POLITECNICO DI TORINO
Repository ISTITUZIONALE

MATCH-IN: Mutual Attestation for Trusted Collaboration in Heterogeneous IoT Networks

Original

MATCH-IN: Mutual Attestation for Trusted Collaboration in Heterogeneous loT Networks / Sisinni, Silvia; Berbecaru,
Diana Gratiela; Donnini, Valerio; Lioy, Antonio. - ELETTRONICO. - (2024), pp. 1-6. (Intervento presentato al convegno
ISCC-2024: IEEE Symposium on Computers and Communications tenutosi a Paris (FRA) nel 26 - 29 June 2024)
[10.1109/ISCC61673.2024.10733616].

Availability:
This version is available at: 11583/2991692 since: 2024-12-19T10:32:17Z

Publisher:
IEEE

Published
DOI:10.1109/1SCC61673.2024.10733616

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

19 December 2024

MATCH-IN: Mutual Attestation for Trusted
Collaboration 1in Heterogeneous IoT Networks

Diana Gratiela Berbecaru
Politecnico di Torino
DAUIN
Torino, Italy
diana.berbecaru@polito.it

Silvia Sisinni
Politecnico di Torino
DAUIN
Torino, Italy
silvia.sisinni @polito.it

Abstract—As the Internet of Things (IoT) continues to evolve,
ensuring the security and trustworthiness of devices within
heterogeneous IoT networks becomes of paramount importance.
This paper presents MATCH-IN (Mutual Attestation for Trusted
Collaboration in Heterogeneous IoT Networks), a novel approach
to establish trusted connections based on mutual attestation
between IoT devices that dynamically join a network. Drawing
inspiration from the Trusted Computing Group’s “Device Iden-
tifier Composition Engine” specification, MATCH-IN introduces
a comprehensive scheme for device mutual attestation. The pro-
posed schema enhances the security posture of unstructured IoT
networks by enabling devices to mutually attest their identities
and configurations, without the need for a centralized verifier for
checking the trustworthiness of devices, while these operate in the
field. Through a detailed exploration of the DICE specification,
this paper provides insights into the integration of MATCH-IN
within the context of diverse IoT environments. QOur approach
aims to foster trusted collaboration among heterogeneous IoT de-
vices, laying the foundation for enhanced security and reliability
in the rapidly expanding IoT landscape.

Index Terms—IoT, DICE, Dynamic SWARMS Attestation,
Remote Attestation, Hybrid Attestation, Mutual Attestation

I. INTRODUCTION

HE exponential growth of Internet of Things (IoT) de-

vices has introduced us in an era of unprecedented con-
nectivity, reshaping the way individuals interact with the world
around them. Every aspect of our society is intertwined with
IoT networks, which have become integral to the deployment
of “smart” applications, offering users enhanced efficiency, au-
tomation, and convenience. The rapid advancement of wireless
communication systems, along with new sensor technologies,
has enabled collaboration among heterogeneous IoT devices
through diverse network domains. However, this proliferation
of interconnected devices has also given rise to significant
security challenges. The inherent diversity and scale of IoT
ecosystems create an intricate web of vulnerabilities, making

This work has received funding from the SPIRS (Secure Platform for ICT
Systems Rooted at the Silicon Manufacturing Process) project with Grant
Agreement No. 952622 under the European Union’s Horizon 2020 research
and innovation programme. This work was also partially supported by the
project SERICS (PE00000014) under the NRRP MUR program funded by the
European Union - NextGenerationEU. Dr. Diana Gratiela Berbecaru carried
out her work within the Ministerial Decree no. 1062/2021 and received
funding from the FSE REACT-EU - PON Ricerca e Innovazione 2014-2020.

Valerio Donnini
Politecnico di Torino
DAUIN
Torino, Italy
valerio.donnini @polito.it

Antonio Lioy
Politecnico di Torino
DAUIN
Torino, Italy
antonio.lioy @polito.it

them susceptible to malicious exploits and unauthorized ac-
cess.

