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Abstract. In the last decades, the majority of the existing infrastructure heritage is approaching the end of its nominal design
life mainly due to aging, deterioration, and degradation phenomena, threatening the safety levels of these strategic routes of
communications. For civil engineers and researchers devoted to assessing and monitoring the structural health (SHM) of existing
structures, the demand for innovative indirect non-destructive testing (NDT) methods aided with artificial intelligence (AI)
is progressively spreading. In the present study, the authors analyzed the exertion of various deep learning models in order
to increase the productivity of classifying ground penetrating radar (GPR) images for SHM purposes, especially focusing on
road tunnel linings evaluations. Specifically, the authors presented a comparative study employing two convolutional models,
i.e. the ResNet-50 and the EfficientNet-B0, and a recent transformer model, i.e. the Vision Transformer (ViT). Precisely, the
authors evaluated the effects of training the models with or without pre-processed data through the bi-dimensional Fourier
transform. Despite the theoretical advantages envisaged by adopting this kind of pre-processing technique on GPR images, the
best classification performances have been still manifested by the classifiers trained without the Fourier pre-processing.

Keywords: Convolutional Neural Networks, Transformer, Fourier Transforms, Ground Penetrating Radar Systems, Nondestructive
Examination

1. Introduction

Nowadays, existing strategic infrastructures such as
bridges and tunnels are experiencing a substantial re-
duction in safety levels for deterioration phenomena
due to long-term degradation effects of their constitu-
tive materials [1, 2]. To extend the service life of ex-
isting heritage, the most widespread approach is moni-
toring the structural health (SHM) of the systems in or-
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der to effectively plan and prioritize preventive mainte-
nance or rehabilitation interventions crucial for lifecy-
cle [3–5]. Since a total replacement of existing infras-
tructures would be economically unsustainable [6], ef-
ficient and innovative monitoring techniques have been
developed in the last decades [7]. Periodic direct test-
ing of specimens (e.g. concrete core drilling) is a re-
liable solution to directly assess the quality, mechan-
ical properties, and temporal changes of the in-situ
constitutive structural materials. However, these tests
provide punctual, albeit detailed, information, which
does not always reflect the actual state of the en-
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tire structure [8]. Moreover, the overall involved di-
rect testing procedures are often lengthy and costly.
Therefore, to increase the productivity and quickness
of periodical inspections, non-destructive evaluations
(NDE), also acknowledged as non-destructive testing
(NDT) techniques, have become more prominent, reli-
able, and adopted methods, lately [9–12]. They are of-
ten employed in combination with direct testing to in-
crease the quickness, reduce the expenses, and, in gen-
eral, mutually overcome the limits of each other [13].
Principally focusing on SHM for road tunnels struc-
tures [14, 15], some of the most adopted NDT tech-
niques are e.g. rebound hammer testing [16], ultrasonic
pulse testing [17], rebar scanning with pachometer de-
vice [18], concrete resistivity [19], acoustic emission
passive monitoring for micro-cracks detection [20],
thermal imaging thermography with infrared cameras
[21, 22], laser scanner and lidar devices to monitor-
ing tunnel linings deformations [21]. Some innovative
approaches rely on emerging advanced technologies
such as distributed fiber optic sensors [23] or inter-
net of things (IoT) edge devices [24–26]. In the cur-
rent study, the authors predominantly concentrated on
indirect testing with ground penetrating radar (GPR)
devices for concrete linings defects detection and an-
notation [27, 28], even if, in literature, GPR is often
adopted to reveal tunnel lining concrete layer thickness
[21]. The GPR instrumentation overcomes the limita-
tions of visual inspections, qualified only to catch su-
perficial defects [15]. Similarly to other geophysical
methods [29], the GPR device probes the tunnel lin-
ings by propagating high-frequency electromagnetic
wave impulses (10-2600 MHz) and analyzing the re-
flected signals [30]. The impulses’ penetration level or
reflection rate depends on the dielectric features of the
inspected material and the possible presence of cer-
tain agents (e.g. water, reinforcement bars, the inter-
face between concrete linings and surrounding ground,
linings defects). The architecture of a GPR system is
composed of emitting and receiver units, a single or
dual frequency antenna, display, control, and storage
unit [30]. The GPR provides images as output named
profiles, where the abscissa represents the progressive
distance from the beginning of the probing (i.e. begin-
ning of the tunnel), whereas the ordinate axis repre-
sents the GPR examined lining depth. As depicted in
Figure 1, in a traditional GPR indirect testing pipeline,
specialist staff decodes linings defects from the sur-
veyed profiles with a manual, lengthy and costly post-
processing phase [31].
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Fig. 1. GPR lining defects recognition by specialist staff.

To improve the efficiency, reliability, and productiv-
ity of the traditional GPR monitoring process, artifi-
cial intelligence (AI) offers innovative tools to accom-
plish the above-mentioned task by leveraging com-
puter vision and image processing-based methods [32–
36]. Specifically, deep learning (DL) techniques such
as convolutional neural networks (CNNs) have been
extensively employed for SHM applications [37]. In
the existing literature, some innovative DL-based pro-
cedures have been introduced in GPR tunnel linings
indirect monitoring recently [38–43]. In the review pa-
per [44], the authors evidenced that despite the first
adoption of GPR device in the tunnel-related field ac-
tually started in the late 1970s, a limited number of
research studies have employed deep learning tech-
niques hitherto, motivating the current interest of the
present document within this active research field. In
[45], the authors adopted deep learning models just to
recognize the presence of rebars and to determine the
thickness of the concrete layer, without taking into ac-
count any other defects or damage. In [46, 47], the au-
thors employed a region proposal CNN named Faster
R-CNN for specific target detection in tunnel lining
GPR images. Specifically, in [47] the DL models have
been trained for very limited purposes, i.e for detect-
ing only rebars in tunnel linings structures. GPR tun-
nel liner dielectric properties (permittivity maps) in-
version and objects identification tasks have been ad-
dressed in [48] through a CNN model combined with a
recurrent neural network (RNN) composed of bidirec-
tional convolutional long short-term memory (LSTM)
blocks. In [49], tunnel linings defects automatic clas-
sification has been accomplished with two convolu-
tional models, i.e. the visual geometry group (VGG)
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network, i.e. the VGG-16, and the residual neural net-
work (ResNet) with 34 convolutional layers, i.e. the
ResNet-34. This study is very limited because the DL
model simply divides healthy sample images from the
ones with any defects, additionally without explicating
which types of considered defects. Furthermore, this
study does not present any generality possibilities be-
cause the models were trained only on the GPR data
coming from the same tunnel, strongly restricting any
direct exportation of the trained model to different tun-
nels. Similarly, another CNN-based automatic defects
classification has been proposed in [50] by adopting
the rotational region deformable convolutional neu-
ral network (R2DCNN). Since their scarce availabil-
ity of real data, the authors artificially created syn-
thetic GPR images. However, they admitted the lim-
ited quality of synthetic data, unable to capture all the
real-world complex conditions. They attempted to ap-
ply their proposed synthetically-trained model to two
real tunnels. However, fine-tuning was strictly required
for both tunnels. Consequently, the main restriction of
their methodology is the inability to directly export the
trained models to real tunnels GPR data. This strongly
limits the direct application of their model to real-
world scenarios since it always requires fine-tuning for
every tunnel’s specific conditions. Instead, as reported
later in the present document, the current dataset is
composed of various real Italian tunnels. This provides
a greater generality of our models, directly exportable
to different real-world conditions without virtually re-
quiring any further adaptation. The same authors of
[50], in [48], presented the same limitations because
they employed only synthetic data and validated their
neural model for permittivity map reconstruction only
on a laboratory sandbox test with buried objects, with-
out testing on real-world tunnels. In [51], the authors
employed a CNN encoder-decoder structure leverag-
ing the similarities with the geophysical seismic inver-
sion procedure to reconstruct permittivity maps. Even
in this case, the main limitation is the adoption of syn-
thetic data only. A different approach based on gener-
ative adversarial network (GAN) has been used in [52]
attempting to attenuate the GPR wave echoes and re-
flections produced by the reinforcement bars presence
in tunnel linings.

