprint
by reducing the number of patches. An important difference from
ViTs is the lack of a classification token, since classification is instead
performed on the combined global pooling of the output patches.
Experiments were performed using the Swin-v1 (Liu et al., 2021a) and
Swin-v2 (Liu et al., 2022) architectures, generating MaMVT-v1 and
MaMVT-v2 respectively.

3.3.2. Patch-level supervision
Taking advantage of the patch-based nature of the transformer

architecture, an additional patch-level supervision task was also intro-
duced on each of the four views. Briefly, this additional task entails
predicting whether a lesion is present in each patch, taking into account
that Swin has a hierarchical structure and that neighboring patches are
gradually merged in deeper transformer layers. This weak supervision
has minimal computational and memory overhead, only introducing an
additional classification head that performs a small number of patch-
level classification. The patch-level reference standard is achieved by
resizing and splitting the mask into the same number of patches as the
output layer of the Swin backbone. The array is then used to generate
a one-hot binary vector label of the image that indicates patches that
contain (parts of) lesions. The number of patches in the backbone
output is ultimately equal to the windows count, that is 12 × 12 output
patches. For the sake of exposition, Fig. 5 shows a simplified example
on a reduced number of patches.

3.3.3. Cross-view attention layer
Inspired by previous work by van Tulder et al. (2021), in which

a similar cross-view module was placed between the third and fourth
layers of a ResNet architecture, the cross-view attention layer is here
5 
Fig. 5. Simplified example of the patch supervision method: shown on the left is the
image mask, split into patches and converted into the label vector below, where each
value corresponds to one patch: indices 5 and 7 are set to 1, since their respective
patches contain the lesion. Shown on the right is a hypothetical prediction of each
image patch following the same structure: in this example, all patches were predicted
correctly with the exception of patch 5.

Fig. 6. Side-variant four-view cross-attention module scheme. First, for each side (L-CC
and L-MLO, R-CC and R-MLO), the pair-wise attention operations are performed and
then added to their respective views. Then the same operation is applied for each type
of view (L-CC and L-MLO, R-CC and R-MLO).

placed at a similar depth in the Swin backbone, i.e., at the half-way
point of the third block. This layer implements Multi-Head Attention
between two views by deriving the query Q matrix of the attention
mechanism from a source view 𝛼, while the key K matrix and the
value V matrix are derived from a target view 𝛽. The Multi-Head
Attention layer is asymmetrical, and therefore the outcome depends on
the views that are selected as source query 𝛼 and target key–value 𝛽,
respectively. To compensate for this, multi-head attention is computed
in both directions, alternating the target 𝛼 and source 𝛽 view: the
respective results are then added to the corresponding target view. As
an example, given a pair of views such as L-CC and L-MLO, multi-head
attention is first computed setting the L-CC view as the target 𝛼 and the
L-MLO view as source 𝛽, then setting the L-MLO view as source and the
L-CC view as target, and then both output features as summed to the
original target (L-CC) features. As shown in Fig. 6, the layer is applied
to each combination of views: the combinations belonging to the same
side are performed first (L-CC and L-MLO, R-CC and R-MLO), followed
by the combinations of the same type of view (L-CC and L-MLO, R-CC
and R-MLO), for a total of four times. In this way, both ipsi-lateral and
contra-lateral attention is implemented.

Empirically, we observed that standard multi-view architectures are
not invariant with respect to the order in which the two sides (left
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Fig. 7. Side-invariant four-view cross-attention module scheme. All the pair-wise
attention operations are performed first, and then added to their respective views.
Only the sum operations for the L-CC and R-MLO views are shown for clarity.

and right) are presented, even if both sides share the same backbone
weights. Thus, the network may learn to introduce spurious associa-
tions between the side and the prediction. This issue is not limited
to transformers, but is shared by all architectures: in the case of the
baseline, permutation invariance is lost when features are concatenated
before being fed to the final fully connected layer. In the case of
MaMVT, the properties of the network depends on how cross-view
attention is implemented in the backbone. We therefore designed and
tested an additional side-invariant version of the Swin-v2 backbone.
In this variant, instead of applying a single two-view cross-attention
module four times to different CC and MLO pairs, a single four-view
cross-attention module is applied on all four views simultaneously: the
bi-directional attention operations are performed first on each view
pair, and then the respective add operations are performed at the same
time for each view, as shown in Fig. 7.

3.4. Pretraining

Exam-level labels, while offering reduce annotation costs, provide
a very weak and sparse supervisory signal. Many authors have found
benefits by pre-training the network on a more balanced task, such
as BI-RADS classification (Wu et al., 2020), which, however, requires
additional labels.

In recent years, self-supervised visual representations learning have
been introduced as a pre-training mechanism to increase the robustness
of the learned feature representation. By learning to associate different
transformed versions of the same image, while simultaneously discrim-
inating them from different images, the learned feature representations
are invariant with respect to the selected transformations, as demon-
strated by Misra and van der Maaten (2019), Maaz et al. (2021), Chen
et al. (2021), Jiang et al. (2020).

Our work leverages previous experiments by Miller et al. (2022),
who tested four different self-supervised architectures applied to breast
cancer classification: SimCLR (Chen et al., 2020), BYOL (Grill et al.,
2020), SWaV (Varamesh et al., 2020) and Vit-MaE (He et al., 2021).
For convolutional and residual networks, BYOL is preferable for patch-
level classification tasks, while SWaV is best used as pretraining for
full image classification tasks (Miller et al., 2022). In the latter case,
the models are pre-trained using tiled patches, and then the features
are transferred to the entire mammograms. Briefly, SWaV is a self-
contrastive supervised method based on an online learning mechanism:
given two augmented versions of the same patch, matching ‘‘code’’ are
computed from a given set of prototypes and then swapped to calculate
the loss function in order to find matching information in the two
augmented versions.

In our experiments, the baseline backbone (modified Resnet22) is

pre-trained using SWaV, before being fine-tuned on the full image
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classification task. For the AGN4V, the backbone is pre-trained with
SWaV, fine-tuned with the baseline architecture, and then transferred.

For the transformer-based architecture, we compared two choices
of pre-training: ImageNet and a patch-level self-supervised method de-
noted as PEAC (patch embedding of anatomical consistency), proposed
by Zhou et al. (2023). Previous experiments by Miller et al. (2022)
found that traditional self-supervised transformer training, based on
the concept of the masked autoencoder, brought little benefit to the
final classification task. This result can be explained by the different
nature of self-supervision in transformers and convolutional networks.
Masked autoencoders seek to ‘‘fill in the blanks’’ by predicting the
masked patches based on context: however, it is unlikely that the
presence of lesions can be predicted based on the surrounding tissue,
hence it offers little benefit compared to ImageNet pretraining. On
the other hand, PEAC is a contrastive teacher-student framework that
enforces both global and local (at the patch level) consistency between
two augmented views. It was shown to improve performances over
ImageNet pretraining in other medical modalities, such as chest X-
rays (Zhou et al., 2023). We selected this framework as it is compatible
with the Swin-v1 architecture.

