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Low-order thermoacoustic models are qualitatively correct, but typically, they are
quantitatively inaccurate. We propose a time-domain bias-aware method to make
qualitatively low-order models quantitatively (more) accurate. First, we develop a Bayesian
ensemble data assimilation method for a low-order model to self-adapt and self-correct any
time that reference data become available. Second, we apply the methodology to infer the
thermoacoustic states and heat-release parameters on the fly without storing data (real
time). We perform twin experiments using synthetic acoustic pressure measurements to
analyse the performance of data assimilation in all nonlinear thermoacoustic regimes,
from limit cycles to chaos, and interpret the results physically. Third, we propose practical
rules for thermoacoustic data assimilation. An increase, reject, inflate strategy is proposed
to deal with the rich nonlinear behaviour; and physical time scales for assimilation are
proposed in non-chaotic regimes (with the Nyquist–Shannon criterion) and in chaotic
regimes (with the Lyapunov time). Fourth, we perform data assimilation using data from
a higher-fidelity model. We introduce an echo state network to estimate in real time
the forecast bias, which is the model error of the low-fidelity model. We show that: (i) the
correct acoustic pressure, parameters, and model bias can be inferred accurately; (ii) the
learning is robust as it can tackle large uncertainties in the observations (up to 50 % of
the mean values); (iii) the uncertainty of the prediction and parameters is naturally part
of the output; and (iv) both the time-accurate solution and statistics can be inferred
successfully. Data assimilation opens up new possibility for real-time prediction of
thermoacoustics by combining physical knowledge and experimental data synergistically.
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A. Nóvoa and L. Magri

1. Introduction

When the heat released by a heat source, such as a flame, is sufficiently in phase with the
acoustic waves of a confined environment, such a gas turbine or a rocket, thermoacoustic
oscillations may occur (Rayleigh 1878). Thermoacoustic oscillations manifest themselves
as large-amplitude vibrations, which can be detrimental to gas-turbine reliability (e.g.
Lieuwen 2012), and can be destructive in high-power-density motors such as rocket
engines (e.g. Culick & Kuentzmann 2006). The objective of manufacturers is to design
devices that are thermoacoustically stable, which is the goal of optimisation, and suppress
a thermoacoustic oscillation if it occurs, which is the goal of control (e.g. Magri 2019).
Both optimisation and control rely on a mathematical model, which provides predictions
on the key physical variables, such as the acoustic pressure and the heat-release rate.
The accurate prediction of thermoacoustic oscillations, however, remains one of the most
challenging problems faced by power generation, heating and propulsion manufacturers
(e.g. Dowling & Morgans 2005; Noiray et al. 2008; Lieuwen 2012; Poinsot 2017; Juniper
& Sujith 2018).

The prediction of thermoacoustic dynamics – even in simple systems – is challenging for
three reasons. First, thermoacoustics is a multi-physics phenomenon. For a thermoacoustic
oscillation to occur, three physical subsystems (flame, acoustics and hydrodynamics)
interact constructively with each other (e.g. Lieuwen 2012; Magri 2019). Second,
thermoacoustics is a nonlinear phenomenon (e.g. Sujith & Unni 2020). In general,
the flame’s heat release responds nonlinearly to acoustic perturbations (Dowling 1999),
and the hydrodynamics are typically turbulent (e.g. Huhn & Magri 2020b). Third,
thermoacoustics is sensitive to perturbations to the system. In the linear regime, small
changes to the system’s parameters, such as the flame time delay, can cause arbitrarily
large changes of the eigenvalue growth rates at exceptional points (Mensah et al. 2018;
Orchini et al. 2020). In the nonlinear regime, small changes to the system’s parameters can
cause a variety of nonlinear bifurcations of the solution. As a design parameter is varied in
a small range, thermoacoustic oscillations may become chaotic, by either period doubling
or Ruelle–Takens–Newhouse scenarios (Gotoda et al. 2011, 2012; Kabiraj & Sujith 2012;
Kashinath, Waugh & Juniper 2014; Orchini, Illingworth & Juniper 2015; Huhn & Magri
2020b), or by intermittency bifurcations scenarios (Nair, Thampi & Sujith 2014; Nair
& Sujith 2015). The rich bifurcation behaviour has an impact on the effectiveness of
control strategies, which may work for periodic oscillations with a dominant frequency, but
may not work as effectively for multi-frequency oscillations. Additionally, unpredictable
changes in the operating conditions and turbulence, which can be modelled as random
phenomena (Nair & Sujith 2015; Noiray 2017), increase the uncertainty on the prediction
of the quantities of interest.

