
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Parallel batching with multi-size jobs and incompatible job families / Druetto, Alessandro; Pastore, Erica; Rener, Elena. -
In: TOP. - ISSN 1134-5764. - ELETTRONICO. - 31:2(2023), pp. 440-458. [10.1007/s11750-022-00644-2]

Original

Parallel batching with multi-size jobs and incompatible job families

Publisher:

Published
DOI:10.1007/s11750-022-00644-2

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971541 since: 2023-06-22T14:25:28Z

Springer

Vol.:(0123456789)

TOP
https://doi.org/10.1007/s11750-022-00644-2

1 3

ORIGINAL PAPER

Parallel batching with multi‑size jobs and incompatible job
families

Alessandro Druetto1 · Erica Pastore2 · Elena Rener2

Received: 11 April 2022 / Accepted: 4 September 2022
© The Author(s) 2022

Abstract
Parallel batch scheduling has many applications in the industrial sector, like in mate-
rial and chemical treatments, mold manufacturing and so on. The number of jobs
that can be processed on a machine mostly depends on the shape and size of the
jobs and of the machine. This work investigates the problem of batching jobs with
multiple sizes and multiple incompatible families. A flow formulation of the prob-
lem is exploited to solve it through two column generation-based heuristics. First,
the column generation finds the optimal solution of the continuous relaxation, then
two heuristics are proposed to move from the continuous to the integer solution of
the problem: one is based on the price-and-branch heuristic, the other on a variable
rounding procedure. Experiments with several combinations of parameters are pro-
vided to show the impact of the number of sizes and families on computation times
and quality of solutions.

Keywords Parallel batch scheduling · Column generation · Incompatible job
families · Multi-size jobs

Mathematics Subject Classification 90C27 · 90B35 · 90C39

Alessandro Druetto, Erica Pastore and Elena Rener contributed equally to this work.

 * Alessandro Druetto
 alessandro.druetto@unito.it

 Erica Pastore
 erica.pastore@polito.it

 Elena Rener
 elena.rener@polito.it

1 Dipartimento di Informatica, Università di Torino, Via Pessinetto 12, Turin 10149, Italy
2 Department of Management and Production Engineering, Politecnico di Torino, c.so Duca degli

Abruzzi 24, Turin 10129, Italy

http://orcid.org/0000-0002-8605-0193
http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-022-00644-2&domain=pdf

 A. Druetto et al.

1 3

1 Introduction

In the batch scheduling problem, jobs are processed on each machine grouped
in batches. The batch scheduling can be parallel or serial, depending on the pro-
cessing rule of the jobs within the batch: if the jobs in the batch are processed
simultaneously, this is the case of a parallel batch; otherwise, if the jobs within
the batch are processed one after another, the batch is serial. Typical examples of
parallel batches are furnaces and ovens that can be used, for instance, in mould
manufacturing and semiconductor industries (Liu et al. 2016; Ozturk et al. 2012);
instead, serial batches are usually exploited when a setup is needed before pro-
cessing a new batch. In this paper, we address the parallel batch scheduling prob-
lem. Jobs in each batch are processed in parallel, so the processing time of the
whole batch is equal to the maximum processing time amongst the jobs that com-
pose it. The objective is to compose the batches and to sequence them, to opti-
mize a performance measure. Usually, batches have a maximum size, depending
on the technological characteristics of the process (Potts and Kovalyov 2000); for
instance, the batch might have a maximum weight, or a maximum volume. Thus,
to form the batches, the size constraint must be taken into account.

The batch scheduling problem is typical of semiconductor industries, mold
manufacturing (Liu et al. 2016), medical device sterilization (Ozturk et al. 2012),
heat-treating ovens (Mönch and Unbehaun 2007), chemical processes in tanks
or kilns (Takamatsu et al. 1979), semiconductor and wafer fabrication industries
(Mönch et al. 2013), and testing of electrical circuits (Hulett et al. 2017). Also
additive manufacturing (AM) often requires batch production to optimize the
chamber space (Zhang et al. 2020). However, here the processing times depend
on different factors than those of conventional production, and the resulting
scheduling problem could be different.

Sometimes, batch production needs to address multiple sizes in composing
the batches. For instance, in AM, chambers can produce various parts simulta-
neously, either by placing products in the 2-dimensional space or by stacking
products and hence using the 3-dimensional space of the chamber. Thus, when
creating the batches, constraints on several dimensions must be considered; for
instance, if the AM technology in use is able to stack parts in the chamber, then
there is a maximum vertical span (height) and a maximum horizontal area that
cannot be exceeded. These dimensions (e.g. height, horizontal area) will be called
sizes in the paper. Similarly, other industries could have the same batch require-
ments. Moreover, for technological reasons, in shop floors where various product
families are produced, batches must be composed of jobs of the same family. This
is the case for families that need different manufacturing operations.

Due to the current industrial challenges, this paper addresses the single machine
batch scheduling problem with multiple sizes and incompatible job families. The
aim is to find the batch schedule that minimizes the total completion time; thus, with
the Graham’s three-field standard notation (Graham et al. 1979), the addressed prob-
lem is defined as 1�p-batch, sij ≤ bi, incomp�∑Cj (where p-batch defines the paral-
lel batching, sij ≤ bi the multiple sizes, and incomp the incompatible job families).

1 3

Parallel batching with multi‑size jobs and incompatible job…

The remainder of the paper is structured as follows. The relevant literature on
the batch scheduling problem is reviewed in Sect. 2. The problem is formalized in
Sect. 3, and the solution approaches are presented in Sect. 4. The numerical results
are discussed in Sect. 5, while Sect. 6 concludes the paper.

2 Literature review

The batch scheduling problem has been addressed for a few years by many research-
ers (Ikura and Gimple 1986) because of its many fields of application. From the
complexity point of view, Uzsoy (1994) first proved the NP-hardness for the
1�p-batch, sj ≤ b�∑Cj problem, where jobs have different sizes, equal process-
ing times and must be batched on a single machine. Since batching has raised the
interest of many researchers in the scheduling field, there are many applications and
problem variants that have been addressed in the literature. A complete overview of
batching problems is given by Potts and Kovalyov (2000), who reviewed both paral-
lel and serial batching problems and discussed major results and algorithms on the
subject.

In the following, a brief review of the literature on single machine parallel batch
scheduling problems with total completion time as performance measure, incompat-
ible job families, and/or multiple sizes is discussed. Some examples of recent papers
that address the parallel batch scheduling with other objective functions are: Muter
(2020), Emde et al. (2020), Tan et al. (2018), Shahidi-Zadeh et al. (2017).

First, some variations of the single size batch scheduling problem have been stud-
ied. For instance, Azizoglu and Webster (2000) generalized the model of Uzsoy
(1994) to the weighted case 1�p-batch, sj ≤ b�∑wjCj with arbitrary job sizes and
weights. They extended the existing branch and bound procedure to this case and
exploited some dominance properties. Rafiee Parsa et al. (2016) addressed the
1�p-batch, sj ≤ b�∑Cj problem by proposing an ant colony optimization metaheuris-
tic. Alfieri et al. (2021) recently formulated a new MIP for the same problem based
on a graph model, where the nodes of the graph represent job positions and arcs
represent batches. The proposed model is solved by means of a column generation
technique (Desrosiers and Lübbecke 2005) and allows to compute effective lower
bounds. The model is also extended to the parallel machines environment. A column
generation approach was also developed by Ozturk (2020), who considered identical
parallel machines. The problem is here decomposed into two stages: first, a column
generation is used to generate batches, and second these batches are scheduled on
machines using an integer linear model.