3.4.1. Loss
All three architectures use the NLL loss for both cancer and recall

prediction tasks.
For the Baseline, the loss is calculated as the sum of the individual

recall and cancer components for left and right, respectively:

 = 𝐿𝐶𝐶 + 𝑅𝐶𝐶 + 𝐿𝑀𝐿𝑂 + 𝑅𝑀𝐿𝑂 (1)

Instead, for the AGN4V, the loss is calculated by adding the losses
of the two sides for both classes of the examined view, in our case the
MLO:

 = 𝐿𝑀𝐿𝑂 + 𝑅𝑀𝐿𝑂 (2)

In both cases, Baseline and AGN4V, each 𝑥 is equal to:

𝑥 = 𝑐𝑎𝑛𝑐𝑒𝑟𝑥 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑥 (3)

where 𝑥 = LCC, RCC, LMLO, RMLO. For Transformers, the loss is
calculated by combining the losses obtained from the classification
head of each separate view, and the two losses obtained from the
classification heads of the left and right representations, which are
obtained by concatenating the features of the two left and right views,
respectively. Finally, the Focal Loss (FL) (Lin et al., 2017) is used for
patch-level classification in transformers:

 = 𝐿𝐶𝐶 + 𝑅𝐶𝐶 + 𝐿𝑀𝐿𝑂 + 𝑅𝑀𝐿𝑂 + 𝐿𝑒𝑓𝑡 + 𝑅𝑖𝑔ℎ𝑡 (4)

where each 𝑖 is equal to:

𝑖 = 𝑐𝑎𝑛𝑐𝑒𝑟𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖 +
𝑛
∑

𝑘
𝑘
𝑝𝑎𝑡𝑐ℎ𝑖

(5)

where 𝑥 = LCC, RCC, LMLO, RMLO, 𝑘 represents the 𝑘th patch, and 𝑛
is equal to the number of patches.

4. Dataset

Experiments were conducted on the Karolinska Cohort of Screen-
Aged Women (CSAW) dataset, further enriched with the DDSM dataset
as well as synthetically generated lesions to augment the number of
cancers available. In this section, more details are given on each of the

datasets considered.
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4.1. CSAW case-control subset (Karolinska)

The CSAW dataset by Dembrower et al. (2019) is a population-
based cohort of women aged 40 to 74 years who were invited for
screening between 2008 and 2015 in the Stockholm region, Sweden.
From the original dataset, a random sample of 30% of the popula-
tion was withheld before release and not included in this study. The
available CSAW subset includes 8723 women, of which 873 are cases
iagnosed with cancer during the observation period, and 7850 are
ontrols. Overall, the dataset includes 524 women with screen-detected
ancer, 217 with interval cancers, and 132 with prior images/other;
ased on the available annotations, approximately 50% of interval
ancers are not visible. To reduce the number of ambiguous cases,
ll exams considered priors, i.e., examinations in which more than
30 days had elapsed between the date of screening and the date of
iagnosis, were excluded; women for which only prior images were
vailable were eliminated. The dataset was split at the individual level
nto a train/validation/test set with a 70%/10%/20% ratio, stratified
y age, case/control, date of diagnosis, and number of exams. Screen-
etected (SD) and interval cancers (ICs) were defined based on the
ime from screening to diagnosis (SD: < 60 days, IC: 60–729 days). The
ataset was split after applying exclusion criteria as shown in Fig. 8. To
void training or testing on mammographically-occult cancers, all cases
ith lesions that were not visible in the available images, based on the
vailable pixel-level annotations, were eliminated. For each case, only
he examination acquired closest to the diagnosis date was retained for
oth training and testing. In contrast, for women classified as controls,
ll examinations were included in the training set, whereas the first
xamination, in chronological order, was included in the validation and
est set.

The CSAW dataset includes information about the recall status
ccording to the screening protocol in Sweden, which is double reading
ith arbitration. In all experiments, the recall label was defined based
n the consensus of the two independent radiologists. Because the recall
tatus was not defined in some cases, a positive recall value was set
or SD cancers. For cases classified as ICs, as well as for controls with
issing recall status, recall was set as negative.

.2. DDSM dataset

The use of multiple datasets requires harmonization to a common
eference standard. The DDSM dataset (Heath et al., 1998) is enriched
nd acquired in the United States, therefore reflecting a much different
creening organization than Europe. It should be noted that we refer
ere to the original DDSM dataset,1 rather than the more recent CBIS-
DSM version (Lee et al., 2017), since the latter does not include
egative exams (controls) or full mammographic exams with four
iews.

The DDSM is labeled as as follows: negative exams with a follow-up
f at least four years (normal), benign lesions where no further films
r biopsies were obtained (benign without a callback), benign lesions
ound in recalled examinations (benign with callback), and screening
xaminations where at least one cancerous pathology was found (ma-
ignant). For the cancer label, mapping is relatively unambiguous as
alignant cancers are assumed to be cases, and all remaining exams

re taken as controls. For the recall prediction task, the ground truth
s aligned with the CSAW reference standard in the following way:
alignant and benign lesions with callbacks were annotated as re-

alls, and all remaining images as not recalled. Lesion laterality was
xtracted from the segmentation masks. The DDSM dataset contains
952 subjects, 1273 controls (including normal images and women
ith benign lesions), and 679 cases (histologically proven malignant

ases); 1341/1952 subjects were labeled as recalled. In this case, the
umber of exams is equal to the number of subjects. All exams were
ncluded in the training set.

1 Available at https://www.kaggle.com/datasets/skooch/ddsm-
ammography
7 
Fig. 8. Flowchart for exam selection and stratification in training, validation and test
set, with number of exams and images included at each step.

4.3. Synthetic Karolinska dataset

The number of cases is enriched with a synthetic dataset to im-
prove the generalization properties of the trained models. We opted
for inserting lesions through Poisson blending (Pezeshk et al., 2016),
instead of more advanced generative models (Garcea et al., 2023;
Shen et al., 2021a; Wu et al., 2018) to allow greater control over
the generation process and ensure consistency between appearance of
the synthetic lesions in the CC and MLO views. The procedure for
generating synthetic images is divided into three different steps. First,
the lesions with available segmentation in the CSAW training set were
cropped from the corresponding images.

Then, data augmentation transformations were applied to the
cropped lesions to improve the variability of the examples, including
random resizing (same resize factor for both axes in [0.8, 1.2]), color
jittering (random contrast and random brightness jittering, range [0.8,
1.2]), and random rotation (in the range [−30◦, 30◦]). Transformations
between the CC and MLO views of the same lesion were performed with
identical configuration to maintain consistency between the two views.

Finally, the augmented lesion crops were inserted at compatible
points in the CC and MLO views. To select realistic lesion locations,
the adjacency matrix (𝐻𝑔) used to construct the BGN graph in the
AGN4V architecture was exploited. The 𝐻𝑔 matrix, calculated as de-
tailed in Zhang and Yeung (2012) based on the respective positions
of existing lesions, was used to encode the geometric constraints for
ipsi – lateral consistency between the CC and MLO pseudo – landmarks
(defined in Section 3.2).

To generate a new synthetic case, a normal exam and a pair of
pseudo-landmarks for the CC and MLO views were sampled with prob-
ability distribution encoded by the 𝐻𝑔 matrix. Random noise was
added to the pseudo-landmarks to generate the insertion coordinates. A
further check was introduced to ensure that the resulting lesion masks
did not exceed or was excessively close to the breast boundary. Once
valid coordinates were obtained, the lesions were added to the normal
breast image using Poisson blending (Pezeshk et al., 2016).

https://www.kaggle.com/datasets/skooch/ddsm-mammography
https://www.kaggle.com/datasets/skooch/ddsm-mammography
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Fig. 9. Two examples of synthetic cases comparing the original healthy control image
(left) and the result of the synthetic lesion insertion (right). The network was trained
on both the original healthy control and the synthetic lesions.

Synthetic cases were generated starting from the 241 annotated
cases in the CSAW dataset in which the lesion was visible and seg-
mented in both the CC and MLO views; a total of 1112 synthetic
cases were rendered, about five times the number of annotated cases.
Examples of synthetic lesions are demonstrated in Fig. 9.

