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Abstract
Parallel batch scheduling has many applications in the industrial sector, like in mate-
rial and chemical treatments, mold manufacturing and so on. The number of jobs 
that can be processed on a machine mostly depends on the shape and size of the 
jobs and of the machine. This work investigates the problem of batching jobs with 
multiple sizes and multiple incompatible families. A flow formulation of the prob-
lem is exploited to solve it through two column generation-based heuristics. First, 
the column generation finds the optimal solution of the continuous relaxation, then 
two heuristics are proposed to move from the continuous to the integer solution of 
the problem: one is based on the price-and-branch heuristic, the other on a variable 
rounding procedure. Experiments with several combinations of parameters are pro-
vided to show the impact of the number of sizes and families on computation times 
and quality of solutions.
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1 Introduction

In the batch scheduling problem, jobs are processed on each machine grouped 
in batches. The batch scheduling can be parallel or serial, depending on the pro-
cessing rule of the jobs within the batch: if the jobs in the batch are processed 
simultaneously, this is the case of a parallel batch; otherwise, if the jobs within 
the batch are processed one after another, the batch is serial. Typical examples of 
parallel batches are furnaces and ovens that can be used, for instance, in mould 
manufacturing and semiconductor industries (Liu et al. 2016; Ozturk et al. 2012); 
instead, serial batches are usually exploited when a setup is needed before pro-
cessing a new batch. In this paper, we address the parallel batch scheduling prob-
lem. Jobs in each batch are processed in parallel, so the processing time of the 
whole batch is equal to the maximum processing time amongst the jobs that com-
pose it. The objective is to compose the batches and to sequence them, to opti-
mize a performance measure. Usually, batches have a maximum size, depending 
on the technological characteristics of the process (Potts and Kovalyov 2000); for 
instance, the batch might have a maximum weight, or a maximum volume. Thus, 
to form the batches, the size constraint must be taken into account.

The batch scheduling problem is typical of semiconductor industries, mold 
manufacturing (Liu et al. 2016), medical device sterilization (Ozturk et al. 2012), 
heat-treating ovens (Mönch and Unbehaun 2007), chemical processes in tanks 
or kilns (Takamatsu et al. 1979), semiconductor and wafer fabrication industries 
(Mönch et  al. 2013), and testing of electrical circuits (Hulett et  al. 2017). Also 
additive manufacturing (AM) often requires batch production to optimize the 
chamber space (Zhang et al. 2020). However, here the processing times depend 
on different factors than those of conventional production, and the resulting 
scheduling problem could be different.

Sometimes, batch production needs to address multiple sizes in composing 
the batches. For instance, in AM, chambers can produce various parts simulta-
neously, either by placing products in the 2-dimensional space or by stacking 
products and hence using the 3-dimensional space of the chamber. Thus, when 
creating the batches, constraints on several dimensions must be considered; for 
instance, if the AM technology in use is able to stack parts in the chamber, then 
there is a maximum vertical span (height) and a maximum horizontal area that 
cannot be exceeded. These dimensions (e.g. height, horizontal area) will be called 
sizes in the paper. Similarly, other industries could have the same batch require-
ments. Moreover, for technological reasons, in shop floors where various product 
families are produced, batches must be composed of jobs of the same family. This 
is the case for families that need different manufacturing operations.

Due to the current industrial challenges, this paper addresses the single machine 
batch scheduling problem with multiple sizes and incompatible job families. The 
aim is to find the batch schedule that minimizes the total completion time; thus, with 
the Graham’s three-field standard notation (Graham et al. 1979), the addressed prob-
lem is defined as 1�p-batch, sij ≤ bi, incomp�∑Cj (where p-batch defines the paral-
lel batching, sij ≤ bi the multiple sizes, and incomp the incompatible job families).
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The remainder of the paper is structured as follows. The relevant literature on 
the batch scheduling problem is reviewed in Sect. 2. The problem is formalized in 
Sect. 3, and the solution approaches are presented in Sect. 4. The numerical results 
are discussed in Sect. 5, while Sect. 6 concludes the paper.

2  Literature review

The batch scheduling problem has been addressed for a few years by many research-
ers (Ikura and Gimple 1986) because of its many fields of application. From the 
complexity point of view, Uzsoy (1994) first proved the NP-hardness for the 
1�p-batch, sj ≤ b�∑Cj problem, where jobs have different sizes, equal process-
ing times and must be batched on a single machine. Since batching has raised the 
interest of many researchers in the scheduling field, there are many applications and 
problem variants that have been addressed in the literature. A complete overview of 
batching problems is given by Potts and Kovalyov (2000), who reviewed both paral-
lel and serial batching problems and discussed major results and algorithms on the 
subject.

In the following, a brief review of the literature on single machine parallel batch 
scheduling problems with total completion time as performance measure, incompat-
ible job families, and/or multiple sizes is discussed. Some examples of recent papers 
that address the parallel batch scheduling with other objective functions are: Muter 
(2020), Emde et al. (2020), Tan et al. (2018), Shahidi-Zadeh et al. (2017).

First, some variations of the single size batch scheduling problem have been stud-
ied. For instance, Azizoglu and Webster (2000) generalized the model of Uzsoy 
(1994) to the weighted case 1�p-batch, sj ≤ b�∑wjCj with arbitrary job sizes and 
weights. They extended the existing branch and bound procedure to this case and 
exploited some dominance properties. Rafiee  Parsa et  al. (2016) addressed the 
1�p-batch, sj ≤ b�∑Cj problem by proposing an ant colony optimization metaheuris-
tic. Alfieri et al. (2021) recently formulated a new MIP for the same problem based 
on a graph model, where the nodes of the graph represent job positions and arcs 
represent batches. The proposed model is solved by means of a column generation 
technique (Desrosiers and Lübbecke 2005) and allows to compute effective lower 
bounds. The model is also extended to the parallel machines environment. A column 
generation approach was also developed by Ozturk (2020), who considered identical 
parallel machines. The problem is here decomposed into two stages: first, a column 
generation is used to generate batches, and second these batches are scheduled on 
machines using an integer linear model.