In the present study, the authors compared three
different DL models, two convolutional models, i.e.
ResNet-50 and EfficientNet, and a recent transformer
model in the version suited for working with image
data, i.e. Vision Transformer (ViT). To the authors’
knowledge, the present work introduced for the very

first time these advanced neural models, i.e. the trans-
former, for the GPR tunnel linings defects classifica-
tion task. Peculiarly, to provide reliable, automatic,
and AI-aided GPR profiles post-processing, the au-
thors employed the hierarchical multi-level classifica-
tion tree proposed in [42]. The main goal of the present
work is to compare the effects on the classification per-
formances of the three DL analyzed models with and
without a prior pre-processing phase of the GPR im-
age dataset through the bi-dimensional Fourier trans-
form, acting as a compressive sensing tool. Compress-
ing information permits reducing data transmission
and computational efforts [53], critical aspects for fu-
ture real-time implementations. The present document
is organized as follows. Section 2 briefly describes
the image processing with the bi-dimensional Fourier
transform technique. Section 3 illustrates the AI-aided
tunnel linings investigation methodology with DL-
based automatic defects classification. Eventually, sec-
tion 4 provides the comparative analysis among the
various DL-trained models with and without Fourier
pre-processing.

2. Image processing with Fourier transform

Within the signal processing field, the discrete
Fourier transform (DFT) represents the most acknowl-
edged and widespread tool to investigate real-world
propagation phenomena and more [6, 54]. The gener-
ality of the Fourier analysis provides the ability to an-
alyze and decompose also higher dimensional signals,
and thus any digital image which is actually a discrete
ordered spatial bi-dimensional distribution of tensors
of pixels [55, 56]. Considering a digital image in the
spatial domain A of size n × m with components ars,
with 0 ≤ r ≤ n−1, 0 ≤ s ≤ m−1, the bi-dimensional
discrete Fourier transform (2D-DFT) is a matrix F in
the Fourier domain of size n × m with components
[57]:

f (k, l) =
n−1∑
r=0

m−1∑
s=0

a(r, s)e−2πi( kr
m + ls

n ) (1)

where: 0 ≤ k ≤ n − 1, 0 ≤ l ≤ m − 1. Consequently,
the 2D-DFT provides a new representation of the dig-
ital image as a double sum of the products of the in-
put spatial image and the sinusoidal basis waveform.
The average brightness of the input image is sum-
marized by the DC component f (0, 0) in the Fourier
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domain [58]. On the other hand, the last realization
f (n − 1,m − 1) corresponds to the highest retriev-
able frequency component according to the Nyquist-
Shannon theorem [58]. The inverse mapping is carried
out through the bi-dimensional discrete Fourier trans-
form (2D-IDFT):

a(r, s) =
1

n · m

n−1∑
k=0

m−1∑
l=0

f (k, l)e2πi(
kr
m + ls

n ) (2)

The outcomes of digital image Fourier analysis are as-
sembled into a complex matrix, whose components are
usually expressed in terms of phase (ϕk,l) and modulus
magnitude (Mk,l). Since, this latter assumes extremely
dispersed values of several orders of magnitude, the
following logarithmic manipulation is employed:

f̃ (k, l) = c log(1 + |Mk,l|) (3)

in which

Mk,l =
√
Re( f (k, l))2 + Im( f (k, l))2 (4)

The factor c of equation (3) is a scale parameter, set
the to unity in the present study. Since in many prac-
tical applications, the phase ϕk,l is apparently useless,
only the information contained in the magnitude is of-
ten retained. However, to guarantee a successful in-
verse 2D-IDFT mapping, this information is manda-
tory to avoid a corrupted image [58]. Computing the
2D-DFT as a series of 2 · n one-dimensional DFTs
considerably helped to save computational effort lead-
ing to an overall complexity of O(N2) [58], being N
the number of operations to compute computational
complexity [59]. To further improve the convergence
speed of discrete bi-dimensional signals Fourier analy-
ses, the efficient fast Fourier transform (2D-FFT) algo-
rithm drastically reduces the computational complex-
ity to O(N · log2(N)) [58, 60].

The DL models denoted as convolutional neural net-
works (CNN) are essentially based on convolution,
correlation, and in general filtering operations. A thor-
ough understating of these operations within Fourier
analysis of digital images revealed to the authors the
possible advantages of adopting the bi-dimensional
Fourier pre-processing technique. Within the present
study, the authors mainly focused on the convolution
theorem, which states that convolving two functions
h(t) ∗ x(t) in the input (time or spatial) domain is a

simple product in the Fourier domain [61]:

h(t)∗x(t) =
∫ +∞

−∞
x(τ)h(t−τ)dτ ⇔ H(ω)X(ω)

(5)

Since the correlation operation is closely related to the
convolutional one, a correlation theorem holds [61]:∫ +∞

−∞
x(τ)h(t + τ)dτ ⇔ H(ω)X∗(ω) (6)

being X∗ the transform complex conjugate of x(t). The
convolution operation is employed for image filtering
[58], e.g. to detect edges, smoothing operations, etc.
Digital filter kernel transfer function h(r, s) correlates
with the image a(r, s) on a certain receptive field:

g(r, s) = h(r, s) ∗ a(r, s) (7)

For the duality property, the convolution operation is
substantially a correlation in which the filter mask is
rotated with a straight angle, i.e. using a flipped kernel
h(−r,−s) [62]. Fundamentally, since the CNNs make
extensive use of the discrete convolution operations
during the initial feature extraction part, the prior adop-
tion of the bi-dimensional Fourier analysis as an image
pre-processing technique may provide a more efficient
convolution operation. As a matter of fact, the Fourier
domain mapping delivers a synthesized and more com-
pact version of the information contained in the orig-
inal image, as illustrated in Figure 2. On the contrary,
a possible drawback may virtually be excessive infor-
mation compression, which delivers overly similar im-
ages, thus threatening the global accuracy of a data-
driven classifier. Moreover, since the Fourier domain
enhances the components with the higher frequency
content, the Fourier pre-processing method permits ac-
tually removing the periodic and non-periodic noise or
disturbance patterns [63] in the GPR profiles, which
are inherent in the heterogeneous reflectivity proper-
ties of the inspected material mean with GPR tool.