Thermoacoustics can be modelled with a hierarchy of assumptions and computational
costs. Large-eddy simulations make assumptions only on the finer flow scales, which
makes the final solution high-fidelity, but computationally expensive (Poinsot 2017). Euler
and Helmholtz solvers compute the acoustics that evolve on a prescribed mean flow, which
makes the solution medium-fidelity and computationally less expensive than turbulent
simulations (e.g. Nicoud et al. 2007). Commonly, this is achieved with flame models,
which capture the heat-release response to acoustic perturbations with transfer functions
(e.g. Noiray et al. 2008; Silva et al. 2013) and distributed time delays (Polifke 2020). Other
medium-fidelity and medium-cost methods are based on flame-front tracking (e.g. Pitsch
& de Lageneste 2002) and simple chemistry models (e.g. Magri & Juniper 2014), to name
only a few. On the other hand, low-order models based on travelling waves and standing
waves (Dowling 1995) provide low-fidelity solutions, but with low computational cost.
948 A35-2
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Real-time thermoacoustic data assimilation

These low-order models capture only the dominant physical mechanisms, which are the
flame time delay, the flame strength (or index), and the damping. Low-order models, which
are the subject of this study, are attractive to practitioners because they provide quick
estimates on the quantity of interest. Along with modelling, accurate experimental data
are becoming more accessible and available (O’Connor, Acharya & Lieuwen 2015). To
monitor the thermoacoustic behaviour in both real engines and academic rig (such as the
Rijke tube), the pressure is measured experimentally by microphones (Lieuwen & Yang
2005; Kabiraj et al. 2012a). Microphones sample the pressure amplitude at typically high
rates, which generates large datasets in real time. Except when required for diagnostics and
a posteriori parameter identification (among many others, Polifke et al. 2001; Schuermans
2003; Lieuwen & Yang 2005; Noiray et al. 2008; Noiray 2017; Polifke 2020), the data are
useful if they can be used in real time, i.e. on the fly, to correct (or update) our knowledge
of the thermoacoustic states. The sequential assimilation method that we develop bypasses
the need to store data, which enables the real-time assimilation of data as well as on-the-fly
parameter estimation.

To summarise, in thermoacoustics, we have three ingredients to improve the design:
(i) a human being, who identifies the physical mechanisms that need to be modelled
depending on the objectives and resources; (ii) a mathematical model, which provides
estimates of the physical states; and (iii) experimental data, which provide a quantitative
measure of the system’s observables. A model is good if the human being identifies the
physical mechanisms needed to formulate a mathematical model that provides the system’s
states compatibly with the experimental data. The overarching objective of this paper is to
propose a method to make qualitatively low-order models quantitatively (more) accurate
every time that reference data becomes available. The ingredients for this are: a physical
low-order model, which provides the states; data, which provide the observables; and
a statistical method, which finds the most likely model by assimilating the data in the
model. In weather forecasting, this process is known as data assimilation (Sasaki 1955).
Data assimilation techniques have been applied to oceanographic studies (Eckart 1960),
aerospace control (Gelb 1974), robotics, geosciences and cognitive sciences (Reich &
Cotter 2015), to name only a few. Data assimilation is a principled method, which, in
contrast to traditional machine learning, uses a physical model to provide a prediction
on the solution (the forecast), which is updated when observations become available to
provide a corrected state (the analysis) (Reich & Cotter 2015). The analysis is an estimator
of the physical state (the true state), which is more accurate than the forecast.

1.1. Data assimilation
Data assimilation methods can be divided into two main approaches (Lewis,
Lakshmivarahan & Dhall 2006): (i) variational and (ii) statistical assimilation methods.
Variational data assimilation requires the minimisation of a cost functional – e.g. a
Mahalanobis (semi)norm – in terms of a control variable to obtain a single optimal analysis
state (Bannister 2017). The most common variational methods are 3D-VAR and 4D-VAR,
which are used widely in weather centres such as the Met Office in the UK or the European
Centre for Medium-Range Weather Forecasts, and in academic research (Bannister 2008).
In thermoacoustics, variational data assimilation was introduced by Traverso & Magri
(2019), who found the optimal thermoacoustic states given reference data from pressure
observations. Because variational methods need batches of data, they are not naturally
suited to real-time inference. On the other hand, statistical data assimilation combines
concepts of probability and estimation theory. The aim of statistical data assimilation
is to compute the probability distribution function of a numerical model to combine it
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A. Nóvoa and L. Magri