With respect to incompatible job families, the batch scheduling problem was 
addressed by Azizoglu and Webster (2001), who adapted the solution procedure 
used in Azizoglu and Webster (2000) for the single family case to the incompatible 
job family case 1�p-batch, sj ≤ b, incomp�∑wjCj , where the jobs in the same fam-
ily have equal processing times. The same problem was also solved through several 
heuristic approaches by Dobson and Nambimadom (2001), who addressed a version 
of the 1�p-batch, sj ≤ b, incomp�∑wjCj problem, where the jobs of a family share 
the same processing time and the objective function is the mean weighted flow time.
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To the authors’ knowledge, this is the first attempt to address the batch scheduling 
problem with total completion time minimization, and jobs with multiple sizes and 
incompatible families. As the problem is NP-hard, a flow formulation is exploited 
to solve it through two column generation-based heuristics. The column generation 
finds a continuous-relaxed solution, then two different heuristics from the literature 
are used to move from the continuous to the integer solution of the problem: the 
first is based on the so-called price-and-branch heuristic (Desrosiers and Lübbecke 
2005), the other on a variable rounding procedure (Druetto and Grosso 2022). An 
extensive experimental campaign was run to compare the two heuristics, which both 
prove to be very effective for this scheduling problem. As the results will show, vari-
able rounding is the most effective both in terms of computation time and quality 
of solution. Other useful insights for practical applications will be derived from the 
results.

3  Problem definition

The single machine batching problem is considered, in which a set N = {1,… , n} of 
jobs must be grouped in batches, and the batches must be scheduled on the machine. 
Setup times between batches are assumed to be negligible and are not considered.

The machine processes jobs in batches, and batches must respect physical con-
straints, such as maximum height, volume, weight, and so on. Let m be the number 
of different sizes to be addressed (e.g. m = 3 if the physical constraints imply maxi-
mum height, volume and weight), and bi be the batch capacity associated to the size 
i (with i = 1,… ,m ). Each job j has a processing time pj , and m size values sij , with 
i = 1,… ,m . For instance, if batches must respect a maximum volume ( b1 ) and a 
maximum height ( b2 ), then each job j will be characterized by its own volume s1j 
and its own height s2j.

In the machine, jobs must be clustered in batches, such that the sum of job sizes 
sij of all jobs in a batch does not exceed the batch dimension bi, i = 1,… ,m.

In addition, jobs are grouped into families that represent different process require-
ments. Hence, jobs from different families must be processed in different batches. 
There are nf  families, and each job j belongs to a family f, f = 1,… , nf .

A solution to the problem is made by a batch schedule, i.e., a sequence of feasible 
batches S = B1,… ,BnB

 . The total number of batches nB is not known a priori, but it 
depends on how jobs are clustered in each solution. However, the number of batches 
nB must be in the range between nf  and n, as there should exist at least one batch for 
each family, and there are at maximum n batches each composed of one single job.

All jobs in a batch B are assumed to be processed simultaneously and the pro-
cessing time pB of batch B equals the longest processing time of jobs contained in it 
i.e., pB = {max pj ∀j ∈ B} . Also, a job is completed when all other jobs in the same 
batch are completed, i.e., the completion time Cj of each job equals the completion 
time of the batch it belongs to. The aim is to find the sequence S = B1,… ,BnB

 that 
minimizes the total completion time.

In the paper, the three combinations of constraints will be considered i.e., 
the problem 1�p-batch, sij ≤ bi, incomp�∑Cj , the multi-size problem without 



1 3

Parallel batching with multi‑size jobs and incompatible job…

families ( 1�p-batch, sij ≤ bi�∑Cj ), and the family problem with single size-jobs 
( 1�p-batch, sj ≤ b, incomp�∑Cj).

4  Two column generation‑based heuristics

The flow model used by Alfieri et al. (2021) is exploited and adapted to the problem 
at hand to develop two heuristic algorithms. The flow model considers the feasible 
batches as binary variables and associates a cost to each of them, whose sum is to 
be minimized in the objective function. Usual flow constraints guarantee the flow 
preservation from a source node to the last and a second set of constraints guarantee 
that each job is scheduled exactly once (for the details on the flow formulation, the 
reader is referred to Alfieri et al. (2021)). Both heuristics rely on an initial column 
generation algorithm, which solves the continuous relaxation of the flow model. 
Then, the heuristics use different techniques to move from the continuous solution 
found by the column generation to the final integer solution of the problem, as will 
be explained in the following.

4.1  The CG‑LB column generation algorithm

The column generation starts from a restricted formulation of the relaxed continu-
ous flow model and iteratively selects promising variables (i.e., promising batches) 
through a so-called pricing procedure. The column generation finds as an output the 
optimal solution of the continuous relaxation of the flow model. This solution is 
then used as a starting point to find the integer solution of the initial problem in the 
heuristics. The details of the column generation are explained in the following.

First, an initialization phase is needed. Jobs are first sorted according to the Short-
est Processing Time (SPT) rule, which is optimal for the scheduling of all jobs on a 
serial machine with the 

∑
Cj objective function (Chandru et al. 1993). Then, some 

feasible batches are generated by clustering together the sorted jobs until one of the 
maximum batch dimensions is reached, or until a job belonging to a different family 
is selected. When the batch is closed, it is placed on all possible schedule positions, 
and then, a new batch is developed with the same rule. The final output of the ini-
tialization is the set H, which contains a set of feasible batches.

The set H is set as the initial column set in the column generation, which is used 
to solve the continuous relaxation of the flow model. The algorithm iterates between 
solving the Restricted Master Problem (RMP, i.e., the problem with only a subset 
of variables) and the pricing problem (the problem of selecting new columns to be 
added to the RMP) until the continuous optimum is found.

In the pricing procedure, the dual multipliers associated with the RMP are com-
puted to find the most promising variables, i.e., those with the most negative reduced 
cost, to be included in the next iteration of the RMP.