2.1. Dataset preparation with and without Fourier
pre-processing

The dataset used in the current study is based on
a series of NDT campaigns conducted by the authors
on several tunnel linings with the GPR device. The
data have been collected on tunnels spread through-
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Fig. 2. Resulting magnitude pre-processed images with bi-dimen-
sional Fourier transform of two samples belonging to class C4 (re-
inforcement bars) and C13 (excavation) respectively.

Fig. 3. Data collection, preliminary preparations and the final ob-
tained dataset with and without Fourier pre-processing.

out Italy, whose construction era is between the 1960s
and 1980s. To provide a proper dataset to feed a sub-
sequent DL classifier, some basic data preparations
were needed after collecting GPR profiles. Firstly, ev-
ery long output image generated by the GPR testing
was interpreted by specialist staff to decode linings
defects as the current traditional GPR post-processing
workflow [31]. The long images were subsequently
cropped with constant pixels step along the abscissa,
which represents the progressive distance from the be-
ginning to the end of the tunnel lining profile. This
constant pixels step was calibrated in order to provide
that each image sample width generally corresponds to
about five meters on the real scale length of the tunnel
progressive distance. However, in order to avoid some
defects that were only placed across the cropping line
and consequently end up on different images, the crop-
ping line was occasionally manually adjusted. This lat-
ter operation was done on occasion with the minimum
invasive intervention, providing a new defect-centered

sample image, acting as a sort of local data augmenta-
tion. Nevertheless, all the sample images will be sub-
jected to a resizing operation to homogeneously feed
the DL models always with the same resolution im-
ages. In this way, a total number of 8728 GPR sam-
ple images were obtained for the subsequent innova-
tive AI-based paradigm based on DL tunnel lining de-
fects hierarchical classifiers.

Afterward, to further assess the envisaged effects of
the bi-dimensional Fourier transform as an image pre-
processing tool, the entire dataset of 8728 GPR sam-
ple images was pre-processed adopting the 2D-FFT al-
gorithm from the Matlab environment [64]. Specifi-
cally, after computing the bi-dimensional FFT as equa-
tion (1), the modulus magnitude of each pixel was
computed from the resulting complex matrix with the
equation (4), followed by the logarithmic transforma-
tion exposed in equation (3). Only magnitude informa-
tion was retained [58], thus producing the final pre-
processed reconstructed GPR sample image. Two sam-
ple image examples are presented in Figure 2 show-
ing the bi-dimensional Fourier pre-processing effects
compared with original GPR raw images. On the left
side, two raw GPR sample images illustrate the pres-
ence of two different defects evidenced by interpreting
the specific pattern, in a similar way to Figure 1. On the
right column, the same images undergo to Fourier pre-
processing procedure, delivering images of the magni-
tude of complex terms with the logarithmic manipu-
lation of equation (3). In the following of the present
document, for the sake of clearness, whenever the au-
thors refer to the dataset of sample images without any
Fourier pre-processing, the adjective raw will be ex-
plicitly stated, e.g. raw dataset, raw images, etc.

3. Methodology and neural models description

The previously described datasets of GPR sample
images with and without bi-dimensional Fourier pre-
processing have been classified by adopting three dif-
ferent DL models, briefly described in the current sec-
tion. As summarized in Figure 4, each dataset of 8728
images in total has been rearranged in a series of 14
folders in order to construct a classification tree com-
posed of six main levels, noting that the total number
of available samples gradually decreases from level 1
to level 6. To accurately classify every single defect,
this procedure is based on a cascade sequence of bi-
nary classifications to produce both a first skimming
division in the first levels between healthy and dam-
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aged samples, whilst accurately classifying the typol-
ogy (class) of the identified defect in the other next lev-
els. Specifically, binary classification in level 1 distin-
guishes between class C1, i.e. healthy samples (4130
images), and class C2, i.e. damaged samples (4598 im-
ages). Level 2 is subdivided into levels 2a and level
2b. Level 2a is devoted to categorizing between class
C3, i.e. healthy samples without reinforcement bars
(3638 images), and class C4, i.e. samples with the
presence of reinforcement bars (492 images). Level 2b
is devoted to categorizing between class C5, i.e. sam-
ples with generic possible warning mix (574 images),
and class C6, i.e. samples with more specific warnings
which can be further accurately categorized (4024 im-
ages). In particular, class C6 contains specific patterns
that permit further automatic classifying into specific
defect typologies typical in tunnel linings assessment,
as evidenced in Figure 4. This means that samples in
class C6 may be later categorized as cracks, or anoma-
lies, simple voids, excavations, and detachments. On
the other hand, samples belonging to class C5 may
contain multiple overlayed defects or other specific
patterns that are not directly interpretable with respect
to the above-mentioned standard tunnel lining defects.
In those cases, the current GPR approach produces
warnings that require special care from the tunnel man-
agers. Consequently, the inspectors have to further im-
prove the investigation level to identify which kind of
defect, or a mix of defects, is occurring in those critical
areas, e.g. providing in situ direct testing or other indi-
rect testing inspections. Binary classification in level 3
distinguishes between class C7, i.e. samples with lin-
ings crack presence (900 images), and class C8, i.e.
samples with other types of damage (3124 images).
Level 4 is devoted to categorizing between class C9,
i.e. samples with the presence of anomalies in linings
(936 images), and class C10, i.e. samples with other
types of defects (2188 images). Binary classification
in level 5 distinguishes between class C11, i.e. sam-
ples with a simple void in the linings (1108), and class
C12, i.e. samples with other types of voids (1080 im-
ages). Eventually, level 6 is devoted to categorizing be-
tween class C13, i.e. samples with excavation defect
(408 images), and class C14, i.e. samples with detach-
ment between the linings and surrounding ground (672
images). For the adopted convolutional models, a bal-
anced training approach was forced by the class with
the minimum number of samples. To avoid a biased
training of the CNNs toward the class with a higher
number of samples, the training set of that class was
forced to a smaller set. The size of this set was defined

Fig. 4. Dataset folder organization both for raw images and Fourier
pre-processing ones representing the adopted hierarchical multi-
-level classification tree.

according to the number of samples of the class with
the minimum data size. This was done to guarantee fair
training for the classification model, avoiding a biased
classification due to the unbalanced number of images
considered at every single level.