statistically with data from observations. Because the probability distribution function
is high-dimensional, the practitioner is often interested in capturing only the first and
second statistical moments of it. In reduced-order modelling, this was achieved in flame
tracking methods by Yu, Juniper & Magri (2019), who implemented ensemble Kalman
filters and smoothers to learn the flame parameters on the fly. In high-fidelity methods
in reacting flows, data assimilation with ensemble Kalman filters have been applied
in large-eddy simulation of premixed flames to predict local extinctions in a jet flame
(Labahn et al. 2019), and under-resolved turbulent simulation to predict autoignition events
(Magri & Doan 2020). The ensemble Kalman filter has also been applied successfully to
non-reacting flow systems that show high nonlinearities, such as the estimation of turbulent
near-wall flows (Colburn, Cessna & Bewley 2011), uncertainties in Reynolds-averaged
Navier–Stokes (RANS) equations (Xiao et al. 2016), and aerodynamic flows (da Silva &
Colonius 2018). Statistical data assimilation based on Bayesian methods, which enable
real-time prediction in contrast to variational methods, was introduced in thermoacoustics
by Nóvoa & Magri (2020).

1.2. Model bias
Commonly, data assimilation methods are derived under the assumption that forecast
errors are random with zero mean (Evensen 2009), or, in other words, the error is unbiased.
However, in addition to state and parameter uncertainties, low-order models are affected
by model uncertainty, which manifests as an error bias. Modelling the model bias is
an active research area. To produce an unbiased analysis, both forecast and observation
biases need to be estimated (Dee & da Silva 1998). Friedland (1969) developed the
separate Kalman filter to estimate the bias, which is a two-stage sequential filtering process
that addresses the estimation of a constant bias term, but its application is limited to
linear processes. Drécourt, Madsen & Rosbjerg (2006) extended the implementation of
the separate Kalman filter and compared it to the coloured noise Kalman filter, which
augments the state vector with an auto-retrogressive model that describes the bias. They
propose a feedback implementation of these methods, which allows a time-correlated
representation of the bias, but the accuracy is limited by the prescribed model of
the bias. Houtekamer & Zhang (2016) reviewed techniques that involve multi-physical
parametrisation to reduce the model bias in atmospheric data assimilation, which are
more computationally expensive than single-model approaches. More recently, there
have been studies that estimated model-related errors in the assimilation cycle. Rubio,
Chamoin & Louf (2019) proposed a data-based approach to model the error that arises
from the truncation of proper generalised decomposition modes, which was integrated
into a Bayesian inference method. Da Silva & Colonius (2020) proposed a low-rank
representation of the observation discretisation bias, based as well on an auto-regressive
model. They performed parameter estimation with an ensemble Kalman filter to calibrate
the parameters of the auto-regressive model. These works modelled successfully the
truncation and discretisation bias, but they did not model the physical model bias, which
is a more general form of error that will be tackled in this paper. The estimation of a
nonlinear dynamical state in the presence of a model bias remains an open problem. We
propose a framework to obtain an unbiased analysis in thermoacoustic low-fidelity models
by inferring the model bias. This consists of the combination of data assimilation with
a recurrent neural network, which infers the model error of the low-fidelity model of the
thermoacoustic system.

Recurrent neural networks are data-driven techniques that are designed to learn temporal
correlations in time series (Rumelhart, Hinton & Williams 1986), with a variety of
948 A35-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Real-time thermoacoustic data assimilation