With respect to incompatible job families, the batch scheduling problem was
addressed by Azizoglu and Webster (2001), who adapted the solution procedure
used in Azizoglu and Webster (2000) for the single family case to the incompatible
job family case 1�p-batch, sj ≤ b, incomp�∑wjCj , where the jobs in the same fam-
ily have equal processing times. The same problem was also solved through several
heuristic approaches by Dobson and Nambimadom (2001), who addressed a version
of the 1�p-batch, sj ≤ b, incomp�∑wjCj problem, where the jobs of a family share
the same processing time and the objective function is the mean weighted flow time.

 A. Druetto et al.

1 3

To the authors’ knowledge, this is the first attempt to address the batch scheduling
problem with total completion time minimization, and jobs with multiple sizes and
incompatible families. As the problem is NP-hard, a flow formulation is exploited
to solve it through two column generation-based heuristics. The column generation
finds a continuous-relaxed solution, then two different heuristics from the literature
are used to move from the continuous to the integer solution of the problem: the
first is based on the so-called price-and-branch heuristic (Desrosiers and Lübbecke
2005), the other on a variable rounding procedure (Druetto and Grosso 2022). An
extensive experimental campaign was run to compare the two heuristics, which both
prove to be very effective for this scheduling problem. As the results will show, vari-
able rounding is the most effective both in terms of computation time and quality
of solution. Other useful insights for practical applications will be derived from the
results.

3 Problem definition

The single machine batching problem is considered, in which a set N = {1,… , n} of
jobs must be grouped in batches, and the batches must be scheduled on the machine.
Setup times between batches are assumed to be negligible and are not considered.

The machine processes jobs in batches, and batches must respect physical con-
straints, such as maximum height, volume, weight, and so on. Let m be the number
of different sizes to be addressed (e.g. m = 3 if the physical constraints imply maxi-
mum height, volume and weight), and bi be the batch capacity associated to the size
i (with i = 1,… ,m). Each job j has a processing time pj , and m size values sij , with
i = 1,… ,m . For instance, if batches must respect a maximum volume (b1) and a
maximum height (b2), then each job j will be characterized by its own volume s1j
and its own height s2j.

In the machine, jobs must be clustered in batches, such that the sum of job sizes
sij of all jobs in a batch does not exceed the batch dimension bi, i = 1,… ,m.

In addition, jobs are grouped into families that represent different process require-
ments. Hence, jobs from different families must be processed in different batches.
There are nf families, and each job j belongs to a family f, f = 1,… , nf .

A solution to the problem is made by a batch schedule, i.e., a sequence of feasible
batches S = B1,… ,BnB

 . The total number of batches nB is not known a priori, but it
depends on how jobs are clustered in each solution. However, the number of batches
nB must be in the range between nf and n, as there should exist at least one batch for
each family, and there are at maximum n batches each composed of one single job.

All jobs in a batch B are assumed to be processed simultaneously and the pro-
cessing time pB of batch B equals the longest processing time of jobs contained in it
i.e., pB = {max pj ∀j ∈ B} . Also, a job is completed when all other jobs in the same
batch are completed, i.e., the completion time Cj of each job equals the completion
time of the batch it belongs to. The aim is to find the sequence S = B1,… ,BnB

 that
minimizes the total completion time.

In the paper, the three combinations of constraints will be considered i.e.,
the problem 1�p-batch, sij ≤ bi, incomp�∑Cj , the multi-size problem without

1 3

Parallel batching with multi‑size jobs and incompatible job…

families (1�p-batch, sij ≤ bi�∑Cj), and the family problem with single size-jobs
(1�p-batch, sj ≤ b, incomp�∑Cj).

4 Two column generation‑based heuristics

The flow model used by Alfieri et al. (2021) is exploited and adapted to the problem
at hand to develop two heuristic algorithms. The flow model considers the feasible
batches as binary variables and associates a cost to each of them, whose sum is to
be minimized in the objective function. Usual flow constraints guarantee the flow
preservation from a source node to the last and a second set of constraints guarantee
that each job is scheduled exactly once (for the details on the flow formulation, the
reader is referred to Alfieri et al. (2021)). Both heuristics rely on an initial column
generation algorithm, which solves the continuous relaxation of the flow model.
Then, the heuristics use different techniques to move from the continuous solution
found by the column generation to the final integer solution of the problem, as will
be explained in the following.

4.1 The CG‑LB column generation algorithm

The column generation starts from a restricted formulation of the relaxed continu-
ous flow model and iteratively selects promising variables (i.e., promising batches)
through a so-called pricing procedure. The column generation finds as an output the
optimal solution of the continuous relaxation of the flow model. This solution is
then used as a starting point to find the integer solution of the initial problem in the
heuristics. The details of the column generation are explained in the following.

First, an initialization phase is needed. Jobs are first sorted according to the Short-
est Processing Time (SPT) rule, which is optimal for the scheduling of all jobs on a
serial machine with the

∑
Cj objective function (Chandru et al. 1993). Then, some

feasible batches are generated by clustering together the sorted jobs until one of the
maximum batch dimensions is reached, or until a job belonging to a different family
is selected. When the batch is closed, it is placed on all possible schedule positions,
and then, a new batch is developed with the same rule. The final output of the ini-
tialization is the set H, which contains a set of feasible batches.

The set H is set as the initial column set in the column generation, which is used
to solve the continuous relaxation of the flow model. The algorithm iterates between
solving the Restricted Master Problem (RMP, i.e., the problem with only a subset
of variables) and the pricing problem (the problem of selecting new columns to be
added to the RMP) until the continuous optimum is found.

In the pricing procedure, the dual multipliers associated with the RMP are com-
puted to find the most promising variables, i.e., those with the most negative reduced
cost, to be included in the next iteration of the RMP.

The pricing problem searches for the minimum reduced cost c̄ikB∗ associated to arc
(i, k,B∗) , among all arcs (i, k, B) that correspond to feasible batches. Let vj be the dual
multiplier corresponding to the constraints that guarantee that all jobs are included in

 A. Druetto et al.

1 3

the final schedule, and let ui, uk be the dual multipliers corresponding to the flow main-
tenance constraints. Recall that each job j belongs to a family fj and has m different
sizes shj (h ∈ {1,… ,m}), corresponding to the m batch capacities bh ; furthermore, the
batch cardinality |B| must be equal to (k − i) . Then, the problem can be formulated as
follows.

For each new possible feasible batch B, the evaluation of the corresponding reduced
cost depends on the position in the sequence, on the processing time and on the jobs
included in the batch. By isolating the parts depending on the position in an external
loop that considers every i, k with k > i , the problem at hand is reduced to the com-
putation of the feasible batch containing k − i jobs with maximum value. This prob-
lem can be formulated as a cardinality-constrained multi-weight knapsack, which
has to be solved for every starting and ending position. Indeed, jobs are the items,
their dual multipliers are profits, and their sizes are the weights.