3.1. ResNet-50

The CNNs are essentially based on the convolu-
tion operation to provide an automatic hierarchical fea-
ture extraction procedure [65]. Depicted in Figure 5,
the ResNet-50 model [66] is based on a deep resid-
ual learning process that relies on identity mapping,
i.e. skip or shortcut connections throughout the con-
volutional layer blocks. The positive impact of these
shortcut paths is to improve training speed and avoid
vanishing gradients [67], mitigating excessive network
depth issues [65]. In the present workflow, the dataset
of GPR sample images have been priory resized to
a resolution of 224x224 pixels [42] and, subsequent
to the input, they have processed from five convolu-
tional stages [66–68] also acknowledged as bottleneck
blocks [69]. In the first stage, a first convolution layer
is followed by batch normalization, activation with the
rectified linear unit (ReLU), and max pooling layers.
The subsequent stages are arranged in convolutional
blocks, i.e. sequences of three convolutional layers on
one branch and a residual connection on the other
branch joined in a final step beforehand the ReLU acti-
vation. Specifically, at the second stage, a first convolu-
tion before the residual connection is necessary to en-
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sure that the first identity map correctly fits proper ten-
sor dimensions for the adding layer before the ReLU
activation. Eventually, the head of the CNN is com-
posed of an average pooling, followed by a flattening
layer and a final fully connected layer with a number
of units equal to the number of output classes. The last
softmax layer converts the numerical output into prob-
abilities belonging to a certain class. It is worth noting
that the number 50 of the ResNet model’s name rep-
resents the total number of convolutional layers jointly
to the final fully connected layer. The originally pro-
posed model in literature was arranged with 152 lay-
ers [66], however [70] demonstrated that limiting the
total number of layers, e.g. to 50, provides beneficial
effects in the network learning whilst containing the
computational required effort. The current ResNet-50
has been implemented in MATLAB2021a [64], which
provided the pre-trained model on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) dataset
[71, 72]. The ImageNet pre-trained model represents
a starting sub-optimal solution of the training process
for the current GPR profile defects classification prob-
lem. The model as-is provides general-purpose fea-
tures which could be useful for different classification
applications with 1000 output classes [65]. Starting
from this sub-optimal model, the authors modified the
final fully connected layer in the CNN head to accom-
plish a binary classification with 2 output classes and
re-trained the model to specialize it for the current ap-
plication, considering one time the raw GPR images
dataset, and another time the bi-dimensional Fourier
pre-processed GPR images dataset. A proper definition
of hyperparameters is crucial to find the best trade-off
between the accuracy levels of the DL classifiers and
the computational efficiency. In recent years, differ-
ent valuable approaches have been proposed for proper
hyperparameters tuning, e.g. it is worth mentioning the
random search or the grid search in the hyperparam-
eters space, even combined with cross-validation pro-
cedures [67, 73]. However, the manual trial-and-error
tuning still represents an extensively adopted method
for engineering purposes and, sometimes, it is the only
presumably possible path because of a prohibitively
computational cost for a consistently refined search
[74]. In the current study, for all the DL-adopted mod-
els, the authors employed an empirical trial-and-error
approach to achieving the best hyperparameters set re-
ported in Figure 5 to reach the best found classification
results.

Fig. 5. Graphical illustrative representation of the neural models with
hyperparameters adopted in the present study.

3.2. EfficientNet-B0

For the sake of comparisons, the authors adopted
the contemporary convolutional state-of-art Efficient-
Net. Presented in 2019 [75], it effectively incorporates
multiple techniques and previous existing strategies in
an innovative way. A still ongoing widespread method-
ology to achieve the best accuracy results and con-
tain the required computational effort in CNN is the
depth network scaling, i.e. varying the number of lay-
ers. The base model ResNet-152 was developed with
152 layers [66], however [70] demonstrated that lim-
iting the total number of layers, e.g. to 50 (ResNet-
50), provides comprehensive beneficial effects both in
terms of accuracy and computational effort [76]. On
the contrary, scaling up CNN models permit enlarg-
ing the receptive field [75]. Alternative scaling ap-
proaches can be found in [75, 77, 78]. [75] devel-
oped a uniform and balanced scaling aiming to op-
timize the computational effort in terms of floating-
point operations per second (FLOPS), thus provid-
ing the EfficientNet family models. For the current
tunnel defects classification, the authors adopted the
base model EfficientNet-B0 [75] provided in MAT-
LAB2021a environment [64]. As illustrated in Fig-
ure 5, this implementation relies on 7 building blocks
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which employs the inverted residual blocks of Mo-
bileNetV2 [75, 79], resulting in a less connected net-
work than ResNet models. Indeed, the residual short-
cuts connect only those layers in which the number of
inputs and outputs are the same [80]. For the record,
MobileNet denotes smaller and more efficient neural
models initially developed specifically for the limited
resources of mobile hardware [81]. Their efficiency
lies in the depthwise separable convolutions opera-
tion also acknowledged as spatial-separable convolu-
tion, denoted as MBconv in Figure 5, which effectively
parallelizes the convolution computing exploiting the
three-channel colors (RGB), i.e. the tensor depth, of
image data. A deeper insight into the MBconv1 and
MBconv6 modules is detailed in [82]. Furthermore, the
EfficientNet building blocks adopts the swish activa-
tion function, an improved ReLU which is also slightly
negative around zero [80, 83], in combination with
squeeze-and-excitation block units [80, 84]. Figure 5
illustrates the empirical trial-and-error hyperparame-
ters set adopted to train the current EfficientNet-B0
model.

3.3. Vision transformer

To address the tunnel defects classification problem,
the authors also focused on the neural transformers.
Firstly presented in [85] for natural language process-
ing (NLP) tasks, they represent a major breakthrough
in the DL field with a completely different structure
from the CNNs. Transformers are encoder-decoder
structures that completely entrust to self-attention and
multi-head attention mechanisms, without requiring
convolutional layers, and adopting positional embed-
ding to account for token positions [73]. Attention
bestows the network the ability to focus on specific
parts of the input embedding [85]. The multi-head at-
tention leverages the self-attention to parallel process
each embedded sequence input token and concatenates
the heads outcomes with a projection layer in order to
compute the scored output [73]. [86] analyzed the re-
lationship between the convolution operation and the
self-attention mechanism, evidencing the ability of this
latter to capture even long-range relationships in the
sequence, whereas the foremost is mainly limited to its
receptive field. Recent developments have fostered the
adoption of the sole encoder part of transformers [87],
thus the authors in [88] proposed the Vision Trans-
former (ViT) to deal with image-data type. In the cur-
rent study, the ViT large model with 307M parameters
and 16 patches (ViT-L16) has been employed. To prop-

erly feed the transformer encoder, each input image re-
sized to 224x224 pixels has been subdivided into 16

ordered patches of 14x14 pixels. Each patch is vector-
ized into a single vector of total length corresponding
to the three dimensions product of the tensor patch. A
trainable dense layer with linear activation and shared
parameters converts the 16 vectors to embedded rep-
resentations, which are subsequently flattened through
a linear projection matrix [89]. To preserve the loca-
tion of each patch in the original image, the positional
embedding may be added element-wise to the flattened
representation [85]. Subsequently, the transformer en-
coders with multi-head attention with 16 heads are fed
and this transformer encoder block is repeated N = 16

times in the ViT-L16 model. As illustrated in Figure
5, each transformer encoder block employs both layer
normalization [90] and residual connections. Specifi-
cally, the current adopted implementation relies on the
pre-trained ViT-L16 python model based on the public
ImageNet-21k [87, 91], in which the head of the net-
work has been replaced with a new dense layer of 2048
units, batch normalization layer, dropout with a prob-
ability of 0.5 and a final dense layer. A final softmax
layer delivers the classification probability to belong to
a certain class, based on a class token similarly to [87].
Since ViT training is significantly computationally ex-
pensive, the authors decided on a transfer learning so-
lution [37, 89], by adopting a fine-tuning approach of
the network’s head to accomplish the GPR tunnel de-
fects classification task whilst freezing the training of
the rest of the ViT model. Figure 5 illustrates the em-
pirical trial-and-error hyperparameters set adopted to
train the current ViT-L16 model.