applications in time series forecasting. In fluid mechanics, recurrent neural networks have
been employed to model unsteady flow around bluff bodies (Hasegawa et al. 2020), and
as an optimisation tool for gliding control (Novati, Mahadevan & Koumoutsakos 2019).
Among recurrent neural networks, echo state networks based on reservoir computing,
which are universal approximators (Grigoryeva & Ortega 2018), proved to be successful
in learning nonlinear correlations in data (Maass, Natschläger & Markram 2002; Jaeger &
Haas 2004) and ergodic properties (Huhn & Magri 2022). Training an echo state network
consists of a simple linear regression problem. This is a simple and computationally
cheap task with respect to the back propagation required in other architectures (such as
long short-term memory networks), which makes echo state networks suited to real-time
assimilation. Because no gradient descent is necessary, vanishing/exploding gradient
problems do not occur in echo state networks. In chaotic flows, echo state networks have
been used, for instance, to learn and optimise the time average of thermoacoustic dynamics
(Huhn & Magri 2020a, 2022), to predict turbulent dynamics with physical constraints
(Doan, Polifke & Magri 2021), and to predict the statistics of extreme events in turbulent
flows (Racca & Magri 2021). In this paper, we propose to model the model bias with an
echo state network, which is a more versatile and general tool than auto-regressive models
(Aggarwal 2018, p. 306).

1.3. Objectives and structure
The objectives of this paper are fivefold. First, we develop a sequential data assimilation
for a low-order model to self-adapt and self-correct any time that reference data become
available. The method, which is based on Bayesian inference, provides the maximum a
posteriori estimate model prediction, i.e. the most likely prediction. Second, we apply
the methodology to infer the thermoacoustic states and heat-release parameters on the fly
without storing data. Third, we analyse the performance of the data assimilation algorithm
on a twin experiment with synthetic data, and interpret the results physically. Fourth, we
propose practical rules for thermoacoustic data assimilation. Fifth, we extend the data
assimilation method to account for a biased thermoacoustic model. This method is tested
by assimilating observations from a model with non-ideal boundary conditions, a mean
flow and the simulation of the flame front with a kinematic model (Dowling 1999). The
simulation of the flame dynamics is suitable for a time-domain approach, and it overcomes
the limitations of flame response models.

The paper is structured as follows. Section 2 provides a description of the nonlinear
thermoacoustic model with the data assimilation technique and its implementation for
thermoacoustics. Section 3 presents the method developed for state and parameter
estimation. Section 4 presents the method developed for combining data assimilation
with an echo state network. Section 5 presents the nonlinear characterisation of the
thermoacoustic dynamics. Section 6 shows the results for non-chaotic regimes, whereas
§ 7 shows and discusses the results for chaotic solutions. Section 8 shows and discusses
the results for unbiased state and parameter estimation for a high-fidelity limit cycle.
A final discussion and conclusions end the paper in § 9.

2. Thermoacoustic data assimilation

We consider a nonlinear thermoacoustic model, T , as

T (ψ,α, y,F , δ) = 0, (2.1)

G(ψ) = y+ ε, (2.2)
948 A35-5
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A. Nóvoa and L. Magri

where ψ is the state of the system, α is the vector of the system’s parameters, y are
the observables from reference data, F is a nonlinear operator, which, in general, is
differential, δ is a model error, G is a nonlinear map from the state space to the observable
state, and ε is the observation error. The thermoacoustic problem on which we focus is:
‘given some data (observables) y, and a mathematical model T , what are the most likely
physical states ψ and parameters α of the system?’ To answer this, we use a Bayesian
approach in the well-posed maximum a posteriori estimation framework. Although the
framework is versatile, in the following subsections, we specify the low-order model F ,
the data y, and the data assimilation approach.

2.1. Qualitative nonlinear thermoacoustic model
The system consists of an open-ended tube containing a heat source, such as a flame or
an electrically heated gauze. Because the tube is sufficiently long with respect to the
diameter, the cut-on frequency is such that only longitudinal acoustic waves propagate.
This is known as the Rijke tube, which is a common laboratory-scale device that has been
employed in a variety of fundamental studies (Heckl 1990; Balasubramanian & Sujith
2008; Juniper 2011; Magri et al. 2013). This device is represented in figure 1. The Rijke
model used in this work is described by Balasubramanian & Sujith (2008) and Juniper
(2011). The flow is assumed to be a perfect gas, the mean flow is sufficiently slow such
that its effects are neglected in the acoustic propagation, and viscous and body forces are
neglected. The acoustics are governed by the dimensionless linearised momentum and
energy conservation equations

∂u′

∂t
+ ∂p′

∂x
= 0, (2.3a)