Cybersecurity of IoT ecosystems is a critical challenge for
the architectural design and the operational methodologies
of such systems. Traditional security mechanisms and proto-
cols are generally not applicable to IoT devices, which are
characterized by limited amounts of resources in terms of
memory, power and computational capacity. This determines
the need for research and industry community to develop new
technologies, methodologies and standards able to address IoT
security threats and guarantee an high level of integrity, privacy
and reliability in IoT networks. Many innovative technologies
have been proposed to solve reliability and privacy issues of
IoT networks, such as Blockchains, Smart Contracts, Artificial
Intelligence (Al), Federated Learning. However, the guarantee
of security and trust of “smart” environments is contingent
upon the verification of the integrity of the hardware and
software components of all the devices that compose the IoT
ecosystem.

Recognizing the critical need to verify the trustworthiness
of IoT networks, our work introduces MATCH-IN (Mutual
Attestation for Trusted Collaboration in Heterogeneous IoT
Networks), a novel approach to establishing mutual attestation
among devices within heterogeneous IoT networks. Existing
literature has seen commendable efforts in proposing attesta-
tion schemas for IoT networks, particularly in the domain of
SWARM (collective) attestation [1]-[4]. While these schemes
address the challenges of performing an efficient collective
attestation of IoT devices, they are not suitable to be applied in
the context of highly dynamic and unstructured IoT networks.
In such environments, unknown transient devices may join the
network seeking collaboration or access to smart services. It
is imperative to ensure the trustworthiness of these devices
before granting them entry into the network. In our opinion,
the problem of ensuring the trustworthiness of highly dynamic
and unstructured IoT networks is still a challenge opened to
the scientific community.

MATCH-IN proposes a mutual attestation scheme that re-
quires minimal hardware features on IoT devices, and is rooted
in the Trusted Computing Group’s (TCG) “Device Identifier
Composition Engine” (DICE) specification. By leveraging

DICE, MATCH-IN aims to instill a heightened security posture
in highly dynamic IoT networks, ensuring that all devices,
even those that temporarily transit the network, undergo a rig-
orous attestation process before joining a “smart” environment.

This paper unfolds with an exploration of the most signifi-
cant works related to IoT attestation (II), introduces the main
concepts related to the TCG DICE and Open DICE specifica-
tions (III), presents MATCH-IN as a viable solution to address
the security concerns in highly dynamic IoT ecosystems (IV),
and concludes by summarizing the contribution of this work
(V).

II. RELATED WORKS

In recent years, IoT device attestation is becoming a
particularly popular and crucial challenge for cybersecurity
researchers due to the exponential growth of infrastructures
that base their operation on IoT networks. The first works
date back to around the 2000s, when the first release of the
TPM chip began to be almost ubiquitous on desktop and
server platforms enabling remote attestation on this category
of devices, so researchers began to look for similar solutions
suitable for very simple devices that constituted the so-called
“wireless sensors networks”. Since the TPM was too complex
to be inserted into very small and low-resource devices,
researchers initially oriented their efforts towards Software-
based solutions that achieved remote attestation by relying
on the knowledge of the exact computational capabilities
available to such devices [5], [6]. However, between 2008
and 2009 it was proven that those solutions were vulnerable
and could be easily circumvented, so researchers sought to
define the minimal set of hardware requirements that an IoT
device had to support to enable remote attestation. It was
understood that the minimum hardware support consisted of
a Read Only Memory (ROM) to store the attestation protocol
and the attestation key, and hardware protection of the private
part of the attestation key in order to ensure that this can only
be accessed by the attestation protocol [7], [8]. These are the
minimum requirements to ensure that only the device’s trusted
code, i.e. the attestation protocol stored in ROM, has signed
the attestation report, and constitute what is called Hybrid-
based attestation, on which most IoT attestation protocols are
still based today.