4. Results and Discussion

In order to investigate and compare the Fourier pre-
processing effects on DL-based classification for indi-
rect tunnel monitoring, the three previously described
DL models have been trained with both the datasets il-
lustrated in section 2.1, i.e. with raw GPR sample im-
ages and with bi-dimensional Fourier GPR sample pre-
processed images. In the following, the obtained re-
sults are extensively discussed for each DL model in-
dividually and, in the final part, the closing section 4.4
argues the results across the various employed tech-
niques.
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Table 1
Confusion matrices and classification metrics for ResNet-50 model
trained with raw image data.

Level 1 Predicted Accuracy 92.60%
True C1 C2 Precision Recall f1-score

C1 93.30% 6.70% 92.01% 93.30% 92.65%
C2 8.10% 91.90% 93.20% 91.90% 92.55%

Level 2a Predicted Accuracy 97.25%
True C3 C4 Precision Recall f1-score

C3 98.40% 1.60% 96.19% 98.40% 97.28%
C4 3.90% 96.10% 98.36% 96.10% 97.22%

Level 2b Predicted Accuracy 90.40%
True C5 C6 Precision Recall f1-score

C5 90.90% 9.10% 90.00% 90.90% 90.45%
C6 10.10% 89.90% 90.81% 89.90% 90.35%

Level 3 Predicted Accuracy 95.90%
True C7 C8 Precision Recall f1-score

C7 92.70% 7.30% 99.04% 92.70% 95.76%
C8 0.90% 99.10% 93.14% 99.10% 96.03%

Level 4 Predicted Accuracy 91.80%
True C9 C10 Precision Recall f1-score

C9 94.90% 5.10% 89.36% 94.90% 92.05%
C10 11.30% 88.70% 94.56% 88.70% 91.54%

Level 5 Predicted Accuracy 98.30%
True C11 C12 Precision Recall f1-score

C11 98.80% 1.20% 97.82% 98.80% 98.31%
C12 2.20% 97.80% 98.79% 97.80% 98.29%

Level 6 Predicted Accuracy 95.35%
True C13 C14 Precision Recall f1-score

C13 96.60% 3.40% 94.24% 96.60% 95.41%
C14 5.90% 94.10% 96.51% 94.10% 95.29%

4.1. Classification results for ResNet-50

Concerning the ResNet-50 model described in 3.1,
the authors have split the dataset with a proportion
of 80% for the training set and 20% for the test set.
Furthermore, the authors adopted the k-fold cross-
validation method with k = 10 folds, representing
a good choice to avoid both significant variance and
biased values according to [92]. Specifically, in [73],
the authors recommend a higher value of k when the
dataset variance is high, whilst a smaller value for
datasets with low variance. In the current study, the
entire dataset has been subdivided into k similar parts
named folds. Subsequently, every single model at the
various levels depicted in Figure 4 has been trained ten
times considering always different training sets com-
posed of k − 1 folds. A distinct test set has been em-
ployed to compute the ten resulting classification re-

Table 2
Confusion matrices and classification metrics for ResNet-50 model
trained with bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 88.25%
True C1 C2 Precision Recall f1-score

C1 87.90% 12.10% 88.52% 87.90% 88.21%
C2 11.40% 88.60% 87.98% 88.60% 88.29%

Level 2a Predicted Accuracy 83.15%
True C3 C4 Precision Recall f1-score

C3 79.30% 20.70% 85.92% 79.30% 82.48%
C4 13.00% 87.00% 80.78% 87.00% 83.77%

Level 2b Predicted Accuracy 76.30%
True C5 C6 Precision Recall f1-score

C5 73.50% 26.50% 77.86% 73.50% 75.62%
C6 20.90% 79.10% 74.91% 79.10% 76.95%

Level 3 Predicted Accuracy 85.90%
True C7 C8 Precision Recall f1-score

C7 97.80% 22.00% 91.57% 81.64% 86.32%
C8 9.00% 91.00% 80.53% 91.00% 85.45%

Level 4 Predicted Accuracy 85.15%
True C9 C10 Precision Recall f1-score

C9 83.90% 16.10% 86.05% 83.90% 84.96%
C10 13.60% 86.40% 84.29% 86.40% 85.33%

Level 5 Predicted Accuracy 89.90%
True C11 C12 Precision Recall f1-score

C11 85.70% 14.30% 93.56% 85.70% 89.46%
C12 5.90% 94.10% 86.81% 94.10% 90.31%

Level 6 Predicted Accuracy 90.55%
True C13 C14 Precision Recall f1-score

C13 92.40% 7.60% 89.10% 92.40% 90.72%
C14 11.30% 88.70% 92.11% 88.70% 90.37%

sults, i.e. the one-fold left out from the various train-
ing phases. Finally, these ten results have been aver-
aged for every single level of the tunnels GPR defects
classification tree.

Table 1 reports the confusion matrices of the aver-
aged classification results expressed in percentages for
the models trained with the raw GPR samples dataset.
The table also illustrates the level of overall accuracies
and the class metrics precision, recall, and f1-score. It
is worth noting that every level has revealed a good
accuracy above 90% in all the cases, reaching a peak
of 98.30% in level 5 and a minimum value of 90.40%
in level 2b. Averaging all the levels of accuracies, the
ResNet-50 model trained with the raw dataset, i.e.
without any Fourier pre-processing, reached a global
classification accuracy of 94.51%. On the other hand,
Table 2 reports the confusion matrices of the averaged
classification results expressed in percentages for the
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Table 3
Confusion matrices and classification metrics for EfficientNet model
trained with raw image data.