The solution space of the multi-weight knapsack problem with cardinality constraint
is explored via a dynamic programming algorithm. Specifically, for every pair of i, k
with k > i , and for each job r = 1,… , n , let gr(�1,… , �m, l) be the optimal knapsack
with capacities �h for all h ∈ {1,… ,m} , cardinality l = k − i , and that considers only
jobs r, r + 1,… , n . The binary variable yj ∈ {0, 1} equals 1 if job j is selected for the
knapsack, 0 otherwise. Then, the algorithm searches for the following values.

This can be computed with the following recursion as in Kellerer et al. (2004):

where r′ is the next job in the Longest Processing Time (LPT) ordering that belongs
to the same family of the job that started the recursion. In this way, family incompat-
ibilities are addressed. The boundary conditions are as follows:

(1)c̄ikB∗ = min
B

⎧
⎪⎨⎪⎩

cikB −
∑

j∈B vj ∶∑
j∈B shj ≤ bh ∀h ∈ {1,… ,m},

fj = fj� ∀j, j� ∈ B,

�B� = (k − i)

⎫
⎪⎬⎪⎭
− (ui − uk)

(2)

gr(�1,… , �m, l) =max

{ n∑
j=r

vjyj ∶

n∑
j=r

s1jyj ≤ �1, … ,

n∑
j=r

smjyj ≤ �m,

n∑
j=r

yj = l, fj = fr, yj ∈ {0, 1}

}

(3)gr(�1,… ,�m, l) = max

{
gr� (�1 − s1r,… , �m − smr, l − 1) + vr (yr = 1)

gr� (�1,… , �m, l) (yr = 0)

(4)gr(�1,… ,�m, 1) =

{
vr if shr ≤ �h (yr = 1)

0 otherwise (yr = 0)
r = 1,… , n, �h = 0,… , bh

(5)gr(�1,… ,�m, 0) = 0 r = 1,… , n, �h = 0,… , bh

1 3

Parallel batching with multi‑size jobs and incompatible job…

Equations (4)–(6) hold for all h ∈ {1,… ,m} since all sizes must be considered. It is
worth noting that the dynamic programming state space increases of one dimension
for every size of the jobs.

The variables with negative reduced cost found through this pricing procedure are
added to the RMP, and the procedure is repeated until no negative reduced costs are
found. The final solution of the column generation is the optimum (CG‑UB) for the
continuous problem, and a lower bound for the integer problem. This algorithm, called
Column Generation Lower Bound, will be referred to as CG‑LB in the following.

4.2 The CG‑UB and VR‑UB heuristic procedures

Two heuristics are proposed to find an integer solution for the problem, and both starts
from the lower bound given by the column generation CG‑LB.

The first heuristic is called Column Generation Upper Bound (CG‑UB), and it is
the same used by Alfieri et al. (2021). Once the continuous optimum CG‑LB is found,
the variable domain of the problem is changed from continuous to binary, and the MIP
is solved to get a heuristic integer solution, namely CG‑UB. This evaluation can be
quite slow, especially when the number of jobs increases. Solving such a MIP to the
optimum is NP-hard, indeed. Some strategies to speed up the evaluation could include
stopping the evaluation after a fixed number of open nodes (but that amount should
increase with the number of considered jobs), or after a certain time limit has been
reached (but it can lead to large CG‑UB/CG‑LB gaps), or after a certain gap is reached
(but the timing to reach such a gap could be too slow again). A time limit will be set for
the numerical results of Section 5.

The second heuristic is the Variable Rounding Upper Bound, namely VR‑UB, and
consists in the variable rounding procedure proposed in Druetto and Grosso (2022).
Differently from CG‑UB, this approach generates good upper bounds within shorter
computation times. Promising variables are sequentially fixed to 1 i.e., a batch is forced
to be included in the solution. Then, the leftover part of the RMP is re-optimized with
continuous variables, up to the point when the entire sequence is established. Between
each rounding and re-optimization step, the feasibility is restored through a modified
version of the initialization algorithm. This modified version is run only on the not-
fixed part of the sequence and considers only jobs not included in the fixed batches yet.

(6)gr(𝜏1,… ,𝜏m, l) = −∞ if l > n − r + 1 or 𝜏h < 0

 A. Druetto et al.

1 3

Algorithm 1 Variable Rounding Upper Bound
1: z ← CG-LB computed over G(V, A); generates also batches in A
2: n ← |N |, k ← 1;
3: while k ≤ n do
4: i ← k; new starting position is old ending position
5: x ← nonzero basic variables of G(V,A);
6: j ← index of max{x} with starting position i; batch with highest flow
7: k ← ending position of selected batch j;
8: if xj = 1 then if xj is already integer, skip to the next
9: fix xj := 1; variable xj rounded to be 1

10: continue
11: end if
12: fix xj := 1; variable xj rounded to be 1
13: FeasRestore(G, k); feasibility restoration on G from k to end
14: z ← CG-LB computed over G(V,A); re-optimization of the problem
15: end while
16: VR-UB ← CG-LB computed over G(V,A); is an integral solution

The detailed variable rounding procedure is summarized in Algorithm 1, and
it works as follows. First, CG‑LB is computed and the RMP is populated. Then,
among all columns that start from i = 1 i.e., all batches in the first position of the
sequence, the one whose flow value is the closest to 1 is selected and enforced to
be part of the solution. Also, no other columns can start from the same position.
The procedure is repeated on the remaining part of the problem, by keeping all the
already generated columns. Then, again, a new selection is made among all columns
that start from i = k , where k was the ending position of the column fixed in the pre-
vious step.

The column generation and variable rounding procedures are iterated until the
value i = |N| + 1 is reached, i.e., when there exist a sequence of batches from 1 to
|N| + 1 , where all non-zero flow variables are equal to 1; this is the heuristic solution
VR‑UB for the original problem.

As shown in Algorithm 1, during the variable rounding procedure, another opti-
mization of the algorithm is made (lines 8-11 of Algorithm 1). If the selected col-
umn already has a flow with value 1 i.e., it is already integer in the continuous opti-
mum, there is no need to re-optimize the model, since the value obtained would be
the same as before and no new columns would be generated.

5 Numerical results

Random instances are generated to test the proposed algorithm. The generation
approach used in Alfieri et al. (2021), Rafiee Parsa et al. (2016), Uzsoy (1994) is
here replicated.

1 3

Parallel batching with multi‑size jobs and incompatible job…

In the experiment, some factors are varied to test the proposed approach
in various scenarios. Specifically, the number of jobs n has been varied in
n = {20, 40, 60, 80, 100, 200} , as the larger is n, the more complex is the problem
to be solved. Jobs have various sizes, and each size can be sampled from two dif-
ferent uniform distributions: �10 = U(1, 10) and �5 = U(1, 5) ; the results should
confirm that smaller intervals make the problem more complex, as more feasible
batches can be created. The evaluated numbers of sizes per job are m = {1, 2, 3} ,
to test the efficiency of the approach in the multi-size cases. For each size, a dis-
tribution must be chosen between �10 and �5 and, for each value of m, all possible
combinations of �10 and �5 are evaluated. Last, the tested numbers of families are
nf = {1, 3, 5, 7, 10} , to address the case of incompatible job families. All in all,
174 combinations of factors are tested. For each combination, 10 instances are
solved, thus leading to 1740 experiments. For conciseness purposes, only results
for n = {20, 60, 100, 200} are shown below; the trend highlighted by this subset of
experiments is confirmed by the experiments on the other sizes.