The pricing problem searches for the minimum reduced cost c̄ikB∗ associated to arc 
(i, k,B∗) , among all arcs (i, k, B) that correspond to feasible batches. Let vj be the dual 
multiplier corresponding to the constraints that guarantee that all jobs are included in 
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the final schedule, and let ui, uk be the dual multipliers corresponding to the flow main-
tenance constraints. Recall that each job j belongs to a family fj and has m different 
sizes shj ( h ∈ {1,… ,m} ), corresponding to the m batch capacities bh ; furthermore, the 
batch cardinality |B| must be equal to (k − i) . Then, the problem can be formulated as 
follows.

For each new possible feasible batch B, the evaluation of the corresponding reduced 
cost depends on the position in the sequence, on the processing time and on the jobs 
included in the batch. By isolating the parts depending on the position in an external 
loop that considers every i, k with k > i , the problem at hand is reduced to the com-
putation of the feasible batch containing k − i jobs with maximum value. This prob-
lem can be formulated as a cardinality-constrained multi-weight knapsack, which 
has to be solved for every starting and ending position. Indeed, jobs are the items, 
their dual multipliers are profits, and their sizes are the weights.

The solution space of the multi-weight knapsack problem with cardinality constraint 
is explored via a dynamic programming algorithm. Specifically, for every pair of i, k 
with k > i , and for each job r = 1,… , n , let gr(�1,… , �m, l) be the optimal knapsack 
with capacities �h for all h ∈ {1,… ,m} , cardinality l = k − i , and that considers only 
jobs r, r + 1,… , n . The binary variable yj ∈ {0, 1} equals 1 if job j is selected for the 
knapsack, 0 otherwise. Then, the algorithm searches for the following values.

This can be computed with the following recursion as in Kellerer et al. (2004):

where r′ is the next job in the Longest Processing Time (LPT) ordering that belongs 
to the same family of the job that started the recursion. In this way, family incompat-
ibilities are addressed. The boundary conditions are as follows:

(1)c̄ikB∗ = min
B

⎧
⎪⎨⎪⎩

cikB −
∑

j∈B vj ∶∑
j∈B shj ≤ bh ∀h ∈ {1,… ,m},

fj = fj� ∀j, j� ∈ B,

�B� = (k − i)

⎫
⎪⎬⎪⎭
− (ui − uk)

(2)

gr(�1,… , �m, l) =max

{ n∑
j=r

vjyj ∶

n∑
j=r

s1jyj ≤ �1, … ,

n∑
j=r

smjyj ≤ �m,

n∑
j=r

yj = l, fj = fr, yj ∈ {0, 1}

}

(3)gr(�1,… ,�m, l) = max

{
gr� (�1 − s1r,… , �m − smr, l − 1) + vr (yr = 1)

gr� (�1,… , �m, l) (yr = 0)

(4)gr(�1,… ,�m, 1) =

{
vr if shr ≤ �h (yr = 1)

0 otherwise (yr = 0)
r = 1,… , n, �h = 0,… , bh

(5)gr(�1,… ,�m, 0) = 0 r = 1,… , n, �h = 0,… , bh
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Equations (4)–(6) hold for all h ∈ {1,… ,m} since all sizes must be considered. It is 
worth noting that the dynamic programming state space increases of one dimension 
for every size of the jobs.

The variables with negative reduced cost found through this pricing procedure are 
added to the RMP, and the procedure is repeated until no negative reduced costs are 
found. The final solution of the column generation is the optimum (CG‑UB) for the 
continuous problem, and a lower bound for the integer problem. This algorithm, called 
Column Generation Lower Bound, will be referred to as CG‑LB in the following.

4.2  The CG‑UB and VR‑UB heuristic procedures

Two heuristics are proposed to find an integer solution for the problem, and both starts 
from the lower bound given by the column generation CG‑LB.

The first heuristic is called Column Generation Upper Bound (CG‑UB), and it is 
the same used by Alfieri et al. (2021). Once the continuous optimum CG‑LB is found, 
the variable domain of the problem is changed from continuous to binary, and the MIP 
is solved to get a heuristic integer solution, namely CG‑UB. This evaluation can be 
quite slow, especially when the number of jobs increases. Solving such a MIP to the 
optimum is NP-hard, indeed. Some strategies to speed up the evaluation could include 
stopping the evaluation after a fixed number of open nodes (but that amount should 
increase with the number of considered jobs), or after a certain time limit has been 
reached (but it can lead to large CG‑UB/CG‑LB gaps), or after a certain gap is reached 
(but the timing to reach such a gap could be too slow again). A time limit will be set for 
the numerical results of Section 5.

The second heuristic is the Variable Rounding Upper Bound, namely VR‑UB, and 
consists in the variable rounding procedure proposed in Druetto and Grosso (2022). 
Differently from CG‑UB, this approach generates good upper bounds within shorter 
computation times. Promising variables are sequentially fixed to 1 i.e., a batch is forced 
to be included in the solution. Then, the leftover part of the RMP is re-optimized with 
continuous variables, up to the point when the entire sequence is established. Between 
each rounding and re-optimization step, the feasibility is restored through a modified 
version of the initialization algorithm. This modified version is run only on the not-
fixed part of the sequence and considers only jobs not included in the fixed batches yet.

(6)gr(𝜏1,… ,𝜏m, l) = −∞ if l > n − r + 1 or 𝜏h < 0
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Algorithm 1 Variable Rounding Upper Bound
1: z ← CG-LB computed over G(V, A ); generates also batches in A
2: n ← |N |, k ← 1;
3: while k ≤ n do
4: i ← k; new starting position is old ending position
5: x ← nonzero basic variables of G(V,A );
6: j ← index of max{x} with starting position i; batch with highest flow
7: k ← ending position of selected batch j;
8: if xj = 1 then if xj is already integer, skip to the next
9: fix xj := 1; variable xj rounded to be 1

10: continue
11: end if
12: fix xj := 1; variable xj rounded to be 1
13: FeasRestore(G, k); feasibility restoration on G from k to end
14: z ← CG-LB computed over G(V,A ); re-optimization of the problem
15: end while
16: VR-UB ← CG-LB computed over G(V,A ); is an integral solution

The detailed variable rounding procedure is summarized in Algorithm  1, and 
it works as follows. First, CG‑LB is computed and the RMP is populated. Then, 
among all columns that start from i = 1 i.e., all batches in the first position of the 
sequence, the one whose flow value is the closest to 1 is selected and enforced to 
be part of the solution. Also, no other columns can start from the same position. 
The procedure is repeated on the remaining part of the problem, by keeping all the 
already generated columns. Then, again, a new selection is made among all columns 
that start from i = k , where k was the ending position of the column fixed in the pre-
vious step.