Level 1 Predicted Accuracy 94.55%
True C1 C2 Precision Recall f1-score

C1 95.50% 4.50% 93.73% 95.50% 94.60%
C2 6.39% 93.61% 95.41% 93.61% 94.50%

Level 2a Predicted Accuracy 91.07%
True C3 C4 Precision Recall f1-score

C3 89.24% 10.76% 92.63% 89.24% 90.91%
C4 7.10% 92.90% 89.62% 92.90% 91.23%

Level 2b Predicted Accuracy 81.01%
True C5 C6 Precision Recall f1-score

C5 81.71% 18.29% 80.58% 81.71% 81.14%
C6 19.69% 80.31% 81.45% 80.31% 80.87%

Level 3 Predicted Accuracy 94.94%
True C7 C8 Precision Recall f1-score

C7 99.00% 1.00% 91.57% 99.00% 95.14%
C8 9.11% 90.89% 98.91% 90.89% 94.73%

Level 4 Predicted Accuracy 90.70%
True C9 C10 Precision Recall f1-score

C9 88.56% 11.44% 92.52% 88.56% 90.50%
C10 7.16% 92.84% 89.03% 92.84% 90.90%

Level 5 Predicted Accuracy 93.47%
True C11 C12 Precision Recall f1-score

C11 90.65% 9.35% 96.07% 90.65% 93.28%
C12 3.70% 96.30% 91.15% 96.30% 93.65%

Level 6 Predicted Accuracy 96.08%
True C13 C14 Precision Recall f1-score

C13 96.33% 3.67% 95.85% 96.33% 96.09%
C14 4.17% 95.83% 96.31% 95.83% 96.07%

models trained with the bi-dimensional Fourier pre-
processed GPR samples dataset. In this circumstance,
level 2b stands out for its worst accuracy value stacked
to 76.30%. However, in the other levels, the ResNet-50
has revealed a good accuracy above 85% in virtually
all the cases, reaching a peak value of 90.55% in level
6. Averaging all the levels of accuracies, the ResNet-
50 model trained with the bi-dimensional Fourier pre-
processed dataset reached a global classification ac-
curacy of 85.60%, about 8.91% below the global ac-
curacy of the ResNet-50 model trained with the raw
dataset. These results demonstrated that, notwithstand-
ing the envisaged advantages of adopting the Fourier
pre-processing technique on the GPR sample images
for the convolution operation, the ResNet-50 model
is not able to reach the accuracy levels of the previ-
ous case, i.e. trained with the raw GPR dataset. Down-
stream of the obtained results, the authors suppose that

Table 4
Confusion matrices and classification metrics for EfficientNet model
trained with bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 87.43%
True C1 C2 Precision Recall f1-score

C1 87.65% 12.35% 87.27% 87.65% 87.46%
C2 12.78% 87.22% 87.60% 87.22% 87.41%

Level 2a Predicted Accuracy 84.15%
True C3 C4 Precision Recall f1-score

C3 82.75% 17.25% 85.14% 82.75% 83.93%
C4 14.44% 85.56% 83.22% 85.56% 84.37%

Level 2b Predicted Accuracy 73.87%
True C5 C6 Precision Recall f1-score

C5 72.47% 27.53% 74.55% 72.47% 73.50%
C6 24.73% 75.27% 73.22% 75.27% 74.23%

Level 3 Predicted Accuracy 93.06%
True C7 C8 Precision Recall f1-score

C7 98.78% 1.22% 88.63% 98.78% 93.43%
C8 12.67% 87.33% 98.62% 87.33% 92.63%

Level 4 Predicted Accuracy 0.8215
True C9 C10 Precision Recall f1-score

C9 81.95% 18.05% 82.29% 81.95% 82.12%
C10 17.64% 82.36% 82.02% 82.36% 82.19%

Level 5 Predicted Accuracy 88.66%
True C11 C12 Precision Recall f1-score

C11 83.70% 16.30% 92.91% 83.70% 88.07%
C12 6.39% 93.61% 85.17% 93.61% 89.19%

Level 6 Predicted Accuracy 92.28%
True C13 C14 Precision Recall f1-score

C13 94.85% 5.15% 90.21% 94.85% 92.47%
C14 10.29% 89.71% 94.57% 89.71% 92.07%

the Fourier pre-processing probably introduced an ex-
aggerated information compression, thus providing too
similar images with such detrimental effects on the
classification accuracy.

In an effort to demonstrate the contingent pres-
ence of overfitting during the training phase of all
the ResNet-50 trained models with and without the
Fourier pre-processed dataset, the convergence curves
have been reported in appendix A in Figure A.1. These
graphs show the trend of the loss, the accuracy, the
validation loss, and the validation accuracy during
the training epochs or iterations. Since each level ac-
counts for 10 different trained models because of the
k-fold cross-validation procedure, the authors repre-
sented the average curves among the 10 considered
models. However, for the purpose of not losing the
variability information among the ten different mod-
els, the shaded area around the average curve rep-
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Table 5
Confusion matrices and classification metrics for ViT model trained
with raw image data.

Level 1 Predicted Accuracy 95.42%
True C1 C2 Class Nr img/class Test support Precision Recall f1-score

C1 380 21 C1 408 401 95.24% 94.76% 95.00%
C2 19 453 C2 672 472 95.57% 95.97% 95.77%

Level 2a Predicted Accuracy 99.03%
True C3 C4 Class Nr img/class Test support Precision Recall f1-score

C3 359 0 C3 408 359 98.90% 100.00% 99.45%
C4 4 50 C4 672 54 100.00% 92.59% 96.15%

Level 2b Predicted Accuracy 94.57%
True C5 C6 Class Nr img/class Test support Precision Recall f1-score

C5 45 11 C5 408 56 76.27% 80.36% 78.26%
C6 14 390 C6 672 404 97.26% 96.53% 96.89%

Level 3 Predicted Accuracy 100.00%
True C7 C8 Class Nr img/class Test support Precision Recall f1-score

C7 95 0 C7 408 95 100.00% 100.00% 100.00%
C8 0 308 C8 672 308 100.00% 100.00% 100.00%

Level 4 Predicted Accuracy 99.04%
True C9 C10 Class Nr img/class Test support Precision Recall f1-score

C9 94 2 C9 408 96 98.95% 97.92% 98.43%
C10 1 216 C10 672 217 99.08% 99.54% 99.31%

Level 5 Predicted Accuracy 99.54%
True C11 C12 Class Nr img/class Test support Precision Recall f1-score

C11 115 0 C11 408 115 99.14% 100.00% 99.57%
C12 1 103 C12 672 104 100.00% 99.04% 99.52%

Level 6 Predicted Accuracy 99.07%
True C13 C14 Class Nr img/class Test support Precision Recall f1-score

C13 52 1 C13 408 53 100.00% 98.11% 99.05%
C14 0 55 C14 672 55 98.21% 100.00% 99.10%

resents the envelope among the maximum and min-
imum curves among the 10 considered models. Ex-
cluding level 1 in which a slightly increasing trend of
the average validation loss manifests around iteration
400, the ResNet-50 with raw dataset presents a com-
prehensive excellent behavior without any evidence of
overfitting issues. Concerning the convergence curves
of the ResNet-50 model with Fourier pre-processed
GPR images dataset, a noticeable overfitting problem
is evidenced in the level 2b from iteration around 50,
thus explaining the poor classification accuracy of that
level, as illustrated in table 2. Moreover, slightly over-
fitting phenomena are tangible in levels 1 from itera-
tion around 400 and level 4 from iteration around 80.