4.4. Patch extraction for SwaV pretraining

Based on the collected training set, a series of patches was extracted
for self-supervised pre-training (Varamesh et al., 2020). Drawing from
the experience of Miller et al. (2022), patches of size 256 × 256 were
extracted from the original full-resolution 16-bit images. Compared
to Miller et al. (2022), our training dataset is larger and contains
a much larger number of negative examples. For this reason, more
patches were extracted from positive cases than from normal images
by reducing the overlap between adjacent patches from 50% to 30%.
For the screen-film mammography, positive patches were extracted
from the CBIS-DDSM rather than DDSM dataset, in order to exploit the
higher quality annotations (Lee et al., 2017)

In total, roughly 950,000 patches were extracted from DDSM and
160,000 from CBIS-DDSM, of which 30,000 were positive patches over-
lapping with lesions.2 From the Karolinska dataset, roughly 400,000
positive patches and 13,000,000 negative patches were extracted.

2 Although the labels were not used during self-supervised pre-training, the
dataset was enriched to ensure that SWaV was able to learn to model potential
lesions.
8 
5. Experimental settings

5.1. Preprocessing and data augmentation

Preprocessing was performed to find a balance between computa-
tional requirements and accuracy, also taking into account the different
needs and constraints imposed by each model. The preprocessing is
described in detail for the baseline; for the AGN4V and MaMVT, the
same preprocessing steps are performed unless otherwise noted.

Baseline. Following the approach in Wu et al. (2020), each image
in the CSAW dataset used was cropped from the initial resolution
(4096 × 3328 or 3328 × 2560 pixels) and then both CSAW and DDSM,
already cropped, were resized to a final resolution of 2677 × 1942
pixels for CC views and 2974 × 1748 pixels for MLO views. To reduce
computational requirements, all experiments were performed after fur-
ther downsampling of the images by a factor of 2, hence a final
resolution of 1335 × 971 and 1487 × 874, respectively.

The images were padded until the aspect ratio of the model was
reached before resizing. Each image was individually padded with
black pixels along the 𝑋 or 𝑌 axis, depending on the original width
to height ratio. Padding on the 𝑋-axis was added to the left side of
the image. For 𝑌 - axis, CC views were padded at the top and bottom
of the image to center the breast, while MLO views were padded only
at the bottom. The left views were flipped along the vertical axis to
align all breasts to the right side. Finally, each image was normalized
by subtracting its mean and dividing its standard deviation. The same
normalization technique was applied as in the original work by Wu
et al. (2020), which has the advantage of centering all images on
approximately the same input range regardless of the vendor.

AGN4V. The same size for the CC and MLO view was needed in
order to simplify the tessellation operation and the extraction of the
pseudo-landmarks. Hence, all images were resized to 2974 × 1942
regardless of the view.

MaMVT. Transformers, instead, require square images that can be
more easily divided into patches. Hence, a resolution of 1536 × 1536
was used without additional prior padding. Instead, the breasts were
stretched to cover the entire available space. However, it should be
noted that, unlike padding, this transformation does not preserve pixel
spacing.

Data augmentation. For all architectures, the following transfor-
mations were applied as data augmentation:

• Random rescaling: The resizing factor along each axis is chosen
randomly in the following interval [0.8, min(S, 1.2)], where S
denotes the maximum factor at which it is possible to stretch the
four images without cropping the breasts.

• Random contrast:. The contrast factor is randomly selected in the
interval [0.8; 1.2]. The following transformation is applied to
each pixel of a given image: 𝑥 = (1− 𝑐) ∗ 𝑥𝑚 + 𝑐 ∗ 𝑥 where c is the
contrast factor, and 𝑥𝑚 is the mean pixel value of the image.

• Gaussian noise: To improve the generalization properties of the
model, noise is added to the center of each image, as in Wu et al.
(2020).

Rescaling and contrast are applied with the same parameters to all four
views.

Finally, an additional form of exam-level data augmentation was in-
troduced by randomly swapping the left and right breast. As introduced
in Section 3.3, all the investigated models are not invariant to the order
with which the two breasts are presented, usually due to the presence
of concatenation layers, and may learn to spuriously associate specific
imaging features with the breast laterality. By promoting invariance,
this simple form of data augmentation improves generalization across
all architectures. Given that this transformation was not included in
previous works, experiments were executed with and without random
swapping.
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5.2. SWaV hyperparameter settings

Contrastive self-supervised learning like SWaV requires aggressive
data augmentation to learn robust features. Following previous work
by Miller et al. (2022), multi-crop at different scales and sizes was
applied. For each 256 × 256 patch, a first crop is applied in the range
1, 0.5] before resizing the patches to 128 × 128; a second image is
btained by cropping in the range [0.8, 0.14] and resizing the crop to
6 × 96. Other transformations applied were contrast jittering (range
0.8, 1.2]) and gamma correction (randomly chosen from [0, 0.25, 0.5,
.75, 1], where 0 represents the original image).

Using SWaV, the backbone was trained from scratch for 200 epochs
ith SGD optimizer, batch size 2048, learning rate 2.4 and weight
ecay of 1e−5. SWaV temperature parameter was set to 0.1, and
inkhorn regularization to 0.05. We used 50 prototypes and a queue
ength of 300.

.3. PEAC hyperparameter setting

The original training hyper-parameters from Zhou et al. (2023)
ere used, with a cosine learning rate scheduler with a maximum

earning rate of 0.1 and no warmup epochs; batch size was reduced
o 16 for computational requirements. For the self-supervised pre-
raining input image and patch size were increased to 1536 × 1536
nd 16 × 16 respectively, consistently with the MaMVT architecture;
he PEAC implementation available for the Swin-v1 architecture, made
vailable by the original authors, was used for the experiments. The
rchitecture was pre-trained for 100 epochs on the training dataset
escribed in Section 4. The final weights were then transferred to the
win-v1 backbone of MaMVTv1, and the four-view architecture was
rained for another 60 epochs.

.4. Sampling strategy

Underrepresentation of the positive class was mitigated by sampling
n equal number of positive and negative cases at each epoch (Wu
t al., 2020). Since DDSM has a higher proportion of positive cases, the
xams were separately sampled from DDSM and CSAW, thus artificially
alancing the dataset and mitigating possible spurious correlations
etween the type of mammography (screen-film or digital) and cancer
tatus. AGN4V is the only exception since only the Karolinska dataset
as used, due to difficulties in reliably extracting the pseudo-landmarks

rom screen-film mammograms.

.5. Hardware

All experiments were carried out on workstations equipped with
n Intel® Core™ i9-10980XE CPU @ 3.00 GHz × 36, 192 GB of RAM

and two NVIDIA RTX 3090 GPUs with 24 GB VRAM. Two GPUs were
used to train the MaMVT and for SWaV pre-training, whereas the
baseline and AGN4V were trained on a single GPU. Average inference
times were estimated on a subset of 15 exams on the same hardware
architecture used for training using a single GPU for the AGN and
baseline and two GPUs for MaMVT with a batch size of 1.

5.6. Hyperparameter settings

Baseline The baseline was trained until convergence with a batch
size of 32, image size of 1338 × 971 for CC views and 1487 × 874
for MLO, SGD optimizer with 0.9 momentum, weight decay of 1e−3,
learning rate of 1e−3, without scheduler, and label smoothing with
0.2 smoothing value. Dropout with rate of 0.5 was applied before the
output layer.

AGN4V For the AGN4V most of the hyperparameters are the same
as the baseline, except for image size, which is 1487 × 971 for all

views. The examined views are L-MLO and R-MLO and the backbone M
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weights are initialized from the Baseline. Dropout is used after every
graph convolutional layer except the last, with a dropout rate of 0.5.