The column generation and variable rounding procedures are iterated until the 
value i = |N| + 1 is reached, i.e., when there exist a sequence of batches from 1 to 
|N| + 1 , where all non-zero flow variables are equal to 1; this is the heuristic solution 
VR‑UB for the original problem.

As shown in Algorithm 1, during the variable rounding procedure, another opti-
mization of the algorithm is made (lines 8-11 of Algorithm 1). If the selected col-
umn already has a flow with value 1 i.e., it is already integer in the continuous opti-
mum, there is no need to re-optimize the model, since the value obtained would be 
the same as before and no new columns would be generated.

5  Numerical results

Random instances are generated to test the proposed algorithm. The generation 
approach used in Alfieri et  al. (2021), Rafiee Parsa et  al. (2016), Uzsoy (1994) is 
here replicated.
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In the experiment, some factors are varied to test the proposed approach 
in various scenarios. Specifically, the number of jobs n has been varied in 
n = {20, 40, 60, 80, 100, 200} , as the larger is n, the more complex is the problem 
to be solved. Jobs have various sizes, and each size can be sampled from two dif-
ferent uniform distributions: �10 = U(1, 10) and �5 = U(1, 5) ; the results should 
confirm that smaller intervals make the problem more complex, as more feasible 
batches can be created. The evaluated numbers of sizes per job are m = {1, 2, 3} , 
to test the efficiency of the approach in the multi-size cases. For each size, a dis-
tribution must be chosen between �10 and �5 and, for each value of m, all possible 
combinations of �10 and �5 are evaluated. Last, the tested numbers of families are 
nf = {1, 3, 5, 7, 10} , to address the case of incompatible job families. All in all, 
174 combinations of factors are tested. For each combination, 10 instances are 
solved, thus leading to 1740 experiments. For conciseness purposes, only results 
for n = {20, 60, 100, 200} are shown below; the trend highlighted by this subset of 
experiments is confirmed by the experiments on the other sizes.

Some system characteristics have been fixed as parameters in all the instances. 
Specifically, for each job, the processing time is sampled from a uniform distri-
bution U(1, 100). If more than one family is considered, the family is randomly 
assigned to every job with equal probability. Also, for each size, the batch capac-
ity bi is fixed to 10, as commonly used in the literature (Azizoglu and Webster 
2000; Rafiee Parsa et al. 2016; Alfieri et al. 2021).

Beside the instances generated as mentioned above, additional tests are run 
with bi = 50 and with size distribution �50 = U(1, 50) . The aim is to test the algo-
rithm performance in the case where jobs have sizes with higher granularity. The 
results are presented separately in Appendix A.

Two heuristic algorithms are compared: the column generation combined with 
the MIP solver (CG‑UB), and the column generation with the variable rounding 
procedure (VR‑UB). Both are described in Sect. 4.

The proposed methods are developed in C++, and the optimization procedure 
is done by calling the CPLEX solver, version 12.9. Tests are run on a computer 
having a 3.70 GHz Intel i7 processor with 32 GB RAM.

In the following, the results are shown separately for the following cases: multi-
size with no families (Table 1); incompatible families with one size (Tables 2 and 
3); multi-size and incompatible families (Table 4, which shows only the cases of 
3 and 7 families for reasons of conciseness). Results of single-size single-family 
instances are not reported in the paper for reasons of conciseness.

In all the tables, each row reports various statistics for a single combination of 
factors (grouping together the 10 instances) on the performance of the CPLEX’s 
integer solution (CG‑UB) and of the variable rounding procedure (VR‑UB). Spe-
cifically, each row is characterized by:

• the number of jobs n;
• the distributions for each size (columns s1 , s2 , s3 contain respectively the dis-

tribution of size 1, 2 or 3, if jobs have one, else −);
• the number of incompatible families nf ;
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• the number of reached optima � (where the optimum is reached in the case 
LB = UB ), knowing that the optimum is reached when the continuous CG‑LB is 
characterized by all integer variables;

• the average (Avg t) and maximum (Max t) computation time over the 10 
instances, expressed in seconds;

• the average (Avg % g) and maximum (Max % g) percentage gap computed on the 
single instance as: 

gapCG-UB = CG-UB − CG-LB
CG-UB

× 100, gapVR-UB = VR-UB − CG-LB
VR-UB

× 100.