∂p′

∂t
+ ∂u′

∂x
= Q̇δ(x− xf )− ζp′, (2.3b)

where u′ is the acoustic velocity, p′ is the acoustic pressure, Q̇ is the heat-release rate,
xf is the flame location, δ is the Dirac delta distribution, which models the heat source
as a point source (compact assumption), and ζ is the damping factor, which encapsulates
the acoustic energy radiated from both ends of the duct, and the thermoviscous losses in
boundary layers. The non-dimensional heat-release rate perturbation, Q̇, is modelled with
a qualitative nonlinear time-delayed model (Heckl 1990):

Q̇ = β
[√∣∣∣13 + u′f (t − τ)

∣∣∣−√1
3

]
, (2.4)

where β is the strength of the source, u′f is the acoustic velocity at the flame location, and τ
is the time delay. The heat-release rate is a key thermoacoustic parameter for the system’s
stability. The dimensionless variables in (2.3)–(2.4) and the dimensional variables (with ˜ )
are related as x = x̃/L̃0, where L̃0 is the length of the tube, t = t̃c̃0/L̃0 (where c̃0 is the mean
speed of sound), u′ = ũ′/c̃0, ρ′ = ρ̃′/ρ̃0 (where ρ̃0 is the mean density), p′ = p̃′/(ρ̃0 c̃2

0),

Q̇ = ˜̇Q′(γ − 1)/(ρ̃0 c̃3
0) (where γ is the heat capacity ratio), and δ(x− xf ) = δ̃(x̃− x̃f )L̃0.

The open-ended boundary conditions are ideal, which means that the acoustic pressure is
zero, i.e. p′ = 0 at x = {0, 1}. By separation of variables, the acoustic velocity and pressure

948 A35-6
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Real-time thermoacoustic data assimilation

x

xf

p′ = 0 p′ = 0Q̇

Figure 1. Schematic of an open-ended duct with a heat source (also known as the Rijke tube). The heat released
by the compact heat source is indicated by the vertical dotted line. The blue vertical lines indicate microphones
located equidistantly.

are decomposed into Galerkin modes as (Zinn & Lores 1971)

u′(x, t) =
Nm∑
j=1

ηj(t) cos ( jπx), p′(x, t) = −
Nm∑
j=1

η̇j(t)
jπ

sin ( jπx), (2.5a,b)

where cos( jπx) and sin( jπx) are the eigenfunctions of the acoustic velocity and pressure,
respectively, when ζ = 0 and Q̇ = 0, and Nm is the number of acoustic modes kept in
the decomposition. Substituting (2.5a,b) into (2.3), multiplying (2.3b) by sin (kπx), and
integrating over x = [0, 1], yields the governing ordinary differential equations, which
represent physically a set of nonlinearly coupled oscillators:

dηj

dt
− jπ

(
η̇j

jπ

)
= 0, (2.6a)

d
dt

(
η̇j

jπ

)
+ jπηj + ζj

η̇j

jπ
+ 2Q̇ sin ( jπxf ) = 0, (2.6b)

where the damping term is defined by modal components ζj = C1 j2 + C2
√

j, which is
motivated physically in Landau & Lifshitz (1987). The damping coefficients C1 and C2
are assumed to be constant. For reasons that will be explained in § 2.3, we introduce an
advection equation to eliminate mathematically the time-delayed velocity term (Huhn &
Magri 2020b):

∂v

∂t
+ 1
τ

∂v

∂X
= 0, 0 � X � 1, (2.7)

where v is a dummy variable that travels with non-dimensional velocity τ−1 in a dummy
spatial domain X such that

u′f (t − τ) = v (X = 1, t) , u′f (t) = v (X = 0, t) . (2.8a,b)

Equations (2.8a,b) are discretised with a Chebyshev method (Trefethen 2000) with Nc + 1
points in the interval 0 � X � 1.

In a state-space notation, the thermoacoustic problem is governed by

dψ
dt
= F (α;ψ), ψ(t = 0) = ψ0,

y = M(x)ψ,

⎫⎬
⎭ (2.9)

where the state vector ψ ≡ (η, η̇, v)T ∈ R
2Nm+Nc is the column concatenation of the

acoustic amplitudes η ≡ (η1, η2, ..., ηNm)
T ∈ R

Nm and η̇ ≡ (η̇1/π, η̇2/(2π), . . . , η̇Nm/

948 A35-7
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A. Nóvoa and L. Magri

(Nmπ))T ∈ R
Nm , and the dummy velocity variables v ≡ (v1, v2, . . . , vNc)

T ∈ R
Nc , which

arise from the discretisation of (2.7). Also, the thermoacoustic parameters are contained
in the vector α = (β, τ, ζ )T ∈ R