MaMVT All architectures were trained for 60 epochs with a batch
size of 8, SGD optimizer with 0.9 momentum, 1e−4 learning rate,
gradient clipping by norm with value 5.0, weight decay of 1e−3, label
smoothing with 0.2 smoothing value, and ImageNet 22k pre-training.3
For both versions of the backbone Swin architectures, we set an input
patch size of 16 with a window size of 12 patches, image input size of
1536 with 1 channel, input embedding size of 128, 4 transformer blocks
containing 2, 2, 18, 2 transformer layers with 4, 8, 16, 32 attention
heads per attention layer, respectively, no dropout, and drop path with
0.1 rate applied both before and after the attention layer inside each
transformer layer for Swin-v2. For Swin-v1, a window size of 12 was
used, while for Swin-v2 the window size was increased to 24. For the
Focal Loss we set 𝛾 to 2 and 𝛼 to 0.25.

5.7. Performance metrics

All architectures were evaluated mainly in terms of AUC (area
under the roc curve) to classify views as cancer/noncancer and re-
called/nonrecalled for both breast (or view) and patient (or exam).
Predictions were aggregated at the exam-level by taking the maximum
between the predictions of the two views. Given the interest in using
AI systems as possible rule-out systems that can identify negative
cases (Dembrower et al., 2020), we further reported the patient-level
false positive rate at a sensitivity of 99% (FPR99). This metric provides
a rough estimate of the ability of the system to identify negative exams
without missing any cancer. All metrics were calculated for all cancers
(including SD and interval cancers), as well as for SD cancers only.

To account for random initialization, all experiments were repeated
three times: for each run, the checkpoint with highest cancer AUC on
the validation set was selected. Bootstrap with 1000 repetitions, sam-
pled randomly from the three runs, was used to obtain 95% confidence
intervals. For XAI analysis, the best performing repetition was sampled
for each architecture.

Bootstrap with 1000 repetitions was also used to test statistical
significance by comparing each architecture and training setting with
the baseline. To reduce the number of tests, we only tested for sta-
tistically significant differences in cancer AUC. We further controlled
for multiple hypothesis testing using the Benjamini–Hochberg proce-
dure (Benjamini and Hochberg, 1995); an adjusted 𝑝-value < 0.05
ndicated statistical significance.

.8. Explainability metrics

In order to further evaluate the results obtained, a visual expla-
ation technique, Gradient-weighted Class Activation Mapping (Grad-
AM) (Selvaraju et al., 2017) was used to produce heatmaps that
ttribute the classification to specific areas of the image. For a more
uantitative analysis of the Grad-CAM attention maps, three evaluation
etrics were introduced, denoted in the following as DICE, Intersection
ver Breast (IOB) and Intersection Over Lesion (IOL). The metrics are
efined as follows:

𝐼𝐶𝐸𝑡 =
2 ∗ |𝐴𝑃 ∩ 𝐺𝑃𝑡|

|𝐴𝑃 ∪ 𝐺𝑃𝑡|
(6)

𝐼𝑂𝐵𝑡 =
|𝐺𝑃𝑡 ∩ 𝐵𝑃 |

|𝐵𝑃 |
(7)

𝐼𝑂𝐿𝑡 =
|𝐺𝑃𝑡 ∩ 𝐴𝑃 |

|𝐴𝑃 |
(8)

where 𝐴𝑃 represents the pixels in segmentation mask, 𝐺𝑃𝑡 the pixels
highlighted in the Grad-CAM heatmap binarized at the threshold 𝑡,

3 We selected publicly available weights from Hugginface’s Pytorch Image
odels https://github.com/huggingface/pytorch-image-models

https://github.com/huggingface/pytorch-image-models
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Fig. 10. The red line (a) represents the lesion annotation pixel (AP), while the green
one (a) underlines the area covered by the Grad-CAM heatmap (𝐺𝑃𝑡). These two
quantities were used to calculate the DICE score and the Intersection over Lesion. The
blue (b) represents the area covered by the entire breast (BP), and is used to calculate
the Intersection over Breast.

and 𝐵𝑃 the pixels in the breast area. All metrics were calculated for
𝑡 ∈ {0.2, 0.4, 0.6, 0.8}. Intuitively, the DICE score indicates to what extent
the network is capable of localizing the lesion, on the one hand, and
attribute the cancer prediction to its presence, on the other. IOB instead
quantifies whether the explanation is spread over the entire breast and
implicitly whether the network relies more on global rather than local
features. Finally, IOL calculates to what extent the lesion is part of the
explanation: a high IOL combined with a low DICE implies that the
explanation focuses on a large portion of the breast that includes, but
is not limited to, the lesion. Fig. 10 shows an example of pixel-to-pixel
annotation for annotation pixels (AP), Gradcam Pixels (GP) and Breast
Pixel (BP), respectively.

The explainability metrics were calculated separately for the train-
ing set and the combined validation/test set, and for correctly and
incorrectly classified exams. Only cases for which the lesion was seg-
mented are included in this analysis, we include a total of 498/59 views
for baseline and MaMVT while 251/29 for AGN4V, respectively, for the
training and validation set.

6. Results

In this section, we analyze the results from two distinct perspectives.
The first subsection presents the results obtained using the reference
performance metrics, broken down by breast and patient, while the
second presents a punctual analysis on single views to evaluate the
accuracy of the provided predictions.

6.1. Predictive performance

The performance of all architectures introduced in Section 3 for
both cancer detection and recall prediction tasks are summarized in
Table 1 and Table 2 for the validation and test set, respectively. The
Baseline and AGN4V were trained from scratch, as well as using pre-
trained weights from SWaV; the MaMVT architectures were trained
using pre-trained Imagenet weights, while for the MaMVT-v1 archi-
tecture we also compared against PEAC self-supervised pretrained;
for MaMVT-v2 experiments in the first section of both tables also
use the side-invariant four-view version of the cross-attention module.
Performance was calculated at both the breast and patient level; in the
text, all metrics are reported on the test set and the patient level, unless
otherwise noted.

By exploiting self-supervised pre-training, performance improved by
approximately 6% for both baseline (Cancer AUC=69.9 vs. 76.3, 𝑝 =
10 
Fig. 11. Correlation between the predictions of three best run of each architecture on
the validation set.

0.126 and Recall AUC=70.1 vs. 76.5) and AGN4V (Cancer AUC=63.7
vs. 69.7, 𝑝 = 0.250 and Recall AUC= 66.2 vs. 73.7). Differences between
the AGN4V and the baseline, under this training regime, were not
statistically significant (Cancer AUC=63.7 vs. 69.9, 𝑝 = 0.979). We
observed a small 1 to 2% boost for MaMVT-v1 (Cancer AUC=79.2 vs.
80.3, 𝑝 = 0.04 and Recall AUC= 78.9 vs. 82.9). Given the small im-
provement compared with the additional pre-training effort required,
for MaMVT-v1 the ImageNet pre-trained version was used in the rest
of this paper.

All architectures and metrics benefit by introducing random swapping of
the left and right breast during training, but the highest improvement can
be seen on the AGN4V (Cancer AUC=69.7 vs. 74.9, 𝑝 = 0.125 and Recall
AUC=73.7 vs. 75.4). The benefit is more pronounced at the breast level
and on the validation set: indeed, the performance increase was mostly
measured on the left side.