Until 2015, researchers had focused on enabling remote
attestation for a single device, relying on a classic attestation
scheme, where a single verifier is responsible for attestation
of each device in the monitored network. However, this model
proves to be inefficient for networks made up of a high number
of IoT devices, as happens for example in Industrial IoT, Smart
Cities and Smart Transportation installations. In 2015, SEDA
(Scalable Embedded Device Attestation) [1] was published,
the first paper that presented a SWARM attestation scheme with
the aim of efficiently attesting a large number of IoT devices.
SEDA assumes that all devices in the network have the
requirements of the Hybrid attestation, that the configuration
of the IoT network is static, both in terms of the number

of devices and their positioning, and that each device can
only talk to its neighbors. To attest the integrity status of the
network, the SEDA protocol provides a single verifier that
sends an attestation request to a randomly chosen device in the
network. The chosen device becomes the root of a Spanning
Tree calculated over the entire network of IoT devices and
is responsible for propagating the attestation request to all its
children until such request reaches the leaves of the tree. Each
leaf calculates its own attestation report and sends it to the
parent device; this aggregates the attestation reports of all the
children with its own report and in turn sends the aggregate
result to its parent. This procedure is repeated until the root,
which finally sends the overall response to the verifier. From
the attestation response, the verifier can establish whether the
entire network of devices is trusted or not, without being able
to identify any devices that may have been compromised, in
the case of an untrusted response. SEDA influenced many
subsequent works [2], which improved the scheme for de-
tecting physical attacks, identifying the compromised devices,
and making the aggregation of results more effective using
Merkle Hash Trees. However these schemes, being based on
the calculation of a Spanning Tree, are not flexible, so they
are not applicable in contexts in which IoT devices can move
in space, as the Spanning Tree would have to continuously
reconfigure itself and the absence of cycles in the graph could
not be guaranteed.

The problem of attesting networks of heterogeneous and
highly dynamic IoT devices was addressed in 2018 by two
works, SALAD [3] and PADS [4], which proposed a dif-
ferent approach with respect to previous ones, based on the
gossip protocol and a mechanism of distributed consensus.
The Dynamic SWARMS model takes into account a highly
dynamic and unstructured network of IoT devices. During its
movement in space, a device can encounter other devices that
fall within its communication range and perform a mutual
attestation with them. Each device is able to establish the level
of reliability of other devices by comparing the attestation
report with the expected measurement, stored in a trusted
component. If devices are trusted, they agree to exchange their
historical attestation results relating to all other devices in the
network. The final view of the integrity status of the network
is built through the concept of consensus, in which the level
of trustworthiness of each device is the result of the logical
AND or XOR operation on the evaluations possessed by the
two devices before sharing their information. This protocol
is suitable for attesting highly dynamic networks topologies,
as it allows device movement during attestation; however,
its complexity makes it not suitable for devices with very
few computational resources. Moreover, it still has a strong
limitation in terms of network dynamism as it is not applicable
to scenarios in which a new device arrives and dynamically
joins the network.

The problem of defining an attestation protocol for highly
dynamic IoT networks, in which new devices join the network
and need to be attested before being accepted as trusted

components of the infrastructure, still constitutes an open
challenge for the scientific community. This paper fits into
this research area, proposing a model based on DICE concepts,
embedded in firmware and IoT applications, to enable mutual
attestation of IoT devices in highly dynamic environments.