Some system characteristics have been fixed as parameters in all the instances.
Specifically, for each job, the processing time is sampled from a uniform distri-
bution U(1, 100). If more than one family is considered, the family is randomly
assigned to every job with equal probability. Also, for each size, the batch capac-
ity bi is fixed to 10, as commonly used in the literature (Azizoglu and Webster
2000; Rafiee Parsa et al. 2016; Alfieri et al. 2021).

Beside the instances generated as mentioned above, additional tests are run
with bi = 50 and with size distribution �50 = U(1, 50) . The aim is to test the algo-
rithm performance in the case where jobs have sizes with higher granularity. The
results are presented separately in Appendix A.

Two heuristic algorithms are compared: the column generation combined with
the MIP solver (CG‑UB), and the column generation with the variable rounding
procedure (VR‑UB). Both are described in Sect. 4.

The proposed methods are developed in C++, and the optimization procedure
is done by calling the CPLEX solver, version 12.9. Tests are run on a computer
having a 3.70 GHz Intel i7 processor with 32 GB RAM.

In the following, the results are shown separately for the following cases: multi-
size with no families (Table 1); incompatible families with one size (Tables 2 and
3); multi-size and incompatible families (Table 4, which shows only the cases of
3 and 7 families for reasons of conciseness). Results of single-size single-family
instances are not reported in the paper for reasons of conciseness.

In all the tables, each row reports various statistics for a single combination of
factors (grouping together the 10 instances) on the performance of the CPLEX’s
integer solution (CG‑UB) and of the variable rounding procedure (VR‑UB). Spe-
cifically, each row is characterized by:

• the number of jobs n;
• the distributions for each size (columns s1 , s2 , s3 contain respectively the dis-

tribution of size 1, 2 or 3, if jobs have one, else −);
• the number of incompatible families nf ;

 A. Druetto et al.

1 3

• the number of reached optima � (where the optimum is reached in the case
LB = UB), knowing that the optimum is reached when the continuous CG‑LB is
characterized by all integer variables;

• the average (Avg t) and maximum (Max t) computation time over the 10
instances, expressed in seconds;

• the average (Avg % g) and maximum (Max % g) percentage gap computed on the
single instance as:

gapCG-UB = CG-UB − CG-LB
CG-UB

× 100, gapVR-UB = VR-UB − CG-LB
VR-UB

× 100.

Table 1 Algorithm performance on the multi-size case

n s1, s2, s3 � CG‑UB VR‑UB

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �10 �10− 7 0.03 0.1 0.27 1.5 0.02 0.1 0.20 0.8
20 �10 �5− 6 0.03 0.1 0.52 2.6 0.02 0.1 0.36 1.9
20 �5 �5− 2 0.05 0.1 1.13 3.5 0.02 0.1 1.11 3.5
60 �10 �10− 0 0.19 0.4 0.30 0.9 0.14 0.2 0.48 1.3
60 �10 �5− 0 0.50 1.7 0.53 1.1 0.30 0.5 0.86 2.0
60 �5 �5− 0 10.74 35.9 2.01 3.4 0.97 1.3 1.85 2.5
100 �10 �10− 1 1.17 2.3 0.16 0.3 0.99 1.4 0.36 0.8
100 �10 �5− 0 8.55 34.5 0.60 1.2 1.79 2.3 1.08 2.1
100 �5 �5− 0 97.66 >100.0 3.76 6.6 4.11 4.6 1.84 2.5
200 �10 �10− 0 20.91 >100.0 0.12 0.3 7.91 11.9 0.29 0.5
200 �10 �5− 0 97.40 >100.0 0.51 2.0 11.51 14.9 0.60 1.1
200 �5 �5− 0 >100.00 >100.0 56.80 69.7 27.91 30.3 1.37 2.1
20 �10 �10 �10 10 0.03 0.1 0.00 0.0 0.03 0.1 0.00 0.0
20 �10 �10 �5 8 0.04 0.1 0.06 0.6 0.03 0.1 0.07 0.7
20 �10 �5 �5 3 0.05 0.1 0.78 2.4 0.05 0.1 1.29 4.8
20 �5 �5 �5 0 0.07 0.1 1.94 4.2 0.07 0.1 2.34 5.1
60 �10 �10 �10 7 0.18 0.3 0.12 0.8 0.34 0.5 0.14 0.8
60 �10 �10 �5 1 0.25 0.4 0.34 0.9 0.60 0.9 0.70 1.8
60 �10 �5 �5 0 0.40 0.9 0.49 1.2 0.87 1.3 1.08 3.6
60 �5 �5 �5 0 7.24 24.0 1.62 2.3 2.09 2.7 1.81 3.0
100 �10 �10 �10 4 0.83 1.1 0.03 0.1 1.84 3.0 0.08 0.4
100 �10 �10 �5 4 1.21 2.0 0.10 0.3 2.69 6.0 0.24 0.7
100 �10 �5 �5 0 6.08 11.0 0.51 0.8 5.75 7.4 0.94 2.0
100 �5 �5 �5 0 82.57 >100.0 1.88 5.0 9.04 11.4 1.33 2.2
200 �10 �10 �10 4 5.76 8.6 0.03 0.1 13.90 26.7 0.08 0.4
200 �10 �10 �5 0 12.05 22.5 0.10 0.2 25.21 47.7 0.28 0.7
200 �10 �5 �5 0 90.16 >100.0 0.34 0.6 44.27 62.1 0.69 1.4
200 �5 �5 �5 0 >100.00 >100.0 22.85 68.9 78.35 96.2 1.14 2.1

1 3

Parallel batching with multi‑size jobs and incompatible job…

Table 2 Algorithm performance on the family case for �10
n s1 nf � CG‑UB VR‑UB

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �10 3 6 0.04 0.1 0.54 2.7 0.01 0.1 1.28 5.7
20 �10 5 7 0.03 0.1 0.44 1.7 0.01 0.1 0.49 2.1
20 �10 7 7 0.04 0.2 0.41 2.3 0.01 0.1 0.42 2.3
20 �10 10 7 0.04 0.2 0.22 1.7 0.01 0.1 0.43 3.6
60 �10 3 0 0.29 0.5 1.34 2.3 0.15 0.2 1.97 4.2
60 �10 5 0 0.19 0.4 0.65 2.0 0.09 0.2 1.17 2.9
60 �10 7 3 0.18 0.5 0.76 3.6 0.06 0.1 1.08 5.7
60 �10 10 2 0.12 0.2 0.83 1.9 0.06 0.1 1.11 2.7
100 �10 3 0 2.51 3.6 0.76 1.1 1.24 1.7 1.31 2.2
100 �10 5 0 1.29 1.8 0.92 1.4 1.01 1.7 1.70 2.7
100 �10 7 0 1.28 3.0 0.81 1.5 0.81 1.2 1.18 2.5
100 �10 10 0 0.97 1.8 1.21 2.3 0.74 1.0 1.87 3.7
200 �10 3 0 53.45 >100.0 0.58 1.4 8.63 12.1 1.01 1.6
200 �10 5 0 16.33 24.0 0.74 1.1 8.05 10.3 1.52 2.5
200 �10 7 0 16.94 49.2 0.83 1.2 6.58 8.0 1.39 1.9
200 �10 10 0 11.09 23.5 0.80 1.4 5.95 7.3 1.39 2.2