Among the three architectures, the single best performing archi-
tecture is MaMVT-v2, trained without side invariance and with ran-
dom flipping augmentation (Cancer AUC=80.1, 𝑝 = 0.053, Recall
AUC=81.3), followed by self-supervised PEAC pre-trained MaMVT-v1
(Cancer AUC=80.3, 𝑝 = 0.053, Recall AUC=82.9), ImageNet pre-
trained MaMVT-v1 (Cancer AUC=79.2, 𝑝 = 0.062, Recall AUC=78.9),
Baseline (Cancer AUC=74.9 and Recall AUC=77.1) and AGN4V (Cancer
AUC=74.9, 𝑝 = 0.105, Recall AUC=75.4), with all 𝑝 values com-
puted against the baseline trained with random flipping augmentation
and self-supervised pre-training. Baseline and AGN4V show higher
signs of overfitting the validation set compared to MaMVT; indeed,
performance on the validation set is comparable for the Baseline,
AGN4V, MaMVT-v1 and MaMVT-v1 (PEAC) architectures (Cancer AUC
(breast)=81.8, 81.0, 81.7 and 80.8, respectively), with MaMVT-v2
outranking other methods (Cancer AUC (breast)=85.0). Despite similar
performance, Fig. 11 shows that the correlation between the predictions
in the validation set is low, in particular between both versions of
MaMVT, showing the influence of the different backbone, and thus the
four architectures appear to focus on different patterns.

The complementary nature of the three types of architectures is
further demonstrated by the performance of a simple ensemble ob-
tained by averaging the predictions of the four architectures (ImageNet
pre-trained MaMVT-v1 was used in the ensemble), randomly sampled
among all the available runs. The ensemble outperforms the four indi-
vidual architectures (Cancer AUC = 82.6, 𝑝 = 0, Recall AUC = 84.5 for
all cancers, Cancer AUC = 87.5 and Recall AUC = 84.8 for SD cancers).
This improvement is also visible in the bootstrapped ROC curves in
Fig. 12.

Further insights are obtained from the score distributions of the
positive and negative exams in Fig. 13. As expected, all architectures tend
to produce overconfident scores. Most errors are due to false negatives,
that is, cancer cases classified as negatives with very low probability.
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Table 1
Performance metrics, at breast and patient level, calculated on the validation set. Performance metrics reported include the Area under the ROC Curve (AUC) for cancer detection
(Cancer, for brevity) and recall prediction (Recall, for brevity). Performances are separately calculated on all cancers (including screen detected and interval cancers), and screen
detected cancer only; 95% confidence intervals are calculated based on 1000 bootstrap repetitions from three training runs. Models indicated with * (top rows) are trained from
scratch. All other models are either pre-trained on ImageNet (MaMVT-v1, MaMVT-v2) or using self-supervised learning (Baseline, AGN4V, MaMVT-v1 (PEAC)). All models indicated
with † (bottom rows in the table) are trained using random swapping of the left and right breast. The remaining models (intermediate rows) are trained using standard data
augmentation. MaMVT models indicated with ∙ are trained using the side invariant version of the cross-attention module. Best and second–best models are indicated in bold and
underline characters, respectively.

Model All cancers Screen detected cancers

Cancer (Breast) ↑ Cancer (Patient)↑ Recall (Breast)↑ Recall (Patient)↑ FPR99 (Patient)↓ Cancer (Breast)↑ Cancer (Patient)↑ Recall (Breast)↑ Recall (Patient)↑ FPR99 (Patient) ↓

Baseline* 77.2 (65.4-86.0) 73.4 (64.2-82.4) 75.6 (64.0-84.7) 73.5 (65.0-82.0) 87.2 (72.3-97.5) 81.3 (70.2-90.0) 76.2 (66.7-86.3) 75.6 (64.1-84.6) 73.6 (65.7-81.9) 79.3 (67.6-89.4)
AGN4V* 70.4 (58.0-80.3) 67.5 (60.9-73.5) 70.1 (56.3-81.3) 67.3 (59.8-73.7) 92.2 (78.0-97.6) 73.7 (60.6-84.0) 68.7 (60.9-75.4) 71.0 (57.2-81.2) 67.2 (60.0-73.2) 89.7 (69.8-97.6)

Baseline 79.1 (67.5-87.5) 79.7 (73.5-85.1) 79.4 (68.8-87.7) 80.2 (72.5-86.4) 85.3 (72.8-96.2) 87.4 (78.7-93.9) 85.5 (77.7-91.1) 79.5 (68.9-88.1) 80.7 (72.3-87.2) 74.3 (45.7-83.8)
AGN4V 76.3 (66.6-84.5) 73.9 (67.4-79.7) 75.4 (64.9-84.0) 73.1 (65.7-79.7) 92.7 (80.6-99.2) 80.7 (69.3-88.9) 78.4 (71.2-84.1) 75.7 (64.6-84.2) 73.2 (65.9-79.6) 83.5 (60.7-92.0)
MaMVT-v1 79.8 (69.0-88.4) 78.6 (70.3-85.2) 81.0 (71.1-89.2) 79.3 (70.9-86.2) 87.2 (64.1-97.4) 85.1 (74.0-93.7) 82.1 (71.7-89.9) 81.2 (71.6-89.3) 79.4 (70.3-86.5) 82.5 (56.6-97.6)
MaMVT-v2∙ 86.1 (77.9-91.7) 83.1 (77.5-87.3) 85.5 (75.0-93.1) 83.1 (76.9-88.6) 76.3 (53.7-95.5) 90.1 (81.9-95.9) 87.4 (81.9-91.9) 85.9 (75.4-93.4) 83.3 (76.7-88.6) 62.8 (44.5-79.9)
Ensemble ‡ 86.3 (78.3-91.9) 84.2 (77.9-88.9) 86.6 (77.8-93.0) 85.6 (79.6-90.5) 76.2 (55.8-88.4) 92.5 (86.5-96.8) 90.5 (85.6-94.4) 86.8 (77.5-93.1) 85.7 (79.2-90.5) 56.6 (33.5-73.1)

Baseline† 81.8 (69.8-90.0) 83.5 (77.8-88.7) 81.1 (70.5-88.7) 78.8 (71.5-84.8) 86.6 (61.6-99.6) 90.3 (81.8-95.7) 87.8 (81.5-92.5) 81.5 (70.7-89.4) 79.5 (72.4-85.4) 73.3 (49.5-90.1)
AGN4V† 81.0 (72.3-88.0) 78.3 (71.5-84.1) 85.0 (78.5-90.7) 81.1 (75.1-86.5) 94.2 (82.5-99.6) 89.3 (82.3-94.6) 86.2 (79.7-91.0) 85.4 (78.3-90.9) 81.4 (74.7-86.5) 79.8 (51.8-90.3)
MaMVT-v1† 81.7 (72.5-88.8) 79.8 (73.8-85.1) 81.6 (71.7-89.5) 80.2 (72.3-85.9) 80.5 (64.4-88.3) 87.7 (78.5-94.4) 84.6 (77.1-89.9) 82.0 (72.3-90.1) 80.2 (73.2-86.2) 74.9 (47.5-88.4)
MaMVT-v1 (PEAC)† 80.8 (70.8-88.4) 81.3 (74.7-86.2) 83.5 (75.3-90.0) 82.6 (75.9-88.2) 81.4 (68.0-92.9) 86.9 (77.9-93.7) 84.6 (77.7-90.1) 83.8 (74.8-90.5) 82.9 (76.5-88.2) 72.3 (56.4-83.9)
MaMVT-v2† 85.0 (73.6-92.8) 83.7 (76.4-89.7) 84.8 (74.5-92.3) 83.9 (76.1-90.0) 83.7 (59.6-91.9) 88.8 (77.8-95.9) 87.3 (77.3-93.3) 85.2 (75.7-92.7) 84.1 (75.9-90.1) 76.7 (48.3-92.0)
Ensemble† 88.4 (79.7-94.2) 87.2 (81.6-91.7) ‡ 89.3 (82.7-94.4) 87.3 (81.4-91.6) 79.7 (45.5-93.3) 94.8 (89.9-97.9) 92.5 (87.8-95.8) 89.7 (82.8-94.8) 87.5 (82.2-92.1) 50.3 (27.9-72.4)
Table 2
Performance metrics, at breast and patient level, calculated on the test set. Performance metrics reported include the Area under the ROC Curve (AUC) for cancer detection
(Cancer, for brevity) and recall prediction (Recall, for brevity). Performances are separately calculated on all cancers (including screen detected and interval cancers), and screen
detected cancer only; 95% confidence intervals are calculated based on 1000 bootstrap repetitions from three training runs. Models indicated with * (top rows) are trained from
scratch. All other models are either pre-trained on ImageNet (MaMVT-v1, MaMVT-v2) or using self-supervised learning (Baseline, AGN4V, MaMVT-v1 (PEAC)). All models indicated
with † (bottom rows in the table) are trained using random swapping of the left and right breast. The remaining models (intermediate rows) are trained using standard data
augmentation. MaMVT models indicated with ∙ are trained using the side invariant version of the cross-attention module. Best and second–best models are indicated in bold and
underline characters, respectively.