III. BACKGROUND

In the ever-expanding and evolving landscape of IoT net-
works, establishing a solid root of trust in IoT devices is
essential to ensuring the integrity of connected devices and
the reliability of the IoT ecosystem. Remote attestation is
a challenge-response protocol that allows a remote entity,
the so-called verifier, to state the integrity status of the
hardware and the software of a platform. In order to en-
able remote attestation, it is imperative that the device is
provisioned with a set of system elements that are reliable
by design and which cannot be compromised at runtime by
an attacker. However, the intrinsic hardware limitations of
IoT devices pose a significant challenge. Traditional solu-
tions, such as the Trusted Platform Module (TPM), which
serves as a hardware root of trust for desktop and server
platforms, are often impractical for resource-constrained IoT
devices. In response to this challenge, significant efforts have
emerged to define new specifications that enable roots of
trust on highly resource-constrained devices. Two significant
proposals in this research area are represented by the TCG’s
“Device Identifier Composition Engine” (DICE) specification
and the Open DICE initiative. These specifications provide
a framework for constructing unique and immutable device
identifiers that serve as a foundation for remote attestation.
By addressing the hardware limitations of IoT devices and
offering a standardized approach, TCG DICE and Open DICE
contribute significantly to enhancing the security landscape
of the IoT, opening doors to trustworthy and interoperable
device identification and attestation in a dynamic and evolving
scenario.

A. TCG DICE

The TCG DICE specification defines cryptographic iden-
tities for a device’s hardware and firmware, useful for at-
testing the instantiation of a Trusted Computing Base (TCB)
during a device’s boot sequence. At the heart of DICE is
the construction of a Compound Device Identifier (CDI),
encapsulating the amalgamation of hardware and software
components crucial to the device’s security [9]. DICE defines
a layered architecture, which relies on a hardware Root of
Trust (HRoT) as the foundation for a multi-layered TCB. This
architecture facilitates secure transitions between layers, each
marked by the creation and secure transmission of CDI values
[10]. Fig. 1 schematizes the CDI generation process for the
different TCB layers in a platform, starting from a Unique
Device Secret (UDS).

The HRoT must adhere to specific requirements, afford-
able for IoT devices. These include the provisioning of the
UDS, access limitations to TCB layers’ secrets (e.g. CDIs),
and assertions of trustworthiness, typically provided through

certificates, by hardware manufacturers or vendors. The DICE

| DICE | | Layer O | | Layer 1 |
‘ TCliy ‘ ‘ TCl2 ‘
v ¥
| Fowr |" | Fowr |*‘4>
[= e
4’{ CDlyo 4’{ CDlyy ——
Fig. 1. TCB layering architecture [10].

specification also defines the derivation of cryptographic keys
from the CDI of each TCB layer, in particular three types
of asymmetric keys: Embedded Certificate Authority (ECA)
keys, used by TCB layers to issue certificates; Attestation
Keys, used to sign attestation evidence; Identity Keys, used for
signing authentication challenges. Cryptographic keys, derived
according to TCG DICE, can be endorsed with a certification
hierarchy that uses a Public Key Infrastructure (PKI) for device
provenance. This chain of trust, established outside the device,
can be extended to the various TCB layers by means of the
Embedded Certificate Authority (ECA) concept. Fig. 2 shows
an example certificate hierarchy consisting of a Root CA
that endorses an intermediate CA that issues an end-entity

certificate.
B0

5 subcal N End Entity Certificate
Root CA u Al N
N

\\
A@

Attribute Certificate
or Manifest

Fig. 2. Certificate hierarchy [10].

IV. MATCH-IN: SYSTEM MODEL

This work proposes MATCH-IN, a software model based
on the DICE specification to enable trustworthy interaction
and implicit attestation between unknown devices on highly
dynamic and untrusted networks. MATCH-IN differs from
the Dynamic SWARMS models presented in literature [3],
[4] as it does not provide for the presence of a centralized
verifier responsible for monitoring the state of integrity of
the entire network during runtime, but presents a completely
decentralized model for verifying the state of reliability of
the devices. In this model, the devices, before starting an
application interaction, mutually attest their integrity status
and, seamlessly, are able to recognize and isolate compromised
devices from the “smart” network. This model can be used
when it is not possible to predict a priori the devices that will
be part of the network and which, at a given moment, will enter
the IoT ecosystem to contribute to the provision of a service
or make use of a service by connecting to other devices, as

happens for example in Smart Cities, Smart Healthcare, Smart
Transportation use cases.