Table 1  Algorithm performance on the multi-size case

n s1, s2, s3 � CG‑UB VR‑UB

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �10 �10− 7 0.03 0.1 0.27 1.5 0.02 0.1 0.20 0.8
20 �10 �5− 6 0.03 0.1 0.52 2.6 0.02 0.1 0.36 1.9
20 �5 �5− 2 0.05 0.1 1.13 3.5 0.02 0.1 1.11 3.5
60 �10 �10− 0 0.19 0.4 0.30 0.9 0.14 0.2 0.48 1.3
60 �10 �5− 0 0.50 1.7 0.53 1.1 0.30 0.5 0.86 2.0
60 �5 �5− 0 10.74 35.9 2.01 3.4 0.97 1.3 1.85 2.5
100 �10 �10− 1 1.17 2.3 0.16 0.3 0.99 1.4 0.36 0.8
100 �10 �5− 0 8.55 34.5 0.60 1.2 1.79 2.3 1.08 2.1
100 �5 �5− 0 97.66 >100.0 3.76 6.6 4.11 4.6 1.84 2.5
200 �10 �10− 0 20.91 >100.0 0.12 0.3 7.91 11.9 0.29 0.5
200 �10 �5− 0 97.40 >100.0 0.51 2.0 11.51 14.9 0.60 1.1
200 �5 �5− 0 >100.00 >100.0 56.80 69.7 27.91 30.3 1.37 2.1
20 �10 �10 �10 10 0.03 0.1 0.00 0.0 0.03 0.1 0.00 0.0
20 �10 �10 �5 8 0.04 0.1 0.06 0.6 0.03 0.1 0.07 0.7
20 �10 �5 �5 3 0.05 0.1 0.78 2.4 0.05 0.1 1.29 4.8
20 �5 �5 �5 0 0.07 0.1 1.94 4.2 0.07 0.1 2.34 5.1
60 �10 �10 �10 7 0.18 0.3 0.12 0.8 0.34 0.5 0.14 0.8
60 �10 �10 �5 1 0.25 0.4 0.34 0.9 0.60 0.9 0.70 1.8
60 �10 �5 �5 0 0.40 0.9 0.49 1.2 0.87 1.3 1.08 3.6
60 �5 �5 �5 0 7.24 24.0 1.62 2.3 2.09 2.7 1.81 3.0
100 �10 �10 �10 4 0.83 1.1 0.03 0.1 1.84 3.0 0.08 0.4
100 �10 �10 �5 4 1.21 2.0 0.10 0.3 2.69 6.0 0.24 0.7
100 �10 �5 �5 0 6.08 11.0 0.51 0.8 5.75 7.4 0.94 2.0
100 �5 �5 �5 0 82.57 >100.0 1.88 5.0 9.04 11.4 1.33 2.2
200 �10 �10 �10 4 5.76 8.6 0.03 0.1 13.90 26.7 0.08 0.4
200 �10 �10 �5 0 12.05 22.5 0.10 0.2 25.21 47.7 0.28 0.7
200 �10 �5 �5 0 90.16 >100.0 0.34 0.6 44.27 62.1 0.69 1.4
200 �5 �5 �5 0 >100.00 >100.0 22.85 68.9 78.35 96.2 1.14 2.1
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Table 2  Algorithm performance on the family case for �10
n s1 nf � CG‑UB VR‑UB

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �10 3 6 0.04 0.1 0.54 2.7 0.01 0.1 1.28 5.7
20 �10 5 7 0.03 0.1 0.44 1.7 0.01 0.1 0.49 2.1
20 �10 7 7 0.04 0.2 0.41 2.3 0.01 0.1 0.42 2.3
20 �10 10 7 0.04 0.2 0.22 1.7 0.01 0.1 0.43 3.6
60 �10 3 0 0.29 0.5 1.34 2.3 0.15 0.2 1.97 4.2
60 �10 5 0 0.19 0.4 0.65 2.0 0.09 0.2 1.17 2.9
60 �10 7 3 0.18 0.5 0.76 3.6 0.06 0.1 1.08 5.7
60 �10 10 2 0.12 0.2 0.83 1.9 0.06 0.1 1.11 2.7
100 �10 3 0 2.51 3.6 0.76 1.1 1.24 1.7 1.31 2.2
100 �10 5 0 1.29 1.8 0.92 1.4 1.01 1.7 1.70 2.7
100 �10 7 0 1.28 3.0 0.81 1.5 0.81 1.2 1.18 2.5
100 �10 10 0 0.97 1.8 1.21 2.3 0.74 1.0 1.87 3.7
200 �10 3 0 53.45 >100.0 0.58 1.4 8.63 12.1 1.01 1.6
200 �10 5 0 16.33 24.0 0.74 1.1 8.05 10.3 1.52 2.5
200 �10 7 0 16.94 49.2 0.83 1.2 6.58 8.0 1.39 1.9
200 �10 10 0 11.09 23.5 0.80 1.4 5.95 7.3 1.39 2.2

Table 3  Algorithm performance on the family case for �5
n s1 nf � CG‑UB VR‑UB

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �5 3 3 0.05 0.1 1.12 2.7 0.01 0.1 1.43 4.2
20 �5 5 4 0.04 0.1 1.34 4.1 0.01 0.1 2.15 6.5
20 �5 7 5 0.04 0.1 0.63 3.7 0.01 0.1 1.09 4.5
20 �5 10 6 0.04 0.1 0.99 3.2 0.01 0.1 1.25 4.4
60 �5 3 0 2.05 5.3 2.49 4.1 0.69 1.0 3.30 7.1
60 �5 5 0 0.75 1.8 2.72 5.0 0.51 0.7 3.40 5.9
60 �5 7 0 0.61 0.9 2.79 7.1 0.40 0.6 3.51 7.0
60 �5 10 0 0.28 0.5 2.02 3.2 0.26 0.4 2.75 4.7
100 �5 3 0 87.51 >100.0 3.19 5.4 3.50 4.2 3.11 4.6
100 �5 5 0 24.05 >100.0 2.39 3.9 2.72 3.1 3.34 5.3
100 �5 7 0 8.13 16.3 2.49 4.2 2.30 2.7 3.02 4.9
100 �5 10 0 3.00 5.2 2.02 3.1 2.02 2.5 2.66 4.4
200 �5 3 0 >100.00 >100.0 40.70 72.1 23.97 29.8 2.35 3.1
200 �5 5 0 >100.00 >100.0 39.83 70.6 18.71 21.8 2.94 3.7
200 �5 7 0 >100.00 >100.0 5.41 8.9 17.14 21.2 3.23 4.2
200 �5 10 0 >100.00 >100.0 3.86 6.1 14.75 18.1 3.00 3.7
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Table 4  Algorithm performance on the multi-size family case