Table 3 Algorithm performance on the family case for �5
n s1 nf � CG‑UB VR‑UB

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �5 3 3 0.05 0.1 1.12 2.7 0.01 0.1 1.43 4.2
20 �5 5 4 0.04 0.1 1.34 4.1 0.01 0.1 2.15 6.5
20 �5 7 5 0.04 0.1 0.63 3.7 0.01 0.1 1.09 4.5
20 �5 10 6 0.04 0.1 0.99 3.2 0.01 0.1 1.25 4.4
60 �5 3 0 2.05 5.3 2.49 4.1 0.69 1.0 3.30 7.1
60 �5 5 0 0.75 1.8 2.72 5.0 0.51 0.7 3.40 5.9
60 �5 7 0 0.61 0.9 2.79 7.1 0.40 0.6 3.51 7.0
60 �5 10 0 0.28 0.5 2.02 3.2 0.26 0.4 2.75 4.7
100 �5 3 0 87.51 >100.0 3.19 5.4 3.50 4.2 3.11 4.6
100 �5 5 0 24.05 >100.0 2.39 3.9 2.72 3.1 3.34 5.3
100 �5 7 0 8.13 16.3 2.49 4.2 2.30 2.7 3.02 4.9
100 �5 10 0 3.00 5.2 2.02 3.1 2.02 2.5 2.66 4.4
200 �5 3 0 >100.00 >100.0 40.70 72.1 23.97 29.8 2.35 3.1
200 �5 5 0 >100.00 >100.0 39.83 70.6 18.71 21.8 2.94 3.7
200 �5 7 0 >100.00 >100.0 5.41 8.9 17.14 21.2 3.23 4.2
200 �5 10 0 >100.00 >100.0 3.86 6.1 14.75 18.1 3.00 3.7

 A. Druetto et al.

1 3

Table 4 Algorithm performance on the multi-size family case

CG‑UB VG‑UB

n s1, s2, s3 nf � Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �10, �10,− 3 9 0.02 0.1 0.06 0.6 0.01 0.1 0.31 3.1
20 �10, �10,− 7 10 0.02 0.1 0.00 0.0 0.01 0.1 0.00 0.0
20 �10, �5,− 3 6 0.04 0.1 0.86 3.5 0.01 0.1 0.90 3.9
20 �10, �5,− 7 4 0.04 0.1 0.40 2.4 0.01 0.1 1.33 3.1
20 �5, �5,− 3 2 0.07 0.1 1.18 3.8 0.02 0.1 1.61 3.9
20 �5, �5,− 7 2 0.07 0.2 1.92 5.0 0.01 0.1 2.79 5.9
60 �10, �10,− 3 2 0.13 0.2 0.29 1.6 0.10 0.2 0.68 1.7
60 �10, �10,− 7 5 0.09 0.2 0.16 0.6 0.06 0.1 0.36 1.9
60 �10, �5,− 3 0 0.33 0.7 1.00 2.0 0.18 0.4 1.41 3.5
60 �10, �5,− 7 2 0.12 0.2 0.82 2.3 0.11 0.2 1.09 4.2
60 �5, �5,− 3 0 1.36 2.8 2.38 3.7 0.77 1.0 3.79 6.2
60 �5, �5,− 7 0 0.43 0.8 2.46 3.8 0.43 0.7 4.14 6.1
100 �10, �10,− 3 3 0.78 1.4 0.32 0.6 0.77 1.3 0.57 1.1
100 �10, �10,− 7 2 0.47 0.8 0.45 1.1 0.61 0.9 0.73 1.5
100 �10, �5,− 3 0 1.77 4.0 0.50 0.8 1.39 1.9 0.93 1.9
100 �10, �5,− 7 0 1.00 1.4 0.96 2.1 0.99 1.4 1.52 2.4
100 �5, �5,− 3 0 75.00 >100.0 2.26 4.2 3.59 4.3 2.42 3.5
100 �5, �5,− 7 0 8.74 27.1 2.17 3.0 2.55 3.3 2.98 5.4
200 �10, �10,− 3 1 6.36 9.8 0.17 0.3 6.35 9.2 0.34 1.0
200 �10, �10,− 7 0 4.83 8.2 0.25 0.6 4.99 6.3 0.53 0.9
200 �10, �5,− 3 0 52.38 >100.0 0.54 0.9 11.12 13.2 1.16 1.5
200 �10, �5,− 7 0 14.58 41.4 0.81 1.4 9.06 12.5 1.63 1.9
200 �5, �5,− 3 0 >100.00 >100.0 28.97 68.9 24.27 27.7 2.24 2.7
200 �5, �5,− 7 0 >100.00 >100.0 6.38 8.7 20.17 23.7 2.50 3.1
20 �10, �10, �10 3 10 0.04 0.1 0.00 0.0 0.03 0.1 0.00 0.0
20 �10, �10, �10 7 10 0.03 0.1 0.00 0.0 0.02 0.1 0.00 0.0
20 �10, �10, �5 3 7 0.07 0.2 0.56 4.5 0.04 0.1 0.48 3.8
20 �10, �10, �5 7 8 0.03 0.0 0.12 0.9 0.03 0.1 0.47 3.8
20 �10, �5, �5 3 4 0.08 0.1 0.91 3.6 0.04 0.1 1.16 3.9
20 �10, �5, �5 7 6 0.04 0.1 0.88 3.8 0.04 0.1 1.19 3.8
20 �5, �5, �5 3 1 0.09 0.2 2.38 6.5 0.06 0.1 2.99 6.9
20 �5, �5, �5 7 3 0.05 0.1 1.61 5.0 0.05 0.1 2.50 5.9
60 �10, �10, �10 3 8 0.16 0.2 0.03 0.2 0.31 0.8 0.16 1.3
60 �10, �10, �10 7 7 0.13 0.2 0.18 1.3 0.32 0.8 0.36 1.6
60 �10, �10, �5 3 3 0.26 0.7 0.35 0.8 0.44 0.7 0.43 0.8
60 �10, �10, �5 7 6 0.16 0.3 0.37 1.8 0.44 1.3 0.59 2.7
60 �10, �5, �5 3 0 0.50 0.9 0.88 1.5 0.91 1.7 1.51 2.8
60 �10, �5, �5 7 0 0.27 0.4 1.05 2.2 0.64 0.9 1.76 3.2
60 �5, �5, �5 3 1 1.39 2.6 1.84 2.9 1.61 2.5 2.14 4.3
60 �5, �5, �5 7 0 0.36 0.4 1.98 3.3 1.19 1.8 2.61 5.2

1 3

Parallel batching with multi‑size jobs and incompatible job…

The column generation procedure that generates promising batches and builds a frac-
tional solution works very fast. Finding the optimal integer solution using those batches
is instead a time consuming issue for large instances. For this reason, a time limit of 100
CPU s has been set.

First, both the CG‑UB and �� − �� approaches are very fast. Indeed, for instances
up to 60 jobs, the overall computation time is of the order of one second. Across all
instances, the largest computation time for �� − �� is 96.2 s, while CG‑UB sometimes
reaches the 100 second time limit.