A. Requirements

RISC-V 32/64 ROM
PMP extension
. = Flash
U/M execution Main
modes RAM
"""""""""" Peripheraldomain 1
.
Security Power Actuators f
Peripheral Motors, LEDs, | |
G Management | | 00> 0% |
i | Crypto accelerators,
i
' Key Manager, CSRNG, Sensors . E
' Temperature, Connectivity I
' [Communication accelerometer, Modules
Interf GGyroscope, WiFI, Bluetooth, |}
nterfaces proximity, GPS, Cellular, ...

!
:

\: UART, 12G, SPI, ... /E
e —

Typical hardware modules embedded on an IoT device with RISC-V

Fig. 3.

core.

MATCH-IN is based on some hardware and software re-
quirements that the device has to possess and on certificate
provisioning procedures that the device manufacturer and the
application provider has to implement. In particular, it is
assumed that the device is equipped with minimum hardware
requirements: a Unique Device Secret (UDS) that uniquely
identify the device, hardware mechanisms to protect specific
memory regions and a Boot ROM enforcing secure boot of
the first stage firmware.

Figure 3 shows a high-level schema of the hardware com-
ponents present in typical IoT devices. We have taken into
consideration IoT devices equipped with a RISC-V processor
supporting: two execution modes, Machine mode (M-mode),
corresponding to the highest privilege, User mode (U-mode),
corresponding to the least privilege; the Physical Memory
Protection (PMP) security extension, used by code running in
M-mode to limit access permissions to specific memory areas.
The device is equipped with ROM memory containing the first
code executed by the device at power-on and implementing
secure boot and chip configuration. Moreover, the device is
provided with flash memory as a non-volatile storage medium
to store the firmware provided by the device manufacturer
and the device owner. The device could also be equipped with
hardware modules to accelerate cryptographic primitives (e.g.
AES, HMAC, KMAC, cryptographically secure random num-
ber generator), sensors, actuators and connectivity modules,
depending on the specific applications and use cases in which
the IoT device is designed to be used.

B. Bootflow and Cryptographic Identity Generation

The initial bootstrapping of the device starts from the Boot
ROM code. This is defined in the hardware design of the
device and remains immutable throughout all its life cycle; it
contains the minimum set of instructions needed to initialize
the hardware peripherals, force the secure boot of the next
boot stage.

If the signature verification of the next firmware payload is
successful, the Boot ROM code jumps into the next boot stage,
which implements the so-called “DICE Core”, described in the
DICE hardware specification [9]. This code, unlike the Boot
ROM, can be updated after the device has been manufactured,
provided that it has been signed by the manufacturer with a key
corresponding to the public key embedded in the Boot ROM.
The “DICE Core” firmware first forces secure boot of the next
boot stage, corresponding to the device owner’s firmware. In
the case of low-end IoT devices, the device owner’s code is
the application implementing the use case in which the device
will be used; in the case of medium- and high-end devices, the
next stage is the bootloader of a lightweight operating system
capable to run multiple applications. In order for the “DICE
Core” to enforce secure boot, the device owner’s code must be
associated with a manifest, stored in flash memory at a specific
address and containing the signature of the firmware payload
and the public key with which the signature will be verified. If
the verification is successful the bootflow continues, otherwise
the device fails to boot. The firmware manifest is protected
from malicious modifications, which can occur at runtime; the
“DICE Core”, before jumping to the device owner’s code, uses
the PMP primitive to eliminate write access permissions from
the memory area containing the manifest, until the next power-
on of the device.