CG‑UB VG‑UB

n s1, s2, s3 nf � Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

20 �10, �10,− 3 9 0.02 0.1 0.06 0.6 0.01 0.1 0.31 3.1
20 �10, �10,− 7 10 0.02 0.1 0.00 0.0 0.01 0.1 0.00 0.0
20 �10, �5,− 3 6 0.04 0.1 0.86 3.5 0.01 0.1 0.90 3.9
20 �10, �5,− 7 4 0.04 0.1 0.40 2.4 0.01 0.1 1.33 3.1
20 �5, �5,− 3 2 0.07 0.1 1.18 3.8 0.02 0.1 1.61 3.9
20 �5, �5,− 7 2 0.07 0.2 1.92 5.0 0.01 0.1 2.79 5.9
60 �10, �10,− 3 2 0.13 0.2 0.29 1.6 0.10 0.2 0.68 1.7
60 �10, �10,− 7 5 0.09 0.2 0.16 0.6 0.06 0.1 0.36 1.9
60 �10, �5,− 3 0 0.33 0.7 1.00 2.0 0.18 0.4 1.41 3.5
60 �10, �5,− 7 2 0.12 0.2 0.82 2.3 0.11 0.2 1.09 4.2
60 �5, �5,− 3 0 1.36 2.8 2.38 3.7 0.77 1.0 3.79 6.2
60 �5, �5,− 7 0 0.43 0.8 2.46 3.8 0.43 0.7 4.14 6.1
100 �10, �10,− 3 3 0.78 1.4 0.32 0.6 0.77 1.3 0.57 1.1
100 �10, �10,− 7 2 0.47 0.8 0.45 1.1 0.61 0.9 0.73 1.5
100 �10, �5,− 3 0 1.77 4.0 0.50 0.8 1.39 1.9 0.93 1.9
100 �10, �5,− 7 0 1.00 1.4 0.96 2.1 0.99 1.4 1.52 2.4
100 �5, �5,− 3 0 75.00 >100.0 2.26 4.2 3.59 4.3 2.42 3.5
100 �5, �5,− 7 0 8.74 27.1 2.17 3.0 2.55 3.3 2.98 5.4
200 �10, �10,− 3 1 6.36 9.8 0.17 0.3 6.35 9.2 0.34 1.0
200 �10, �10,− 7 0 4.83 8.2 0.25 0.6 4.99 6.3 0.53 0.9
200 �10, �5,− 3 0 52.38 >100.0 0.54 0.9 11.12 13.2 1.16 1.5
200 �10, �5,− 7 0 14.58 41.4 0.81 1.4 9.06 12.5 1.63 1.9
200 �5, �5,− 3 0 >100.00 >100.0 28.97 68.9 24.27 27.7 2.24 2.7
200 �5, �5,− 7 0 >100.00 >100.0 6.38 8.7 20.17 23.7 2.50 3.1
20 �10, �10, �10 3 10 0.04 0.1 0.00 0.0 0.03 0.1 0.00 0.0
20 �10, �10, �10 7 10 0.03 0.1 0.00 0.0 0.02 0.1 0.00 0.0
20 �10, �10, �5 3 7 0.07 0.2 0.56 4.5 0.04 0.1 0.48 3.8
20 �10, �10, �5 7 8 0.03 0.0 0.12 0.9 0.03 0.1 0.47 3.8
20 �10, �5, �5 3 4 0.08 0.1 0.91 3.6 0.04 0.1 1.16 3.9
20 �10, �5, �5 7 6 0.04 0.1 0.88 3.8 0.04 0.1 1.19 3.8
20 �5, �5, �5 3 1 0.09 0.2 2.38 6.5 0.06 0.1 2.99 6.9
20 �5, �5, �5 7 3 0.05 0.1 1.61 5.0 0.05 0.1 2.50 5.9
60 �10, �10, �10 3 8 0.16 0.2 0.03 0.2 0.31 0.8 0.16 1.3
60 �10, �10, �10 7 7 0.13 0.2 0.18 1.3 0.32 0.8 0.36 1.6
60 �10, �10, �5 3 3 0.26 0.7 0.35 0.8 0.44 0.7 0.43 0.8
60 �10, �10, �5 7 6 0.16 0.3 0.37 1.8 0.44 1.3 0.59 2.7
60 �10, �5, �5 3 0 0.50 0.9 0.88 1.5 0.91 1.7 1.51 2.8
60 �10, �5, �5 7 0 0.27 0.4 1.05 2.2 0.64 0.9 1.76 3.2
60 �5, �5, �5 3 1 1.39 2.6 1.84 2.9 1.61 2.5 2.14 4.3
60 �5, �5, �5 7 0 0.36 0.4 1.98 3.3 1.19 1.8 2.61 5.2
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The column generation procedure that generates promising batches and builds a frac-
tional solution works very fast. Finding the optimal integer solution using those batches 
is instead a time consuming issue for large instances. For this reason, a time limit of 100 
CPU s has been set.

First, both the CG‑UB and �� − �� approaches are very fast. Indeed, for instances 
up to 60 jobs, the overall computation time is of the order of one second. Across all 
instances, the largest computation time for �� − �� is 96.2 s, while CG‑UB sometimes 
reaches the 100 second time limit.

The instances with sizes distributed following �5 are more difficult than those follow-
ing �10 . Indeed, if comparing the instances in Tables 2 and 3 with 200 jobs, the average 
computation time of CG‑UB moves from the order of 20 s for �10 cases to times larger 
than 100 s for �5 . The same is true for �� − �� , although computation times are lower 
for both cases. As �5 reduces the maximum size a job can have, there are more possible 
combinations of jobs in a single batch, thus both computation times and gaps increase. 
However, if more than one size constraint is considered (Tables 1 and 4), even with �5 
the number of combinations decreases, and the dynamic programming that searches for 
feasible batches is able to cut uninteresting combinations. Thus, the greater the number 
of job sizes, the faster the algorithm works.

The number of jobs negatively impacts the computation time and the gaps, both 
for CG‑UB and �� − �� . Specifically, CG‑UB often needs more than 100 s to solve 
instances with 200 jobs, especially in the cases of �5 size distributions. Instead, �� − �� 
is able to handle these instances in most cases, but its computation time largely 

Table 4  (continued)