The instances with sizes distributed following �5 are more difficult than those follow-
ing �10 . Indeed, if comparing the instances in Tables 2 and 3 with 200 jobs, the average
computation time of CG‑UB moves from the order of 20 s for �10 cases to times larger
than 100 s for �5 . The same is true for �� − �� , although computation times are lower
for both cases. As �5 reduces the maximum size a job can have, there are more possible
combinations of jobs in a single batch, thus both computation times and gaps increase.
However, if more than one size constraint is considered (Tables 1 and 4), even with �5
the number of combinations decreases, and the dynamic programming that searches for
feasible batches is able to cut uninteresting combinations. Thus, the greater the number
of job sizes, the faster the algorithm works.

The number of jobs negatively impacts the computation time and the gaps, both
for CG‑UB and �� − �� . Specifically, CG‑UB often needs more than 100 s to solve
instances with 200 jobs, especially in the cases of �5 size distributions. Instead, �� − ��
is able to handle these instances in most cases, but its computation time largely

Table 4 (continued)

CG‑UB VG‑UB

n s1, s2, s3 nf � Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

100 �10, �10, �10 3 6 1.08 1.5 0.04 0.2 1.04 1.5 0.07 0.6
100 �10, �10, �10 7 5 0.40 0.6 0.20 0.8 1.05 1.8 0.23 0.8
100 �10, �10, �5 3 2 1.31 1.9 0.20 0.5 2.25 4.2 0.36 1.1
100 �10, �10, �5 7 1 0.65 0.9 0.42 1.1 2.33 4.0 0.80 2.4
100 �10, �5, �5 3 0 2.56 6.3 0.58 1.4 4.05 6.5 1.17 2.4
100 �10, �5, �5 7 0 1.10 1.4 0.81 1.8 4.07 8.5 1.32 3.4
100 �5, �5, �5 3 0 43.04 >100.0 1.57 2.5 7.97 10.3 2.04 3.3
100 �5, �5, �5 7 0 3.63 5.9 1.69 2.4 6.45 10.2 2.88 5.2
200 �10, �10, �10 3 3 5.07 6.7 0.03 0.2 15.40 26.6 0.09 0.2
200 �10, �10, �10 7 4 2.92 4.9 0.10 0.4 8.98 16.5 0.15 0.6
200 �10, �10, �5 3 0 8.88 12.3 0.17 0.3 19.70 27.1 0.36 1.0
200 �10, �10, �5 7 1 6.13 10.0 0.27 0.6 21.78 29.5 0.60 1.1
200 �10, �5, �5 3 0 38.87 >100.0 0.46 0.8 40.75 61.2 0.91 1.5
200 �10, �5, �5 7 0 11.20 16.7 0.60 1.0 32.97 44.9 1.10 1.8
200 �5, �5, �5 3 0 >100.00 >100.0 9.52 13.5 71.87 80.8 1.86 2.3
200 �5, �5, �5 7 0 >100.00 >100.0 4.12 5.9 59.99 70.6 2.37 3.4

 A. Druetto et al.

1 3

increases with respect to the instances with a small number of jobs. Moreover, with
smaller numbers of jobs, both algorithms are more likely able to find optimal solutions;
indeed, the number of optimal solutions � is larger with smaller instances.

When incompatible families are addressed, a noticeable difference in computation
times can be seen when the number of families increases. This is shown both in Tables 2
and 3 and in Table 4. In the former tables, the average computation time decreases with
the increase of the number of families. For instance, with n = 100 and s1 = �10 , the
average computation time goes from 2.51 with 3 families to 0.97 with 10 families for
the CG‑UB, and from 1.24 to 0.74 for the �� − �� . When multi-size is involved, the
same decrease in computation time is shown in Table 4; interestingly, if �5 distribution
is given to the sizes, the difference in computation time with different families is even
larger. As an example, if comparing the cases with n = 100; m = 3; si = �10 ∀i and
n = 100; m = 3; si = �5 ∀i , the difference in the average computation times from 3 to
7 families for the CG‑UB moves from the order of 0.68 s to the order of 39.41 s. In the
same instances, for the �� − �� approach, there is no difference between computation
times of 3 and 7 families for the �10 instances, and there is a difference of the order of
1.52 s for the �5 instances. As explained in Section 4, the search in the state space from
job r that belongs to family f can be restricted to the subset of jobs belonging to the
same family. This modification of the search procedure does not impact on the structure
of the state space, and leads to a decrease in computation time proportional to the num-
ber of families.

Lastly, comparing the results of CG‑UB and �� − �� across all results, the proposed
variable rounding tends to be faster than CG‑UB, and obtains comparable or better per-
formance. Specifically, for the single-size multi-family cases �� − �� is always faster
than CG‑UB. Indeed, Tables 2 and 3 show that both average and maximum computa-
tion times are smaller for �� − �� in all the cases. When the single-family multi-size
cases are considered (Table 1), CG‑UB and �� − �� have comparable performance
in the instances with a small number of jobs and �10 distribution. However, �� − ��
achieves remarkable improvements in gaps for the cases with large numbers of jobs and
sizes with �5 distributions. For instance, in the experiments with n = 200;si = �5 ∀i ,
the average gap moves from 56.80 % (two sizes) and 22.85 % (three sizes) for CG‑UB
to 1.37 % (two sizes) and 1.14 % for �� − �� , respectively. It is worth noting that the
large CG‑UB gap for larger instances is due to the enforced time limit. In terms of com-
putation times, �� − �� results to be faster than CG‑UB in almost all the cases. Also,
CG‑UB often reaches the time limit when 200 jobs are considered. Further experiments
have been conducted for the cases where CG‑UB reaches the time limit, and the results
show that the computation times are consistently larger than �� − �� . For the multi-size
family case, the same considerations hold, proving the outperforming of �� − �� with
respect to CG‑UB.

Although some gaps are slightly better for �� − �� (except for the cases where the
time limit is exceeded), the relative difference is not worth the extra time required in
comparison to the faster �� − �� . For instance, consider the single-size multi-family
case with n = 200; s1 = �10 and nf = 7 in Table 2. The algorithm �� − �� finds the
optimum value (without reaching the time limit) in an average time of 16.94s, with
a mean gap equal to 0.83% ; on the same instances �� − �� takes only 8.00s in the

1 3

Parallel batching with multi‑size jobs and incompatible job…

worst case (less than the half of �� − �� average case), with an average gap equal to
1.39% , i.e., only half a point worse than �� − ��.

As the additional tests of Appendix A show, the efficiency of the algorithms is not
affected for instances with larger job sizes and batch capacity. The average gaps are
competitive for both algorithms; however, they suffer from the computation point of
view since the pricing procedure becomes more difficult in these cases.

6 Conclusions

The parallel batch scheduling problem has become more and more addressed by the
scientific and industrial communities because of its applications in many industrial
fields.

This paper addresses the 1�p-batch, sij ≤ bi, incomp�∑Cj problem. To the
authors’ knowledge, this paper is the first attempt in the literature to consider mul-
tiple sizes and family incompatibility constraints together. Also, no assumptions are
made on the distribution and/or the value of the processing times.

The solution approach is based on the flow formulation of the problem by Alfieri
et al. (2021); this formulation is exploited to develop two column-generation based heu-
ristics: one is based on the price-and-branch heuristic (�� − ��) of Alfieri et al. (2021),
the other on the variable rounding procedure (�� − ��) proposed in Druetto and Grosso
(2022). The column generation finds a continuous-relaxed solution, then the two heu-
ristics are used to move from the continuous to the integer solution of the problem. An
extensive experimental campaign compared the two heuristics, which both proved to be
very effective for this scheduling problem. Indeed, the proposed approaches can handle
instances up to 200 jobs, and both find very good optimality gaps in all the addressed
instances. Moreover, with a small number of jobs, the proposed algorithms are able to
find optimal solutions in most of the cases.