After enforcing the secure boot, the “DICE Core” derives
the Device Identity Key (DIK) by mixing information that
identifies the device at the hardware level (2): the “Unique
Device Secret” (UDS), a statistically unique secret value per
device, provided at manufacturing time and stored in a “One
Time Programmable” (OTP) memory, or derived from a hard-
ware module implementing a “Physical Unclonable Function”
(PUF); the identity of the Boot ROM and “DICE Core” code,
represented by the digest calculated on the respective memory
regions; we call this identity ROM Code Identifier (RCI) (1).

RCI = Hash(Boot ROM || DICE Core) (1)
DIK = fkeyGgen(Hmac(UDS, RCI)) (2)

The DIK plays the role of Embedded Certificate Authority
(ECA) and can only be used to sign the certificate identifying
the device owner’s firmware. This allows to create an attesta-
tion chain based on the authenticity of the hardware and the
first two boot stages, provided by the device manufacturer.
After generating the DIK, the “DICE Core” generates the
so-called Compound Device Identifier Level 0 (C'DIy), as it
is indicated in the TCG DICE specification [10]. C'DIj is
obtained by combining the device’s hardware identity (i.e.
UDS and RCI) with the owner’s firmware identity, which can
be directly the application or the bootloader (3). The “DICE
Core” uses the C' DI to derive the Owner Identity Key (OIK)

.

CDIy = Hmac(UDS||RCI, Hash(owner's code)) (3)
OIK = fKeyGen(CDIO) (4)

Then, the “DICE Core” creates a certificate associated with
the OIK, Certork, signs it with the private part of the DIK
(DIKpriy) (5) and stores it in an area of flash memory
accessible to all boot phases, including application layer.

Signprr,,.,(Certork) (5)

According to the TCG DICE specification [11], Certorg
has extensions, containing the digest of the owner’s firmware
and the hash algorithm with which it was computed. These
extensions will be used during firmware attestation. Before
jumping into the device owner’s firmware, the “DICE Core”
copies the C'DIy in a memory area where the next stage
firmware can read it, and appropriately configures the PMP
registers to: remove read permissions from the UDS, wipe
RAM and CPU memory of any reference to DIK,,.;,, and
remove execution permissions to the memory area containing
the “DICE Core”, in order to prevent subsequent software
layers from being able to regenerate and use the DIK,,;.;,.

The following description takes into consideration the case
in which the device owner’s firmware is the bootloader and
the kernel; the simplest case, in which the application runs
directly on the hardware, can be easily derived from this. The
bootloader, in turns, can enforce the secure boot of the kernel,
if this has been provided with a manifest containing the kernel
signature and the public key with which it must be verified,
proceeding as for the secure boot of the previous stage. Then,
the bootloader regenerates the OIK starting from C' DIy (4),
measures the kernel image and generates CDI Layer 1 (CDI1;)
from kernel digest and C' DI, (6), generates the kernel level
ECA key starting from C'DI; (7), creates a certificate for
the kernel ECA, containing the kernel digest and the hash
algorithm as extensions, signs it with the private part of the
OIK (OIKyriy) (8), copies Certiernet Eca and the C DIy
into a memory area accessible to the kernel, and finally boots
the kernel.

CDI, = Hmac(CDIy, Hash(Kernel image)) (6)
Kernel ECA = fkeygen(CDI) @)
Signorr,,., (Certierne EcA) (®)

When the kernel is booted, it regenerates its ECA key starting
from CDI; (7).

When an application is loaded, the kernel carries out a
procedure similar to what is described for the previous layers.
First of all, it computes the digest of the application binary and
uses it, together with C' DI, to generate CDI Layer 2 (CDI5)
(9); generates a Local Device Identity Key (LDevID), using
the CDI, as seed (10); creates a certificate for the LDevID
Key, containing the application digest and hash algorithm
as extensions, and signs it with the kernel ECA key (11);
finally, it passes the C'D1I5 and the Certr pey,rp as application
parameters.