Model All cancers Screen detected cancers

Cancer (Breast) Cancer (Patient) Recall (Breast) Recall (Patient) FPR99 (Patient) Cancer (Breast) Cancer (Patient) Recall (Breast) Recall (Patient) FPR99 (Patient)

Baseline* 72.8 (62.9-81.3) 69.9 (60.8-76.6) 74.0 (64.3-82.1) 70.1 (63.0-75.7) 93.3 (86.4-99.8) 77.7 (66.9-86.7) 74.2 (64.2-81.7) 74.1 (63.7-82.9) 70.2 (62.7-76.2) 90.5 (80.2-95.3)
AGN4V* 64.4 (55.9-73.1) 63.7 (56.4-71.3) 67.6 (59.0-75.0) 66.2 (59.5-73.1) 95.7 (90.6-99.0) 68.1 (58.4-76.5) 65.9 (57.5-74.8) 68.1 (59.6-75.2) 66.2 (59.5-73.1) 93.4 (86.2-97.2)

Baseline 78.4 (70.8-85.2) 76.3 (70.9-81.0) 78.2 (69.6-85.2) 76.5 (70.9-81.3) 93.5 (81.0-99.6) 82.3 (73.5-89.4) 80.1 (74.7-85.0) 78.5 (70.1-85.5) 77.2 (72.1-81.6) 91.5 (73.3-99.6)
AGN4V 68.9 (60.2-76.9) 69.7 (63.2-75.4) 76.0 (68.0-82.5) 73.7 (68.1-78.8) 96.5 (92.5-98.9) 76.0 (66.5-84.0) 74.3 (68.0-79.8) 76.4 (68.0-83.2) 73.6 (68.4-79.2) 96.0 (89.9-98.8)
MaMVT-v1 80.8 (74.2-86.6) 79.2 (74.0-83.8) 80.2 (72.1-86.9) 77.9 (71.3-83.0) 93.8 (74.1-99.7) 84.9 (77.6-90.7) 82.8 (77.4-87.8) 80.3 (72.3-86.9) 78.2 (72.1-83.1) 91.8 (67.7-99.6)
MaMVT-v2∙ 80.4 (72.9-86.9) 78.6 (72.3-83.3) 82.1 (74.7-88.1) 79.1 (73.7-83.9) 90.2 (81.1-98.0) 84.5 (76.0-90.7) 82.8 (76.8-87.9) 82.4 (74.6-88.6) 79.6 (74.5-84.2) 88.4 (77.6-96.3)
Ensemble 83.6 (76.9-89.3) 82.3 (77.6-86.2) ‡ 85.4 (79.1-90.9) 82.8 (78.2-86.9) 89.8 (76.4-98.3) 87.9 (80.7-93.5) 86.5 (81.9-90.9) ‡ 85.8 (79.3-91.0) 83.4 (78.5-87.5) 87.0 (63.9-96.2)

Baseline† 77.8 (70.5-84.3) 74.9 (69.2-79.9) 79.0 (71.2-85.5) 77.1 (71.3-82.5) 92.5 (85.1-99.4) 81.4 (73.1-88.2) 79.8 (73.4-85.4) 79.2 (71.7-85.7) 77.2 (71.2-82.4) 90.4 (77.6-96.3)
AGN4V† 76.7 (70.1-82.9) 74.9 (69.7-79.0) 79.5 (72.5-85.0) 75.4 (70.1-79.7) 95.4 (86.7-98.7) 82.7 (76.2-88.3) 78.4 (73.1-83.0) 80.3 (74.0-85.8) 75.7 (70.6-80.4) 91.1 (76.6-96.5)
MaMVT-v1† 80.2 (72.5-86.2) 79.2 (73.1-84.0) 81.4 (74.0-87.7) 78.9 (73.0-83.7) 91.9 (74.2-99.6) 84.7 (76.9-91.0) 83.1 (77.4-87.9) 81.6 (73.5-88.1) 79.1 (73.1-84.2) 90.5 (72.1-99.7)
MaMVT-v1 (PEAC)† 80.7 (73.5-87.0) 80.3 (75.2-84.4) 82.8 (75.4-88.7) 82.9 (78.0-87.3) 92.4 (76.2-99.0) 86.7 (78.5-92.5) 85.8 (80.4-90.3) 83.1 (75.7-89.3) 83.1 (78.2-87.5) 92.1 (73.9-99.0)
MaMVT-v2† 82.3 (75.9-87.4) 80.1 (75.2-84.1) 83.8 (77.2-89.1) 81.3 (76.2-85.5) 89.7 (74.9-98.3) 86.8 (80.6-91.9) 84.6 (79.8-88.7) 84.0 (76.9-89.4) 81.7 (76.6-85.9) 86.4 (70.3-95.9)
Ensemble† 84.4 (78.1-89.6) 82.6 (77.7-86.5) ‡ 86.9 (80.6-91.8) 84.5 (79.2-88.6) 93.3 (73.1-99.2) 88.9 (82.3-94.0) 87.5 (82.6-91.6) ‡ 87.2 (81.3-92.0) 84.8 (80.0-88.9) 90.3 (64.6-98.3)
Fig. 12. ROC curve on the test with 95% confidence intervals calculated by bootstrap-
ing. All ROCs are calculated on all cancers, except for the ensemble that are calculated
n both all cancers and SD cancers.

pon visual inspection, lesions that are consistently missed by all
rchitectures can be attributed to relatively smaller and borderline
esions. It is interesting to note that both MaMVT versions tend to detect
ore cancers, with MaMVT-v2 in particular also assigning higher scores
11 
to negative exams, whereas other architectures are more accurate in
classifying negative cases. False positives are also dependent on the
architecture: for instance, AGN4V is more apt at detecting asymmetries
between the two breasts, even in cases that are negative for cancers (see
example in Fig. 14).

In Table 3 the best models for each architecture were further
evaluated by introducing test-time augmentation (TTA), by averaging
the predictions on 100 variants of the same image. TTA improves the
performance of all individual models in terms of AUC, but does not
improve that of the ensemble, which offers similar performance benefits
with a much smaller computational footprint, requiring only three
instead of 100 evaluations. In these results, the same data augmentation
was applied to each input view; we also tried to apply different data
augmentations to each of the four views, as suggested in Kyono et al.
(2018), but did not observe any substantial change (results not shown).