NP ; F represents the nonlinear operator that consists
of (2.6a), (2.6b) and (2.7), F : R

2Nm+Nc+NP → R
2Nm+Nc ; and M(x) is the measurement

operator, which maps the state to the observable space at x. The expression of the
measurement operator depends on the nature of the observables being assimilated, as
explained in § 3. To work with a reduced-order model that captures qualitatively the
essential dynamics, we use Nm = 10 acoustic modes. For the advection equation, Nc =
10 ensures numerical convergence (Huhn & Magri 2020b). The number of degrees of
freedom of the reduced-order model is N = 2Nm + Nc = 30. The initial value problem
(2.9) is solved with an automatic step size control method that combines fourth- and
fifth-order Runge–Kutta methods (Shampine & Reichelt 1997).

2.2. Qualitative and quantitative accuracy
We say that a low-order model is qualitatively correct when it captures the key physical
parameters/mechanisms (e.g. the time delay). Although a low-order model may be
physically motivated, it is subject to three sources of errors: (i) uncertainty in the
state; (ii) uncertainty in the parameters; and (iii) bias in the model, i.e. the low-order
equation does not contain all the terms necessary to model the phenomenon (the
model bias is equivalently referred to as the model error). Data assimilation methods
combine the forecast of a low-order model with observations from either real experiments
or high-fidelity simulations, which reduces the bias in the state (§ 3.1) and/or in the
parameters of the model (§ 3.2). However, traditional data assimilation methods do not
tackle the model bias because they assume that the forecast model is unbiased. In § 4, we
propose an echo state network as a method to estimate the model bias, thereby closing
the low-order model equations in the data assimilation. In summary, the aim of data
assimilation is to make a qualitative accurate model more quantitatively correct.

2.3. Data assimilation
Data assimilation optimally combines the prediction from an imperfect model with data
from observations to improve the knowledge of the system’s state. The updated solution
(analysis) optimally combines the information from the observations y and the model
solution (forecast) with their uncertainties. In order to (i) update the system’s knowledge
any time that data become available, and (ii) not store the data during the entire operation,
we assimilate sequentially assuming that the process is a Markovian process. The concept
of Bayesian update is key to this process, as explained in § 2.3.1.

2.3.1. Bayesian update
In a Bayesian framework, we quantify our confidence in a model by a probability measure.
Hence we update our confidence in the model predictions every time we have reference
data from observations. The rigorous framework to achieve this is probability theory, as
explained in Cox’s theorem (Jaynes 2003).

To set a probabilistic framework at time t = tk, the state ψk and reference observations
yk are assumed to be realisations of their corresponding random variables acting on the
sample spaces Ωψ = R

2Nm+Nc and Ωy = R
Ny . Because we transformed the time-delayed

problem into an initial value problem, the solution of (2.9) at the present depends on the
solution at the previous time step only. In other words, we transformed a non-Markovian
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Real-time thermoacoustic data assimilation

system into a Markovian system, which simplifies the design of the Bayesian update. We
quantify our confidence in a quantity through a probability P :

ψk ∼ P(ψk|ψk−1,α,F ), yk ∼ P(yk|ψk,α,F ), (2.10a,b)

where | denotes that the quantity on the left is conditioned on the knowledge of the
quantities on the right. The leftmost probability answers the question: ‘given a model
F , a set of parameters α, and the state ψk−1, what is the probability that the state takes
the value ψk?’ The rightmost probability answers the question: ‘if we forecast the state
ψk from the model, what is the probability that we observe yk?’ We assume that the
observations are statistically independent and uncorrelated with respect to the forecast. To
update our knowledge of the system, the prior knowledge from the reduced-order model
and the reference observations are combined through Bayes’ rule

P(ψk|yk,α,F ) = P(yk|ψk,α,F )P(ψk,α,F )
P(yk,α,F )

. (2.11)