CG‑UB VG‑UB

n s1, s2, s3 nf � Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

100 �10, �10, �10 3 6 1.08 1.5 0.04 0.2 1.04 1.5 0.07 0.6
100 �10, �10, �10 7 5 0.40 0.6 0.20 0.8 1.05 1.8 0.23 0.8
100 �10, �10, �5 3 2 1.31 1.9 0.20 0.5 2.25 4.2 0.36 1.1
100 �10, �10, �5 7 1 0.65 0.9 0.42 1.1 2.33 4.0 0.80 2.4
100 �10, �5, �5 3 0 2.56 6.3 0.58 1.4 4.05 6.5 1.17 2.4
100 �10, �5, �5 7 0 1.10 1.4 0.81 1.8 4.07 8.5 1.32 3.4
100 �5, �5, �5 3 0 43.04 >100.0 1.57 2.5 7.97 10.3 2.04 3.3
100 �5, �5, �5 7 0 3.63 5.9 1.69 2.4 6.45 10.2 2.88 5.2
200 �10, �10, �10 3 3 5.07 6.7 0.03 0.2 15.40 26.6 0.09 0.2
200 �10, �10, �10 7 4 2.92 4.9 0.10 0.4 8.98 16.5 0.15 0.6
200 �10, �10, �5 3 0 8.88 12.3 0.17 0.3 19.70 27.1 0.36 1.0
200 �10, �10, �5 7 1 6.13 10.0 0.27 0.6 21.78 29.5 0.60 1.1
200 �10, �5, �5 3 0 38.87 >100.0 0.46 0.8 40.75 61.2 0.91 1.5
200 �10, �5, �5 7 0 11.20 16.7 0.60 1.0 32.97 44.9 1.10 1.8
200 �5, �5, �5 3 0 >100.00 >100.0 9.52 13.5 71.87 80.8 1.86 2.3
200 �5, �5, �5 7 0 >100.00 >100.0 4.12 5.9 59.99 70.6 2.37 3.4
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increases with respect to the instances with a small number of jobs. Moreover, with 
smaller numbers of jobs, both algorithms are more likely able to find optimal solutions; 
indeed, the number of optimal solutions � is larger with smaller instances.

When incompatible families are addressed, a noticeable difference in computation 
times can be seen when the number of families increases. This is shown both in Tables 2 
and 3 and in Table 4. In the former tables, the average computation time decreases with 
the increase of the number of families. For instance, with n = 100 and s1 = �10 , the 
average computation time goes from 2.51 with 3 families to 0.97 with 10 families for 
the CG‑UB, and from 1.24 to 0.74 for the �� − �� . When multi-size is involved, the 
same decrease in computation time is shown in Table 4; interestingly, if �5 distribution 
is given to the sizes, the difference in computation time with different families is even 
larger. As an example, if comparing the cases with n = 100; m = 3; si = �10 ∀i and 
n = 100; m = 3; si = �5 ∀i , the difference in the average computation times from 3 to 
7 families for the CG‑UB moves from the order of 0.68 s to the order of 39.41 s. In the 
same instances, for the �� − �� approach, there is no difference between computation 
times of 3 and 7 families for the �10 instances, and there is a difference of the order of 
1.52 s for the �5 instances. As explained in Section 4, the search in the state space from 
job r that belongs to family f can be restricted to the subset of jobs belonging to the 
same family. This modification of the search procedure does not impact on the structure 
of the state space, and leads to a decrease in computation time proportional to the num-
ber of families.

Lastly, comparing the results of CG‑UB and �� − �� across all results, the proposed 
variable rounding tends to be faster than CG‑UB, and obtains comparable or better per-
formance. Specifically, for the single-size multi-family cases �� − �� is always faster 
than CG‑UB. Indeed, Tables 2 and 3 show that both average and maximum computa-
tion times are smaller for �� − �� in all the cases. When the single-family multi-size 
cases are considered (Table  1), CG‑UB and �� − �� have comparable performance 
in the instances with a small number of jobs and �10 distribution. However, �� − �� 
achieves remarkable improvements in gaps for the cases with large numbers of jobs and 
sizes with �5 distributions. For instance, in the experiments with n = 200;si = �5 ∀i , 
the average gap moves from 56.80 % (two sizes) and 22.85 % (three sizes) for CG‑UB 
to 1.37 % (two sizes) and 1.14 % for �� − �� , respectively. It is worth noting that the 
large CG‑UB gap for larger instances is due to the enforced time limit. In terms of com-
putation times, �� − �� results to be faster than CG‑UB in almost all the cases. Also, 
CG‑UB often reaches the time limit when 200 jobs are considered. Further experiments 
have been conducted for the cases where CG‑UB reaches the time limit, and the results 
show that the computation times are consistently larger than �� − �� . For the multi-size 
family case, the same considerations hold, proving the outperforming of �� − �� with 
respect to CG‑UB.

Although some gaps are slightly better for �� − �� (except for the cases where the 
time limit is exceeded), the relative difference is not worth the extra time required in 
comparison to the faster �� − �� . For instance, consider the single-size multi-family 
case with n = 200; s1 = �10 and nf = 7 in Table 2. The algorithm �� − �� finds the 
optimum value (without reaching the time limit) in an average time of 16.94s, with 
a mean gap equal to 0.83% ; on the same instances �� − �� takes only 8.00s in the 
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worst case (less than the half of �� − �� average case), with an average gap equal to 
1.39% , i.e., only half a point worse than �� − ��.

As the additional tests of Appendix A show, the efficiency of the algorithms is not 
affected for instances with larger job sizes and batch capacity. The average gaps are 
competitive for both algorithms; however, they suffer from the computation point of 
view since the pricing procedure becomes more difficult in these cases.

6  Conclusions

The parallel batch scheduling problem has become more and more addressed by the 
scientific and industrial communities because of its applications in many industrial 
fields.

This paper addresses the 1�p-batch, sij ≤ bi, incomp�∑Cj problem. To the 
authors’ knowledge, this paper is the first attempt in the literature to consider mul-
tiple sizes and family incompatibility constraints together. Also, no assumptions are 
made on the distribution and/or the value of the processing times.

The solution approach is based on the flow formulation of the problem by Alfieri 
et al. (2021); this formulation is exploited to develop two column-generation based heu-
ristics: one is based on the price-and-branch heuristic ( �� − �� ) of Alfieri et al. (2021), 
the other on the variable rounding procedure ( �� − �� ) proposed in Druetto and Grosso 
(2022). The column generation finds a continuous-relaxed solution, then the two heu-
ristics are used to move from the continuous to the integer solution of the problem. An 
extensive experimental campaign compared the two heuristics, which both proved to be 
very effective for this scheduling problem. Indeed, the proposed approaches can handle 
instances up to 200 jobs, and both find very good optimality gaps in all the addressed 
instances. Moreover, with a small number of jobs, the proposed algorithms are able to 
find optimal solutions in most of the cases.