4.2. Classification results for EfficientNet-B0

Regarding the EfficientNet-B0 model described in
3.2, similarly to before, the authors have split the

dataset with a proportion of 80% for the training set
and 20% for the test set. In a similar manner, the
authors adopted the k-fold cross-validation method
also for this convolutional model with k = 10 folds.
Table 3 reports the confusion matrices of the aver-
aged classification results expressed in percentages of
the EfficientNet-B0 models trained with the raw GPR
samples dataset for each binary classification level of
Figure 4. As before, the table also illustrates the level
of overall accuracies and the class metrics precision,
recall, and f1-score. It is worth noting that every level
has revealed a fairly good accuracy above 90% in vir-
tually all the cases, except for level 2b in which the
worst value of 81.01% is reported. Level 2b was like-
wise observed with the lowest accuracy also for The
ResNet-50 model. On the contrary, the best accuracy
of 96.08% was obtained in level 6. Averaging all the
levels of accuracies, the EfficientNet-B0 model trained
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Table 6
Confusion matrices and classification metrics for ViT model trained with bi-dimensional Fourier pre-processed image data.

Level 1 Predicted Accuracy 86.14%
True C1 C2 Class Nr img/class Test support Precision Recall f1-score

C1 302 99 C1 408 401 93.21% 75.31% 83.31%
C2 22 450 C2 672 472 81.97% 95.34% 88.15%

Level 2a Predicted Accuracy 92.98%
True C3 C4 Class Nr img/class Test support Precision Recall f1-score

C3 358 1 C3 408 359 92.75% 99.72% 96.11%
C4 28 26 C4 672 54 96.30% 48.15% 64.20%

Level 2b Predicted Accuracy 90.87%
True C5 C6 Class Nr img/class Test support Precision Recall f1-score

C5 29 27 C5 408 56 65.91% 51.79% 58.00%
C6 15 389 C6 672 404 93.51% 96.29% 94.88%

Level 3 Predicted Accuracy 98.76%
True C7 C8 Class Nr img/class Test support Precision Recall f1-score

C7 95 0 C7 408 95 95.00% 100.00% 97.44%
C8 5 303 C8 672 308 100.00% 98.38% 99.18%

Level 4 Predicted Accuracy 94.57%
True C9 C10 Class Nr img/class Test support Precision Recall f1-score

C9 85 11 C9 408 96 93.41% 88.54% 90.91%
C10 6 211 C10 672 217 95.05% 97.24% 96.13%

Level 5 Predicted Accuracy 93.15%
True C11 C12 Class Nr img/class Test support Precision Recall f1-score

C11 103 12 C11 408 115 97.17% 89.57% 93.21%
C12 3 101 C12 672 104 89.38% 97.12% 93.09%

Level 6 Predicted Accuracy 99.07%
True C13 C14 Class Nr img/class Test support Precision Recall f1-score

C13 52 1 C13 408 53 100.00% 98.11% 99.05%
C14 0 55 C14 672 55 98.21% 100.00% 99.10%

with the raw dataset, i.e. without any Fourier pre-
processing, reached a global classification accuracy of
91.69%.

Conversely, Table 4 reports the confusion matri-
ces of the averaged classification results expressed in
percentages for the EfficientNet-B0 models trained
with the bi-dimensional Fourier pre-processed GPR
samples dataset. In the present case, level 2b pointed
out, once again, the worst accuracy value stacked
to 73.87%, i.e. 7.14% below than the counterpart
EfficientNet-B0 trained with the raw dataset. However,
in the other levels, the EfficientNet-B0 has revealed a
good accuracy above 80% in virtually all the cases, ex-
cept for level 2b, with an average reduction of 5.75%
with respect to the counterpart EfficientNet-B0 trained
with the raw dataset. The maximum accuracy value of
93.06% was realized in level 3. Averaging all the lev-
els of accuracies, the EfficientNet-B0 model trained
with the bi-dimensional Fourier pre-processed dataset

reached a global classification accuracy of 85.94%,
about 5.75% below the global accuracy of the same
models trained with the raw dataset. Even in these
circumstances, the obtained results proved that the
bi-dimensional Fourier pre-processing provided detri-
mental effects in terms of classification accuracy. Both
ResNet-50 and EfficientNet-B0 models exhibit a worse
classification behavior with the bi-dimensional Fourier
pre-processed dataset despite the envisaged beneficial
effects in computing the convolution operation.

To demonstrate any potential presence of overfit-
ting during the training phase of all the EfficientNet-
B0 trained models with and without the Fourier pre-
processed dataset, the convergence curves during the
training iterations have been reported in appendix A
in Figure A.2. Although the EfficientNet-B0 models
trained with raw dataset apparently do not manifest
any sign of overfitting issue presence, level 2b re-
vealed a barely noticeable slightly increasing trend
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of the average validation loss manifests around iter-
ation 100. Concerning the convergence curves of the
EfficientNet-B0 model with the Fourier pre-processed
GPR images dataset, slightly overfitting issues are evi-
denced in level 1 from iteration around 400, in level 2b
from iteration around 80, and in level 4 from iteration
around 150.

4.3. Classification results for ViT

Concerning the ViT model described in 3.3, on this
occasion, the authors have split the dataset with a pro-
portion of 90% for the training set and 10% for the test
set. Furthermore, due to the quite prohibitive compu-
tational costs for training the ViT model from scratch,
the authors adopted a pre-trained model and provided
the fine-tuning training of the head of the network
only, as illustrated in Figure 5. For the same reason of
computational demanding resources, the k-fold cross-
validation method has not been employed with the
transformers models of the present study. Table 5 re-
ports the confusion matrices of the averaged classifica-
tion results expressed in absolute terms, i.e. the number
of samples from the test set of the raw GPR samples
dataset which has been predicted for each class. The
table illustrates the level of overall accuracies and the
class metrics precision, recall, and f1-score. It is worth
noting that every level has revealed excellent accuracy
results above 94% in all the cases, even reaching a peak
value of 100.00% in level 3 and with a minimum ac-
curacy value of 95.42% in correspondence of level 2b,
just like the worst levels of the above-mentioned con-
volutional models. Averaging all the levels of accura-
cies, the ViT model trained with the raw dataset, i.e.
without any Fourier pre-processing, reached a global
classification accuracy of 98.10%. On the other hand,
Table 6 reports the confusion matrices of the averaged
classification results expressed in percentages for the
ViT models trained with the bi-dimensional Fourier
pre-processed GPR samples dataset. In this case, the
worst level is the first one, presenting the worst ac-
curacy value of 86.14%. In the other levels, the ViT
has still revealed a good accuracy greater than 90%
in virtually all the cases nonetheless, still reaching
a noticeable maximum accuracy value of 99.07% in
level 6. However, averaging all the levels of accuracies,
the ViT model trained with the bi-dimensional Fourier
pre-processed dataset reached a less global classifica-
tion accuracy of 93.65%, with an average reduction of
4.45% with respect to the counterpart ViT trained with
the raw dataset. Again, the above-mentioned results

Fig. 6. Comparative analysis of the various DL models’ classifica-
tion accuracy with and without Fourier pre-processing among the
classification levels.

demonstrated that, notwithstanding the envisaged ad-
vantages of adopting the Fourier pre-processing tech-
nique on the GPR sample images, also the ViT model
is not able to reach the accuracy levels of the training
with the raw GPR dataset. Since ViT is not essentially
based on the convolution operation likewise CNNs,
the obtained results strengthen the authors’ supposi-
tions of an excessive information compression pro-
duced with the Fourier pre-processing procedure, re-
sulting in fairly deleterious effects on the classification
capacity of the analyzed DL models.