First, P(ψk,α,F ) is the prior, which measures the knowledge of our system prior to
observing yk. The prior evolves through the Chapman–Kolmogorov equation (Jazwinski
2007), which involves multi-dimensional integrals. To solve the Chapman–Kolmogorov
equation numerically, we use an ensemble method by integrating the model equations
(§ 2.3.2), which provide a forecast on the state. Second, P(yk|ψk,α,F ) is the likelihood
(2.10b), which measures the confidence that we have in our model prediction. The
likelihood is prescribed (see § 2.3.2). Third, P(yk,α,F ) is the evidence, which is the
probability that the observable takes on the value yk. This can be prescribed from the
knowledge of the experimental uncertainties. Finally, P(ψk|yk,α,F ) is the posterior,
which measures the knowledge that we have on the state, ψk, after we have observed
yk. Here, we will select the most probable value of ψk in the posterior (i.e. the mode)
as the best estimator of the state (maximum a posteriori approach, which is a well-posed
approach in inverse problems). The best estimator is called analysis in weather forecasting
(Tarantola 2005). Equation (2.11) provides the Bayesian update, which is key to this work
and sequential data assimilation.

2.3.2. Stochastic ensemble filtering for sequential assimilation
For brevity, we will omit the subscript k, unless it becomes necessary for clarity. We focus
on a qualitative reduced-order model in which (i) the bias on the solution is negligible,
(ii) the uncertainty on the state is represented by a covariance, (iii) the probability density
function of the state is assumed to be symmetrical around the mean, and (iv) the dynamics
at regime do not present frequent extreme events, i.e. the tails of the probability density
function are not heavy. In § 4, we relax assumption (i) by introducing a methodology to
estimate the bias of the solution, i.e. the model error.

The probability distribution to employ is the distribution that maximises the information
entropy (Jaynes 1957), which, in this scenario, is the Gaussian distribution. Therefore,
the system’s forecast and the observations are assumed to follow Gaussian distributions,
i.e. ψ f ∼ N (ψ,C f

ψψ) and y ∼ N (Mψ,Cεε), respectively, where N denotes the normal
distribution, with the first argument being the mean, and the second argument being the
covariance matrix. The forecast and observation covariance matrices are C f

ψψ and Cεε ,
respectively. If the dynamics were linear, then the Bayesian update (2.11) would be solved
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A. Nóvoa and L. Magri

exactly by the Kalman filter equations (Kalman 1960)

ψa = ψ f +
(

M Cf
ψψ

)T [
Cεε + M Cf

ψψ MT
]−1 (

y− M ψ f
)
, (2.12a)

Ca
ψψ = Cf

ψψ −
(

M Cf
ψψ

)T [
Cεε + M Cf

ψψ MT
]−1 (

M Cf
ψψ

)
, (2.12b)

where the superscripts a and f denote analysis and forecast, respectively. Equation
(2.12a) corrects the model prediction by weighting the statistical distance between
the observations (data) and the forecast, according to the prediction and observation
covariances (Evensen 2003). The observation error covariance has to be prescribed based
on the knowledge of the experimental methodology used.

In an ensemble method, the distribution is represented by the sample statistics

ψ̄ ≈ 1
m

m∑
i=1

ψ i, Cψψ ≈ 1
m− 1

ΨΨ T, (2.13a,b)

where the ith column of the matrix Ψ is the deviation from the mean of the ith realisation,
ψ i − ψ̄ , and m is the number of ensemble members. Because (2.13a,b) is a Monte
Carlo Markov chain integration, the sampling error scales as O(N−1/2). The key idea
of ensemble filters is to group forecast states from a numerical model (the ensemble) to
obtain, on filtering, the analysis state. Ensemble methods describe the state’s uncertainty
by the spread in the ensemble at a given time to avoid the explicit formulation of the
covariance matrices (Livings, Dance & Nichols 2008). The algorithmic procedure is as
follows. First, the initial condition is integrated forward in time to provide the forecast
state ψ f . Second, experimental observations y are assimilated statistically into the forecast
to obtain the analysis state ψa, which, in turn, becomes the initial condition for the next
time step. The forecast accumulates errors over the integration period, which is reduced
in the assimilation stage through observations with their experimental uncertainties. If
the model is qualitatively correct and unbiased, after a sufficient number of assimilations,
the ensemble concentrates around the true value. This sequential filtering process on one
ensemble member is shown in figure 2. The process is repeated in parallel for the other
ensemble members.