The higher performance of the MaMVT architecture comes with a
slightly higher computational cost. Table 4 compares the difference
architectures in terms of model parameters and throughput, measured
as the number of exams (four views) processed per second. MaMVT-
v2 has 43% more parameters than the baseline and inference is 34%
slower. The slowest architecture at inference time is the AGN4V, due
to the need to extract and process the graphs. It should be noted that
AGN4V requires several preprocessing steps such as segmenting the
images, computing the landmarks and retrieving information from the
adjacency matrix to build the feature graphs; such preprocessing steps

do not benefit, in the current implementation, from GPU acceleration.
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Table 3
Patient-level AUC calculated for the best run of each architecture and for the ensemble with and without test-time augmentation
(TTA). TTA increases performance for each individual architecture, but has minimal effect on the ensemble.

Type Model AUC Cancer AUC Recall FPR99

Pre-Training Baseline 74.1 75.8 94.0
AGN4V 74.6 75.1 99.0
MaMVT-v2 77.3 77.5 99.0
Ensemble 80.7 81.6 95.0

Pre-Training and test-time augmentation Baseline 75.6 77.3 96.2
AGN4V 75.1 77.0 97.0
MaMVT-v2 78.2 77.5 97.1
Ensemble 80.9 81.7 97.4
Fig. 13. Score distribution on the cancer cases (a) and negative control (b) exams for
each architecture and ensemble (y axis in logarithmic scale). The best performing run
is selected for each architecture on the validation set. MaMVT-v2 assigns high score to
the most cancer cases, but also generates the highest percentage of highly scored false
positives. For the ensemble, distribution of positive cases is reported for all cancers
and for screen detected cancers (SD) separately.

6.2. Explainability metrics

To quantify the agreement between the attention maps produced
by the four models and the radiologists’ annotations, we analyzed the
annotated images separately in the training set (498 for the baseline
and MaMVT and 251 for the AGN4V), and the combined validation and
test set, which we rename Validation Test (59 images for baseline and
12 
Fig. 14. Example of negative control that was classified as positive by the AGN4V
architecture. Note the asymmetry between the left and right breast.

Table 4
Comparison of model parameters (millions) and throughput (exams processed per
second) for the four architectures.

Model Parameters Inference time (Sample/s)

Baseline 6.13 M 3.45
AGN4V 7.57 M 0.28
MaMVT-v1 8.8 M 2.31
MaMVT-v2 8.7 M 2.27

MaMVT and 29 images for the AGN4V). The number of images is lower
for the AGN4V since GradCAM was applied only to the MLO, whereas
for the Baseline and MaMVT the heatmaps were separately calculated
for CC and MLO views. All experiments included in this analysis were
trained with random swap augmentation.

To investigate the agreement between radiologist’s annotations and Grad-
CAM heatmap, Figs. 15(a) and 15(b) show the distribution of the
DICE scores for AGN4V, Baseline, and the two MaMVT versions, sep-
arately reported for correct and wrong predictions. AGN4V achieves
the highest agreement (median 𝐷𝐼𝐶𝐸0.6 = 0.09 for correct predictions)
because the graph-based component encourages more focused attention
on specific region of interests. However, in the case of incorrect predic-
tions, the DICE score drops (median 𝐷𝐼𝐶𝐸0.6 = 0.002), thus indicating
that the network is unable to locate the lesion. A similar behavior is
observed for the baseline for both correct (median 𝐷𝐼𝐶𝐸0.6 = 0.07)
and incorrect predictions (median 𝐷𝐼𝐶𝐸0.6 = 0.000). MaMVT-v1 shows
the lowest agreement due to transformers’ proclivity to focus on global
characteristics (median 𝐷𝐼𝐶𝐸0.6 = 0.0 and median 𝐷𝐼𝐶𝐸0.6 = 0.0). Un-
like it v1 predecessor, MaMVT-v2 demonstrates a heightened attention
to local features, substantiated by its median 𝐷𝐼𝐶𝐸0.6 = 0.04 for correct
predictions and 𝐷𝐼𝐶𝐸 = 0.01 for incorrect predictions.
0.6
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Fig. 15. DICE (a–b), IOB (c–d) and IOL (e–f) scores calculated on the cancer cases of Validation Test set (a,c,e) and Training set (b,d,f), divided by architecture and by correct
nd incorrect predictions (in other words, for detected and missed cancers). Each metric compares the GradCAM heatmaps with the lesion segmentation as detailed in Section 5.7.
he scores at various thresholds were obtained by normalizing the GradCAM heatmaps with values between 0 and 1, and then binarizing the maps by applying the corresponding
hreshold.
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Distributed heatmaps suggests that multi-view architectures are sensitive
o global features of the breast. Compared to focused attention maps

that concentrate on the lesion area, clinical interpretation of such
distributed heatmaps is less clear, as well as their role in achieving
good generalization to novel data. The Insertion Over Breast (IOB) is
presented for the four architectures in Figs. 15(c) and 15(d). This metric
quantifies how large the area analyzed in the attention map is compared
to the breast area. Even at very low threshold values, the values found
for the baseline and AGN4V are less than 30% (𝐼𝑂𝐵0.2 = 0.22 and
𝑂𝐵0.2 = 0.24, respectively), demonstrating that the attention map is
ore focused on localized features. On the other hand, for MaMVT-v1

nd MaMVT-v2 IOB values were closer to 1 at low thresholds (𝐼𝑂𝐵0.2 =
.81 and 𝐼𝑂𝐵0.2 = 0.84 respectively), denoting that transformers attend
o the breast as a whole. It should be noticed, however, that this
ehavior may be emphasized by the Swin aggregation mechanism.

Lastly, Figs. 15(e) and 15(f) depict the distribution of the 𝐼𝑂𝐿𝑡
etric. Even at high threshold values (𝐼𝑂𝐿0.6 = 0.526), the AGN4V

n average covers 50% of the lesion area in the case of successful
redictions. Similar results are obtained for the baseline (𝐼𝑂𝐿0.6 =
.405).

Fig. 16 compares the activation maps of four images of the test
et, together with the prediction scores of the four models (Baseline,
GN4V, MaMVT-v1 (ImageNet and PEAC pre-training) and MaMVT-
2), while Fig. 17 compares the activation maps of the four views of
single sample image. It can be noticed how, in Figs. 17c, 17i and

7o, the attention maps of the baseline and AGN4v are concentrated on
pecific structures, usually encompassing the lesion area; interestingly,
13 
here appears to be a connection between the ability to localize the
esion and the confidence of the prediction, as can be noticed in par-
icularly by comparing Figs. 16c and 16i (both correct predictions with
igh positive scores) and Figs. 16i and 16j (both incorrect predictions
ith low positive scores). In contrast, MaMVT architectures attention
aps are scattered on larger portion of the breast, regardless of the
rediction score, as seen in Figs. 17e, 17f, 17q and 17r; it is also
nteresting to note that although the heatmaps for the PEAC pre-trained
aMVT-v1 appear even more scattered compared to their ImageNet

re-trained counterparts, the scores for the former appear to be more
ccurate, showing a similar behavior to those of MaMVT-v2. In the
vent of incorrect predictions, as well as on normal views in which no
esions are visible, the attention is evenly distributed throughout the
reast (Figs. 16l and 16x), indicating that the transformer does not
see" any lesion.