For the purpose of demonstrating a possible pres-
ence of overfitting during the training phase of all the
ViT trained models with and without the Fourier pre-
processed dataset, the convergence curves have been
reported in appendix A in Figure A.3. These graphs
show the trend of the loss, the accuracy, the valida-
tion loss, and the validation accuracy during the train-
ing epochs. The convergence curves do not always
reach the maximum of 20 epochs because of the adop-
tion of the early-stopping criterion. This means that
the training phase is early interrupted when no fur-
ther improvements occur to both save computational
resources and avoid overfitting training. Despite the
validation loss curves appearing quite noisy during
the training epochs, their global descending trends
proved that ViT model trained with raw GPR images
dataset does not incur any overfitting phenomena at
every level. Focusing on the ViT models trained with
the Fourier pre-processed dataset, the validation curve
trends revealed overfitting occurrence in level 1, level
4, and slight evidence in level 3, besides they appeared
to be noisier than the previous case.

4.4. Comparative analysis of the classification results

In the current closing section, the authors com-
pared the results among the various DL trained mod-
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Table 7
Global average accuracy for the three analyzed neural models.

Neural model Without Fourier With Fourier

ResNet-50 94.51% 85.60%
EfficientNet-B0 91.69% 85.94%
ViT 98.10% 93.65%

els. Figure 6 provides a comparative overview of the
obtained accuracy results. The classification outcomes
have been organized for the various GPR defects clas-
sification levels. The graph is arranged according to the
three DL analyzed models, and depicted in two juxta-
posed histogram representations related to the training
phase with the raw dataset and with the bi-dimensional
Fourier pre-processed dataset. At first sight of the di-
agram, among the various DL models, the ViT archi-
tecture delivered the highest accuracy values for vir-
tually all the levels of both cases with and without
Fourier pre-processing. However, the ResNet-50 pro-
vided an accuracy result of 88.25% with the Fourier
pre-processed dataset, thus providing a higher result
than ViT model. As evidenced from the convergence
curves, the ViT trained with Fourier pre-processed im-
ages evidence a slightly overfitting phenomenon in
level 1. Jointly with the excessive data compression
of the Fourier operation, as visually demonstrated in
Figure 2, the ViT model produced the worst accuracy
performance in level 1 with Fourier pre-processing
concerning other models. The EfficientNet-B0 model
globally produced the worst results among almost all
the levels for both two cases under comparison. How-
ever, with a deeper insight, the ResNet-50 provided
the worst results in level 1 focusing on raw images
dataset, and in levels 2a and 6 within the Fourier pre-
processed case. It is worth mentioning that generally
all three DL models struggled to reach high accuracy
vale in level 2b. With a deeper inspection of the vari-
ous convergence curves reported in the appendix, over-
fitting issues emerged in ResNet-50 with Fourier pre-
processed dataset, in EfficientNet-B0 in both the two
analyzed cases, and in the ViT model with Fourier
pre-processed dataset. The difficulties in level 2b may
be related to the critical unbalance in the amount of
GPR images samples between classes C5 and C6. It
is worth recalling that samples belonging to class C5
may contain multiple overlayed defects or other spe-
cific patterns that are not directly interpretable with re-
spect to the standard tunnel lining defects classifica-
tion of Figure 4. This means that it is not possible to
priorly exclude that those special patterns sometimes
could present some parts quite similar to specific de-

fects patterns belonging to class C6. Therefore, it could
be also reasonable that those parts in samples of class
C5 may possibly mislead the neural models, thus pro-
viding misclassified results. In addition, another possi-
ble reason could also be a quite critical similarity de-
gree among the images of these two specific classes C5
and C6. This may be plausible especially in the Fourier
case, which may produce overly similar images due to
excessive data information compression.

Eventually, Table 7 reports the global average accu-
racy results among the various levels. It is worth not-
ing the average accuracy reductions for the three DL
models between the raw dataset case and Fourier pre-
processed dataset. The ViT model recorded the lowest
average accuracy reduction equal to 4.45%, whereas
the EfficientNet-B0 exhibited a reduction value of
5.75%. The highest reduction of 8.91% was suffered
from the ResNet-50 model. Despite the second-best
model in terms of accuracy is the ResNet-50 with the
raw dataset, it appeared to be the least robust architec-
ture to the induced effects of the Fourier pre-processed
dataset, thus delivering the most consistent average ac-
curacy reduction.

5. Conclusions

This paper focuses on GPR testing of tunnel linings
profiles using a DL-based image recognition frame-
work. The authors compare the performance of three
DL models for indirect tunnel defects classification.
Nowadays, tunnel monitoring with innovative NDT
is widespread, demanding more automation from DL
methods. The authors adopted a hierarchical binary
classification approach to group the types of defects
identified in the GPR profiles. The core and main find-
ings of this paper can be summarized as follows:

– Three DL models have been employed, two con-
volutional models, i.e. the ResNet-50 model and
the EfficientNet-B0 model, and a recent trans-
former architecture, i.e. the ViT model. The au-
thors trained all the models with two different
datasets, adequately prepared to compare the
induced effects of a common, widespread im-
age processing technique, i.e. the bi-dimensional
Fourier transform.

– The Fourier pre-processing of GPR images deter-
mined a significant accuracy reduction compared
to the raw dataset. Therefore, despite the com-
putational advantages of Fourier pre-processing,
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Fourier pre-processing introduced an exaggerated
data compression. The related information loss
leads to overly similar images, with detrimental
effects on the final classification accuracy.

– The ViT model delivered the highest classifica-
tion accuracy values for virtually all the levels
both with and without Fourier pre-processing.

The current AI-aided approach for GPR indirect tun-
nel monitoring mainly deals with the defects classifi-
cation and detection task, which is the first level of an
ideal SHM paradigm [93]. Future research efforts will
be directed towards the remaining three SHM steps,
i.e. the damage localization, the damage severity quan-
tification, and the actual safety health state assess-
ment. The primary purpose of SHM is to provide a re-
liable and exhaustive diagnosis of existing structures
and infrastructures [93]. A promising research path in
that direction may naturally leverage the attention map
provided by transformer models’ outputs. Further fu-
ture developments to address defects localization may
leverage also the potentialities offered by the object
detection task, e.g. employing a Faster R-CNN. Fu-
ture improvements may also involve other compres-
sive sensing techniques and transforms, e.g. wavelet
[94–96].
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Fig. A.1. Loss versus accuracy during the training iterations. (a-g) ResNet-50 trained with raw images. (h-n) ResNet-50 trained with Fourier
pre-processed images.
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Fig. A.2. Loss versus accuracy during the training iterations. (a-g) EfficientNet-B0 trained with raw images. (h-n) EfficientNet-B0 trained with
Fourier pre-processed images.
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Fig. A.3. Loss versus accuracy during the training iterations. (a-g) ViT trained with raw images. (h-n) ViT trained with Fourier pre-processed
images.
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