Numerical results show that the smaller the job sizes, the more difficult the batch 
scheduling problem becomes. Having more than one size constraint simplifies the 
problem from the computation standpoint. Also, having more families simplifies the 
problem, as the number of feasible combinations of jobs is reduced.

Also, comparing the two heuristics, interesting results emerged. In simple instances 
(i.e., with a small number of jobs, large job sizes and a small number of families) the 
difference between the two approaches is not appreciable. The real gain can be per-
ceived in difficult instances, where both computation times and gaps largely decrease. 
Specifically, instances with 200 jobs can not be solved by the �� − �� approach in 100 
second time limit, however the variable rounding �� − �� is able to achieve good gaps 
in less than the time limit. In general, almost all instances are solved within a minute 
and the gap rarely overcomes 5% . The variable rounding procedure is therefore shown 
to be a valid alternative to the �� − ��.

At its current state, the proposed approach is able to solve single-machine batch 
scheduling problems. Further research will be devoted to adapting the approach to 
parallel machines and to weighted completion times ( 

∑
wjCj).
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Additional Tests

Table 5 shows the results of some additional tests. In these tests, a different size distri-
bution and a different batch capacity are considered. The instances were generated with 
all jobs sizes sampled from a uniform distribution U(1, 50) while the batch capacity 

Table 5  Results for higher granularity jobs

n s1, s2, s3 nf � �� − �� �� − ��

Avg
t

Max
t

Avg
% g

Max
% g

Avg
t

Max
t

Avg
% g

Max
% g

Multiple sizes, single family
 20 �50, �50 1 6 0.04 0.1 0.67 3.3 0.06 0.1 0.84 3.7
 60 �50, �50 1 2 0.33 0.5 0.18 0.5 0.60 1.1 0.30 1.0
 100 �50, �50 1 1 1.83 3.8 0.12 0.3 3.76 7.4 0.30 1.0
 20 �50, �50, �50 1 10 0.58 0.6 0.00 0.0 1.25 1.8 0.00 0.0
 60 �50, �50, �50 1 7 5.26 5.4 0.15 0.7 34.27 >100.0 0.23 1.3
 100 �50, �50, �50 1 4 18.19 20.0 0.06 0.3 >100.00 >100.0 0.12 0.6

Single size, multiple families
 20 �50 3 7 0.03 0.1 0.25 1.3 0.02 0.1 0.31 1.3
 20 �50 5 6 0.03 0.1 0.72 3.4 0.02 0.1 0.84 3.9
 20 �50 7 10 0.02 0.1 0.00 0.0 0.02 0.1 0.00 0.0
 20 �50 10 8 0.02 0.1 0.29 2.2 0.02 0.1 0.29 2.0
 60 �50 3 1 0.21 0.3 0.84 1.3 0.21 0.3 1.43 2.6
 60 �50 5 0 0.23 0.3 0.97 1.7 0.13 0.2 1.29 2.4
 60 �50 7 0 0.17 0.3 0.80 2.2 0.10 0.1 1.57 4.2
 60 �50 10 0 0.15 0.2 0.78 1.5 0.09 0.1 1.09 2.5
 100 �50 3 0 2.49 4.6 0.53 1.1 1.62 2.6 1.07 2.9
 100 �50 5 0 2.50 8.3 1.33 2.0 1.38 2.0 1.89 2.9
 100 �50 7 0 1.32 2.9 1.21 2.2 1.06 1.4 1.98 3.8
 100 �50 10 0 0.91 1.2 0.73 1.6 0.94 1.5 1.44 2.8

Multiple sizes, multiple families
 20 �50, �50 3 9 0.03 0.1 0.05 0.5 0.04 0.1 0.14 1.4
 20 �50, �50 7 7 0.03 0.1 0.26 1.5 0.04 0.1 0.72 4.0
 60 �50, �50 3 3 0.26 0.4 0.37 1.6 0.67 1.2 0.82 2.3
 60 �50, �50 7 5 0.19 0.2 0.23 0.9 0.47 0.9 0.38 1.8
 100 �50, �50 3 1 1.07 1.4 0.24 0.8 2.77 4.6 0.45 1.3
 100 �50, �50 7 3 0.75 1.4 0.36 1.3 2.24 4.2 0.65 1.6
 20 �50, �50, �50 3 9 0.6 0.6 0.22 2.2 1.33 1.8 0.21 2.1
 20 �50, �50, �50 7 9 0.6 0.6 0.02 0.2 1.26 1.7 0.09 0.9
 60 �50, �50, �50 3 6 5.27 5.4 0.16 0.6 30.27 58.0 0.22 0.8
 60 �50, �50, �50 7 7 5.24 5.3 0.12 0.9 27.73 58.7 0.30 1.2
 100 �50, �50, �50 3 5 17.66 17.9 0.12 0.6 >100.00 >100.0 0.23 0.7
 100 �50, �50, �50 7 8 17.41 17.8 0.07 0.5 >100.00 >100.0 0.14 0.8
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bi is set to 50 for all sizes i = 1,… ,m . The tests are run for all combinations used in 
Sect. 5. For issues related to excessive RAM usage, tests for instances up to 100 jobs 
are run.

The results on computation times show that having jobs with higher granularity 
with regards to their packing in batches, i.e., jobs with sizes included in a wider inter-
val, makes the problem more difficult to solve. The pricing procedure requires in fact 
to optimally solve the cardinality-constrained multi-weight knapsack, which becomes 
harder when the number of feasible batches that can be formed increases.

Also, as noted in Sect.  4, the dynamic programming state space increases of one 
dimension for every size of the jobs, and the magnitude of these state space dimensions 
are exactly the maximum batch capacities bi for all i ∈ {1,… ,m} . Thus, having a larger 
batch capacity leads to a considerably higher memory usage.

With respect to the percentage gaps, the algorithms still perform well, with very 
good average and maximal gaps, showing that the quality is not affected by the granu-
larity of job sizes.
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