CDIy = Hmac(CDIy, Hash(Application binary)) (9)
LDevID = freyGen(CDIy) (10)

Signkernel ECA,., (Certrpevip) (11)

The application can use C' DIy to regenerate its LDevID
key (10), which represents the cryptographic identity of the
application running on a specific device.

U
App 1||App 2 }Mode

Software provider:
I Application provider
1 Device Owner
O Device Manufacturer

1} Secure Boot
’ Application ’ Bootloader
1 secure Boot {}Secure Boot — M
M Mode
M ’ DICE Core ’ DICE Core
ode
ﬁSecure Boot ﬁ Secure Boot
’ Boot ROM ’ Boot ROM

Fig. 4. Bootflow scheme for low-end devices (left) and medium- high-end
devices (right).

Figure 4 represents at a high level the bootflow stages of
an IoT device, both in case of low-end devices and in case of
medium and high-end devices.

C. Certificate Provisioning from External PKls

The previous section describes the generation of certifi-
cates based on Embedded CAs internal to the IoT device,
starting from the DIK. This key can be provisioned with a
certificate signed by a Manufacturer Intermediate Certificate
Authority (CA), which can be verified using a stable Public
Key Infrastructure (PKI), as shown in Fig. 5. This certificate
represents the Root of Trust on which the device attestation
is based, therefore it guarantees the trustworthiness of the
device’s hardware: it ensures that the device has been prop-
erly manufactured and tested, and that the device provides
the minimum system elements to allow remote attestation.
Alternatively, the “DICE Core” can generate a self-signed
certificate for the DIK, and the endorsement of the DIK must
take place by comparing the public key against a trustworthy
device registry.

The manufacturer-based certificate chain represented in
Fig. 5, can be used by the application provider as attestation
evidence for verifying the trustworthiness of the application
running on a specific device. In particular, the application
provider can provide a “attestation provisioning service” with
the aim of verifying the certificate chain of the application
and issuing a new certificate associated with the LDevID
key of the application, through an Application Intermediate
CA, as represented by the pink LDevID certificate in Fig. 5.
The application provider’s “attestation provisioning service”
performs the following steps: acquires the attestation certificate
chain based on the device manufacturer PKI, up to the LDevID
certificate; checks the validity of the entire certificate chain
by checking the signatures; checks the authenticity of the
device hardware and firmware by comparing the measurements
contained in the certificates with reference measurements
contained in a trustworthy repository; if the previous checks
are successful, requests the Application Provider Intermediate
CA to issue a certificate, and sends it to the IoT device. In
this way, the application provider’s “attestation provisioning

ROM Extension Layer 0 Layer 1 Layer 2
DICE Core Bootloader Kernel Application Signing chain ——
/ sign sign ‘ Kernel | sign LDevID\ UREREER
ECAKey Key
) Q D
_) Kernel ECA LDevID
E sign E sign Ceniﬁcat Certificate Celijcals
= ieaata | | T |0 | T 5 R Repository of
E' Gtz Bootloader Kernel App.llcatlon Reference
Manufacturer Manufactyrer a digest digest Elzess Measurements
Root CA Intermediate
CA
CLD:YID = E = E
ertificate
g]
. Application Provider Appllgatlon
K Device Attestation Service / Provider
Intermediate CA Root CA
Fig. 5. Layered certificates example.
service” performs a remote attestation of the device hardware REFERENCES

and firmware and, if the device is evaluated trustworthy, issues
an application-level certificate which establishes the overall
trustworthiness of the IoT application running on a specific
device.

D. Implicit attestation among IoT devices

When two IoT devices enter their communication range
and need to establish a communication channel to exchange
data, they can open a mutually authenticated TLS channel
by relying on the respective LDevID keys associated with
the IoT application, and on the LDevID certificate issued by
the application provider according to the procedure described
in section IV-C. In this way, the establishment of the TLS
connection constitutes implicit evidence of the trustworthiness
of the application and of the device on which it is running. This
is because, if the application has been tampered with, and/or
if any of its underlying software and hardware components
have been compromised, the LDevID key generated by the
application will differ from the one certified by the application
provider, and the communication channel cannot be opened.