Numerical results show that the smaller the job sizes, the more difficult the batch
scheduling problem becomes. Having more than one size constraint simplifies the
problem from the computation standpoint. Also, having more families simplifies the
problem, as the number of feasible combinations of jobs is reduced.

Also, comparing the two heuristics, interesting results emerged. In simple instances
(i.e., with a small number of jobs, large job sizes and a small number of families) the
difference between the two approaches is not appreciable. The real gain can be per-
ceived in difficult instances, where both computation times and gaps largely decrease.
Specifically, instances with 200 jobs can not be solved by the �� − �� approach in 100
second time limit, however the variable rounding �� − �� is able to achieve good gaps
in less than the time limit. In general, almost all instances are solved within a minute
and the gap rarely overcomes 5% . The variable rounding procedure is therefore shown
to be a valid alternative to the �� − ��.

At its current state, the proposed approach is able to solve single-machine batch
scheduling problems. Further research will be devoted to adapting the approach to
parallel machines and to weighted completion times (

∑
wjCj).

 A. Druetto et al.

1 3

Additional Tests

Table 5 shows the results of some additional tests. In these tests, a different size distri-
bution and a different batch capacity are considered. The instances were generated with
all jobs sizes sampled from a uniform distribution U(1, 50) while the batch capacity

Table 5 Results for higher granularity jobs

n s1, s2, s3 nf � �� − �� �� − ��

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

Multiple sizes, single family
 20 �50, �50 1 6 0.04 0.1 0.67 3.3 0.06 0.1 0.84 3.7
 60 �50, �50 1 2 0.33 0.5 0.18 0.5 0.60 1.1 0.30 1.0
 100 �50, �50 1 1 1.83 3.8 0.12 0.3 3.76 7.4 0.30 1.0
 20 �50, �50, �50 1 10 0.58 0.6 0.00 0.0 1.25 1.8 0.00 0.0
 60 �50, �50, �50 1 7 5.26 5.4 0.15 0.7 34.27 >100.0 0.23 1.3
 100 �50, �50, �50 1 4 18.19 20.0 0.06 0.3 >100.00 >100.0 0.12 0.6

Single size, multiple families
 20 �50 3 7 0.03 0.1 0.25 1.3 0.02 0.1 0.31 1.3
 20 �50 5 6 0.03 0.1 0.72 3.4 0.02 0.1 0.84 3.9
 20 �50 7 10 0.02 0.1 0.00 0.0 0.02 0.1 0.00 0.0
 20 �50 10 8 0.02 0.1 0.29 2.2 0.02 0.1 0.29 2.0
 60 �50 3 1 0.21 0.3 0.84 1.3 0.21 0.3 1.43 2.6
 60 �50 5 0 0.23 0.3 0.97 1.7 0.13 0.2 1.29 2.4
 60 �50 7 0 0.17 0.3 0.80 2.2 0.10 0.1 1.57 4.2
 60 �50 10 0 0.15 0.2 0.78 1.5 0.09 0.1 1.09 2.5
 100 �50 3 0 2.49 4.6 0.53 1.1 1.62 2.6 1.07 2.9
 100 �50 5 0 2.50 8.3 1.33 2.0 1.38 2.0 1.89 2.9
 100 �50 7 0 1.32 2.9 1.21 2.2 1.06 1.4 1.98 3.8
 100 �50 10 0 0.91 1.2 0.73 1.6 0.94 1.5 1.44 2.8

Multiple sizes, multiple families
 20 �50, �50 3 9 0.03 0.1 0.05 0.5 0.04 0.1 0.14 1.4
 20 �50, �50 7 7 0.03 0.1 0.26 1.5 0.04 0.1 0.72 4.0
 60 �50, �50 3 3 0.26 0.4 0.37 1.6 0.67 1.2 0.82 2.3
 60 �50, �50 7 5 0.19 0.2 0.23 0.9 0.47 0.9 0.38 1.8
 100 �50, �50 3 1 1.07 1.4 0.24 0.8 2.77 4.6 0.45 1.3
 100 �50, �50 7 3 0.75 1.4 0.36 1.3 2.24 4.2 0.65 1.6
 20 �50, �50, �50 3 9 0.6 0.6 0.22 2.2 1.33 1.8 0.21 2.1
 20 �50, �50, �50 7 9 0.6 0.6 0.02 0.2 1.26 1.7 0.09 0.9
 60 �50, �50, �50 3 6 5.27 5.4 0.16 0.6 30.27 58.0 0.22 0.8
 60 �50, �50, �50 7 7 5.24 5.3 0.12 0.9 27.73 58.7 0.30 1.2
 100 �50, �50, �50 3 5 17.66 17.9 0.12 0.6 >100.00 >100.0 0.23 0.7
 100 �50, �50, �50 7 8 17.41 17.8 0.07 0.5 >100.00 >100.0 0.14 0.8

1 3

Parallel batching with multi‑size jobs and incompatible job…

bi is set to 50 for all sizes i = 1,… ,m . The tests are run for all combinations used in
Sect. 5. For issues related to excessive RAM usage, tests for instances up to 100 jobs
are run.

The results on computation times show that having jobs with higher granularity
with regards to their packing in batches, i.e., jobs with sizes included in a wider inter-
val, makes the problem more difficult to solve. The pricing procedure requires in fact
to optimally solve the cardinality-constrained multi-weight knapsack, which becomes
harder when the number of feasible batches that can be formed increases.

Also, as noted in Sect. 4, the dynamic programming state space increases of one
dimension for every size of the jobs, and the magnitude of these state space dimensions
are exactly the maximum batch capacities bi for all i ∈ {1,… ,m} . Thus, having a larger
batch capacity leads to a considerably higher memory usage.

With respect to the percentage gaps, the algorithms still perform well, with very
good average and maximal gaps, showing that the quality is not affected by the granu-
larity of job sizes.

Author Contributions Conceptualization: AD, EP, ER; Methodology: AD, EP, ER; Formal analysis and
investigation: AD, EP, ER; Writing—original draft preparation: AD, EP, ER; Writing—review and edit-
ing: AD, EP, ER.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE
Agreement. No funds, grants, or other support was received.

Availability of data and materials The datasets generated during and/or analysed during the current study
are available from the corresponding author on reasonable request.

Code availability The code developed for this work is available from the corresponding author on reason-
able request.

Declarations

Conflict of interest The authors have no financial or proprietary interests in any material discussed in this
article.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 A. Druetto et al.