. Discussion

In this paper, we have compared three types of architectures with
argely different inductive biases on multi-label classification (cancer
nd recall) from weakly-labeled multi-view mammographic images.
ur experimental findings highlight that, although transformer-based
rchitectures achieve higher AUC in both cancer and recall prediction,
ifferent architectures differ widely in their predictions, as well as the
ype of features they detect. Therefore, combining them appears to be
ssential especially when the amount of training data is limited.

For the Baseline architecture, we achieve similar results compared
o the original paper both when trained from scratch (cancer AUC=72.4
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Fig. 16. Grad-CAM heatmap for the cancer prediction task. From left to right, each row displays the original image, the corresponding lesion annotation mask, and the GRADCAMs
obtained from the Baseline, AGN4V and MaMVT-(v1 Imagenet, v1 PEAC and v2) architectures along with the corresponding prediction score. While the GRADCAM for the baseline
and AGN4V architectures are more focused on local areas, the MaMVT architectures attend to larger portion of the breast parenchyma independently of the prediction score.
vs. 72.2) and with pre-training (cancer AUC=77.3 vs. 78.4). However,
when comparing these results, we must keep in mind that the compo-
sition of the NYU dataset is quite different from CSAW, and this affects
both training and evaluation. For instance, the NYU training set con-
tains a larger number of controls (229,426 exams from 141,473 women,
compared to 16,523 exams from 5,495 controls in the CSAW cohort)
and biopsied cancers (750 visible lesions, compared to 509 cases). In
addition, the NYU cohort includes more than 4,000 biopsied benign
lesions, whereas in CSAW biopsy results are not available for non-
cancer cases. On the other hand, cancers included in the NYU cohort
were biopsied within 120 days of the screening mammogram, while the
CSAW cohort also includes more subtle cancers detected up to 730 days
after the initial screening examination. We found experimentally that
14 
enriching the cohort with additional lesions, taken from DDSM as well
as synthetically generated, was key to achieve generalization. Previous
replication studies achieved performance close, although lower, to NYU
using a highly enriched dataset with roughly 2,000 biopsied confirmed
lesions and a matched control cohort of similar size (Condon et al.,
2021).

Our results qualitatively confirm previous findings on the role of
pre-training for mammographic image classification (Wu et al., 2020;
Miller et al., 2022; Matsoukas et al., 2022). Pre-training in the original
NYU paper was supervised via BI-RADS score (Wu et al., 2020). How-
ever, BI-RADS scores are not registered in typical European screening
programs; additionally, recall rates in European screening programs are
usually lower than in the United States, especially when arbitration is
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Fig. 17. Grad-CAM heatmap for the cancer prediction task on different views of the same exam. From top to bottom, each column displays the L-CC, L-MLO, R-CC and R-MLO.
From left to right, each row displays the original view image, the corresponding lesion annotation mask, and the GRADCAMs obtained from the Baseline, AGN4V (when possible)
and MaMVT-(v1 Imagenet, v1 PEAC and v2) architectures along with the corresponding prediction score. While the GRADCAM for the baseline and AGN4V architectures are more
focused on local areas, the MaMVT architectures attend to larger portion of the breast parenchyma independently of the prediction score.
used (Domingo et al., 2016). Therefore, self-supervised pre-training is
an equally effective, yet easier to implement, strategy that has also been
shown to promote invariance with respect to specific vendor-related
imaging characteristics (Miller et al., 2022).

Taking into account overall performance (AUC), score distribution
and ability to correctly localize lesions, the four architectures have com-
plementary strengths and weaknesses. All explainability-based metrics
suggest that the various architectures are focused on regions of the
breast that generally include, but extend beyond, human annotations.
The Baseline and AGN4V are better at localizing lesions, with median
DICE scores equal to 0.07 and 0.09, respectively. The AUC results in
comparison with the attention maps provide us with evidence that
15 
the breast possesses certain predictive characteristics for identifying
malignant cases, which are not always readily interpretable, such as
the presence of a lesion in our particular case as visible particularly for
architectures based on transformers.

On the other hand, for both versions of MaMVT the attention maps
are scattered along the breast, possibly indicating a tendency to favor
global over local features. However, interpreting the resulting attention
maps is challenging from a clinical perspective (Salahuddin et al.,
2022; Hadjiiski et al., 2023). They suggest a complex interplay between
different factors possibly related to the overall breast anatomy, but
also potentially depending on spurious correlations due to, e.g., vendor
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differences. More studies are needed to disentangle and provide a
clinically meaningful interpretation of such dispersed attention maps.

Performance-wise, our results found that both MaMVT versions
outperformed convolutional and graph-based architectures (AUC=80.1
vs. 74.9, respectively). Compared to studies that focused on single-
view analysis (Matsoukas et al., 2022; Miller et al., 2022; Cantone
et al., 2023), we observed a higher performance benefit associated
with the use of transformers. Similarly, Chen et al. (2022) reported an
increase in AUC from 75.9 (view-wise model from Wu et al. (2020)) to
81.5 (DeiT-based multi-view transformer), on a small in-house dataset.
These combined findings suggest that the advantage of transformers
is due to cross-view attention, whereas within each view the stronger
locality bias induced by CNNs provides a significant performance ad-
vantage. At the same time, caution is needed when comparing studies
in different transfer settings: ImageNet pre-training (Matsoukas et al.,
2022; Cantone et al., 2023), no pre-training (Chen et al., 2022) and
self-supervised pre-training (Miller et al., 2022; Zhou et al., 2023).
Self-supervised pre-training appears to be the most beneficial setting
for CNNs since it can be easily applied to customized networks (such
as those proposed by Wu et al. (2020) and used in our study and
in Chen et al. (2022)), and reduces the performance gap with respect
to transformers.

All proposed architectures can be applied directly to the four mam-
mographic views without the need for previous registration, reducing
computational costs and potential errors. However, unlike transformer-
based architectures the AGN4V requires prior segmentation of the
breast and pectoral muscle, and the identification of pseudo-landmarks.
These steps are easily performed, at low computational cost, on modern
full-field digital mammographies. However, we found that the accuracy
of the preprocessing step was much lower on screen-film mammogra-
phy (CBIS and DDSM), and for this reason the AGN4V was fine-tuned
only on the CSAW cohort, starting from the Baseline backbone. We
also found that the graph-based components were very sensitive to the
initialization of the backbone and did not always converge. The AGN4V
architecture may further improve if trained on a larger dataset.

As a final remark, our conclusions are dependent on the size of the
training set. Since transformers have weaker inductive biases and thus
higher capacity to scale to larger training sets, the performance gap is
likely to increase as more data becomes available (He et al., 2022).
Likewise, agreement between different architectures could increased
when trained on a larger dataset. Validation was also performed on a
single vendor and institution: external validation on different vendors
and/or institutions would shed further light on the generalization
capability of different architectures.

8. Conclusions

This paper presents a comparative analysis of three different multi-
view architectures for breast cancer classification: a 4-view convolu-
tional network, a graph-based architecture, and a transformer-based
architecture. Given their fundamentally different inductive biases, these
architectures not only achieve different performance, but also tend to
focus on different areas of the breast. Even though transformer-based
architectures achieve the most promising results among the three op-
tions, the results indicate that an ensemble model can improve overall
performance by increasing the AUC and reducing the false positive
rate (FPR). Heatmaps were used to analyze the regions of the breast
that were most relevant for each model predictions. Depending on the
architecture, the selected areas were not always aligned with lesion
annotations, but tended to concentrate in high density regions.

Overall, the findings highlight the potential of a wide range of multi-
view architectures for breast cancer classification even in datasets of
relatively modest size. Further research is needed to validate these
findings on larger-scale datasets, and to enhance the ability of multi-
view architectures to integrate local cues to improve the detection of
small and ill-defined lesions.
16 
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