This procedure allows trustworthy collaborations between
unknown IoT devices, as long as they have installed compliant
software, and at the same time it seamlessly isolates IoT
devices that are compromised.

V. CONCLUSIONS

The exponential growth of IoT devices has brought unprece-
dented connectivity and convenience but also raised significant
security challenges. This paper introduces MATCH-IN, a
schema for mutual attestation which relies on TCG DICE
specification for ensuring robust security in heterogeneous
IoT networks, with minimal hardware requirements. While
existing attestation schemes address the problem of collective
attestation in IoT networks made up of a fixed number of
devices, MATCH-IN proposes a solution to ensure trustworthy
collaborations in highly dynamic IoT environments. Leverag-
ing the DICE specification, MATCH-IN ensures a heightened
security posture, subjecting all devices to an attestation pro-
cedure before allowing them to communicate.

[1] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “SEDA: Scalable Embedded Device
Attestation,” in 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver (CO, USA), Oct. 12-16 2015, p.
964-975. [Online]. Available: https://doi.org/10.1145/2810103.2813670
M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, “SANA: Secure and Scalable Aggregate Network
Attestation,” in ACM SIGSAC Conference on Computer and
Communications Security, Vienna (Austria), Oct. 24-28 2016, p.
731-742. [Online]. Available: https://doi.org/10.1145/2976749.2978335
F. Kohnhiduser, N. Biischer, and S. Katzenbeisser, “Salad: Secure and
lightweight attestation of highly dynamic and disruptive networks,” in
Asia Conference on Computer and Communications Security, Incheon
(Republic of Korea), June4 2018, p. 329-342. [Online]. Available:
https://doi.org/10.1145/3196494.3196544

M. Ambrosin, M. Conti, R. Lazzaretti, M. Rabbani, and S. Ranise,
“PADS: Practical Attestation for Highly Dynamic Swarm Topologies,”
in International Workshop on Secure Internet of Things (SIoT), Sept. 6
2018, p. 18-27.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: softWare-
based attestation for embedded devices,” in IEEE Symposium on Security
and Privacy, Berkeley (CA, USA), May 9-12, 2004, pp. 272-282.
[Online]. Available: https://doi.org/10.1109/SECPRI.2004.1301329

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems,” in 12th ACM Symposium on Operating
Systems Principles, Brighton (UK), Oct. 23-26, 2005, p. 1-16. [Online].
Available: https://doi.org/10.1145/1095810.1095812

K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust,”
in 19th Annual Network and Distributed System Security Symposium,
ISOC, Ed., San Diego (CA, USA), Feb. 5-8, 2012.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
a security architecture for tiny embedded devices,” in 9th European
Conference on Computer Systems, Amsterdam (Netherlands), Apr. 14—
16, 2014. [Online]. Available: https://doi.org/10.1145/2592798.2592824
Trusted Computing Group (TCG), “Hardware Requirements for a Device
Identifier Composition Engine,” https://trustedcomputinggroup.org/wp-
content/uploads/Hardware-Requirements-for-Device-Identifier-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Composition-Engine-r78_For-Publication.pdf, = Trusted = Computing
Group, Tech. Rep. Level 00 Revision 78, Mar.22 2018.

[10] —, “DICE Layering Architecture,”
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-
Architecture-r19_pub.pdf, Trusted Computing Group, Tech. Rep.
Version 1.0 Revision 0.19, July 23 2020.

[11] —— “DICE Attestation Architecture,”

https://trustedcomputinggroup.org/wp-content/uploads/DICE-
Attestation-Architecture-Version-1.1-Revision-18_pub.pdf, Trusted
Computing Group, Tech. Rep. Version 1.1 Revision 0.18, Jan.6 2024.