1 3

References

Alfieri A, Druetto A, Grosso A et al (2021) Column generation for minimizing total completion time in a
parallel-batching environment. J Sched 24(6):569–588. https:// doi. org/ 10. 1007/ s10951- 021- 00703-9

Azizoglu M, Webster S (2000) Scheduling a batch processing machine with non-identical job sizes. Int J
Prod Res 38(10):2173–2184. https:// doi. org/ 10. 1080/ 00207 54005 00280 34

Azizoglu M, Webster S (2001) Scheduling a batch processing machine with incompatible job families. Com-
put Ind Eng 39(3–4):325–335. https:// doi. org/ 10. 1016/ S0360- 8352(01) 00009-2

Chandru V, Lee CY, Uzsoy R (1993) Minimizing total completion time on batch processing machines. Int J
Prod Res 31(9):2097–2121. https:// doi. org/ 10. 1080/ 00207 54930 89568 47

Desrosiers J, Lübbecke M (2005) A primer in column generation. Column Generation. Springer, Boston, pp
1–32. https:// doi. org/ 10. 1007/0- 387- 25486-2_1

Dobson G, Nambimadom RS (2001) The batch loading and scheduling problem. Oper Res 49(1):52–65.
https:// doi. org/ 10. 1287/ opre. 49.1. 52. 11189

Druetto A, Grosso A (2022) Column generation and rounding heuristics for minimizing the total weighted
completion time on a single batching machine. Comput Oper Res 139(105):639. https:// doi. org/ 10.
1016/j. cor. 2021. 105639

Emde S, Polten L, Gendreau M (2020) Logic-based benders decomposition for scheduling a batching
machine. Comput Oper Res 113(104):777. https:// doi. org/ 10. 1016/j. cor. 2019. 104777

Graham RL, Lawler EL, Lenstra JK et al (1979) Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. Annals of discrete mathematics, vol 5. Elsevier, New York, pp 287–326.
https:// doi. org/ 10. 1016/ S0167- 5060(08) 70356-X

Hulett M, Damodaran P, Amouie M (2017) Scheduling non-identical parallel batch processing machines to
minimize total weighted tardiness using particle swarm optimization. Comput Ind Eng 113:425–436.
https:// doi. org/ 10. 1016/j. cie. 2017. 09. 037

Ikura Y, Gimple M (1986) Efficient scheduling algorithms for a single batch processing machine. Oper Res
Lett 5(2):61–65. https:// doi. org/ 10. 1016/ 0167- 6377(86) 90104-5

Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin Heidelberg. https:// doi. org/
10. 1007/ 978-3- 540- 24777-7

Liu J, Li Z, Chen Q et al (2016) Controlling delivery and energy performance of parallel batch processors in
dynamic mould manufacturing. Comput Oper Res 66:116–129. https:// doi. org/ 10. 1016/j. cor. 2015. 08.
006

Mönch L, Unbehaun R (2007) Decomposition heuristics for minimizing earliness-tardiness on parallel burn-
in ovens with a common due date. Comput Oper Res 34(11):3380–3396. https:// doi. org/ 10. 1016/j. cor.
2006. 02. 003

Mönch L, Fowler JW, Mason SJ (2013) Production planning and control for semiconductor wafer fabrication
facilities: modeling, analysis, and systems. Springer Science & Business Media, Berlin. https:// doi. org/
10. 1007/ 978-1- 4614- 4472-5

Muter A (2020) Exact algorithms to minimize makespan on single and parallel batch processing machines.
Eur J Oper Res 285(2):470–483. https:// doi. org/ 10. 1016/j. ejor. 2020. 01. 065

Ozturk O (2020) A truncated column generation algorithm for the parallel batch scheduling problem to mini-
mize total flow time. Eur J Oper Res 286(2):432–443. https:// doi. org/ 10. 1016/j. ejor. 2020. 03. 044

Ozturk O, Espinouse ML, Mascolo MD et al (2012) Makespan minimisation on parallel batch processing
machines with non-identical job sizes and release dates. Int J Prod Res 50(20):6022–6035. https:// doi.
org/ 10. 1080/ 00207 543. 2011. 641358

Potts CN, Kovalyov MY (2000) Scheduling with batching: a review. Eur J Oper Res 120(2):228–249. https://
doi. org/ 10. 1016/ S0377- 2217(99) 00153-8

Rafiee Parsa N, Karimi B, Moattar Husseini S (2016) Minimizing total flow time on a batch processing
machine using a hybrid max-min ant system. Comput Ind Eng 99:372–381. https:// doi. org/ 10. 1016/j.
cie. 2016. 06. 008

Shahidi-Zadeh B, Tavakkoli-Moghaddam R, Taheri-Moghadam A et al (2017) Solving a bi-objective unre-
lated parallel batch processing machines scheduling problem: a comparison study. Comput Oper Res
88:71–90. https:// doi. org/ 10. 1016/j. cor. 2017. 06. 019

Takamatsu T, Hashimoto I, Hasebe S (1979) Optimal scheduling and minimum storage tank capacities in a
process system with parallel batch units. Comput Chem Eng 3(1–4):185–195. https:// doi. org/ 10. 1016/
0098- 1354(79) 80031-9

https://doi.org/10.1007/s10951-021-00703-9
https://doi.org/10.1080/00207540050028034
https://doi.org/10.1016/S0360-8352(01)00009-2
https://doi.org/10.1080/00207549308956847
https://doi.org/10.1007/0-387-25486-2_1
https://doi.org/10.1287/opre.49.1.52.11189
https://doi.org/10.1016/j.cor.2021.105639
https://doi.org/10.1016/j.cor.2021.105639
https://doi.org/10.1016/j.cor.2019.104777
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/j.cie.2017.09.037
https://doi.org/10.1016/0167-6377(86)90104-5
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1016/j.cor.2015.08.006
https://doi.org/10.1016/j.cor.2015.08.006
https://doi.org/10.1016/j.cor.2006.02.003
https://doi.org/10.1016/j.cor.2006.02.003
https://doi.org/10.1007/978-1-4614-4472-5
https://doi.org/10.1007/978-1-4614-4472-5
https://doi.org/10.1016/j.ejor.2020.01.065
https://doi.org/10.1016/j.ejor.2020.03.044
https://doi.org/10.1080/00207543.2011.641358
https://doi.org/10.1080/00207543.2011.641358
https://doi.org/10.1016/S0377-2217(99)00153-8
https://doi.org/10.1016/S0377-2217(99)00153-8
https://doi.org/10.1016/j.cie.2016.06.008
https://doi.org/10.1016/j.cie.2016.06.008
https://doi.org/10.1016/j.cor.2017.06.019
https://doi.org/10.1016/0098-1354(79)80031-9
https://doi.org/10.1016/0098-1354(79)80031-9

1 3

Parallel batching with multi‑size jobs and incompatible job…

Tan Y, Mönch L, Fowler JW (2018) A hybrid scheduling approach for a two-stage flexible flow shop with
batch processing machines. J Sched 21(2):209–226. https:// doi. org/ 10. 1007/ s10951- 017- 0530-4

Uzsoy R (1994) Scheduling a single batch processing machine with non-identical job sizes. Int J Prod Res
32(7):1615–1635. https:// doi. org/ 10. 1080/ 00207 54940 89570 26

Zhang J, Yao X, Li Y (2020) Improved evolutionary algorithm for parallel batch processing machine sched-
uling in additive manufacturing. Int J Prod Res 58(8):2263–2282. https:// doi. org/ 10. 1080/ 00207 543.
2019. 16174 47

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10951-017-0530-4
https://doi.org/10.1080/00207549408957026
https://doi.org/10.1080/00207543.2019.1617447
https://doi.org/10.1080/00207543.2019.1617447

	Parallel batching with multi-size jobs and incompatible job families
	Abstract
	1 Introduction
	2 Literature review
	3 Problem definition
	4 Two column generation-based heuristics
	4.1 The CG-LB column generation algorithm
	4.2 The CG-UB and VR-UB heuristic procedures

	5 Numerical results
	6 Conclusions
	References