2.3.3. Ensemble square-root Kalman filter
In the ensemble Kalman filter (2.12), each ensemble member is updated with the
assimilation of independently perturbed observation data. However, this method provides
a sub-optimal solution that, in some cases, does not preserve the ensemble mean and is
affected by sampling errors of the observations (Evensen 2003). Moreover, the ensemble
Kalman filter may require a fairly large ensemble to compensate the sampling errors of the
observations (Sakov & Oke 2008). The ensemble square-root Kalman filter (EnSRKF),
which is an ensemble-transform Kalman filter, overcomes these issues (Livings et al.
2008). The key idea of the EnSRKF is to update the ensemble mean and deviations instead
of each ensemble member. The EnSRKF for m ensemble members and a state vector of
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Real-time thermoacoustic data assimilation

Time

State

Truth ψ  

Observation y

Analysis

 ψa 

Forecast ψ f

State

Figure 2. Conceptual schematic of a sequential filtering process: truth (green); observations and their
uncertainties (red); forecast state and uncertainties (orange); and analysis state and uncertainties (blue). The
circles represent pictorially the spread of the probability density functions: the larger the circles, the larger the
uncertainty.

size N reads

Aa = Āa + Ψ a, (2.14a)

Āa = Āf + Ψ f
(

M Ψ f
)T
[
(m− 1)Cεε + M Ψ f

(
M Ψ f

)T
]−1 (

Y − M Āf
)
, (2.14b)

Ψ a = Ψ f V (I−Σ)1/2 V T, (2.14c)

VΣV T =
(

M Ψ f
)T
[
(m− 1)Cεε + M Ψ f

(
M Ψ f

)T
]−1 (

M Ψ f
)
, (2.14d)

where A = (ψ1,ψ2, . . . ,ψm) ∈ R
N×m is the matrix that contains the ensemble members

as columns, Ā = (ψ̄, . . . , ψ̄) ∈ R
N×m contains the mean analysis states in each column,

Y = (y, . . . , y) ∈ R
q×m is the matrix containing the q observations repeated m times,

the identity matrix is represented by I, and V and Σ are the orthogonal matrices of
eigenvectors and a diagonal matrix of eigenvalues, respectively, from singular value
decomposition. The largest matrices required in the EnSRKF algorithm have dimension
N × m and m× m, therefore the storage requirements are significantly smaller than those
of non-ensemble based filters. In addition, this filter is non-intrusive and suitable for
parallel computation. A derivation of the EnSRKF can be found in Appendix A.

2.4. Discussion
An ensemble method enables us to: (i) work with high-dimensional systems because we
do not need to propagate the covariance matrix, which has O (N2) components; (ii) work
with nonlinear systems, such as the thermoacoustic system under investigation; (iii) work
with time-dependent problems; (iv) not store the data because we sequentially assimilate
(real-time, i.e. on-the-fly, assimilation); and (v) avoid implementing tangent or adjoint
solvers, which are required, for example, in variational data assimilation methods (Traverso
& Magri 2019). On the one hand, if the system were linear, then a Gaussian prior would
remain Gaussian under time integration. This makes the ensemble filter the exact Bayesian
update in the limit of an infinite number of samples. On the other hand, if the system were
nonlinear (e.g. in the present study), then a Gaussian prior would not necessarily remain
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A. Nóvoa and L. Magri

Gaussian under time integration. This makes the ensemble filter an approximate Bayesian
update. The update of the first and second statistical moments, however, remains exact. In
other words, we cannot capture the skewness, kurtosis, and other higher moments. (Particle
filter methods overcome this limitation, but they may be expensive computationally; Pham
2001.)

3. State and parameter estimation

This work considers both state estimation, in which the state is the uncertain quantity
(§ 3.1), and combined state and parameter estimation, in which both the state and model
parameters are uncertain (§ 3.2).

3.1. State estimation
State estimation is the process of using a series of noisy measurements into an estimation
of the state of the dynamical system, ψ . This paper considers two different scenarios in
assimilating acoustic data in thermoacoustics: (i) assimilation of the acoustic modes; and
(ii) assimilation of pressure measurements from Nmic microphones, which are located
equidistantly from the flame location up to the end of the Rijke tube (figure 1). The
assimilation of acoustic modes assumes that observation data are available for the pressure
and velocity acoustic modes, {η, η̇}. Hence the state equations are

dψ
dt
= F (α;ψ), ψ(t = 0) = ψ0 = (η0, η̇0, v0)

T,

y = M(x)ψ = (η, η̇)T .

⎫⎬
⎭ (3.1)

Alternatively, in scenario (ii), from (2.5b), the reference pressure measurements are

p′mic=

⎛
⎜⎜⎝

p′1(t)
p′2(t)
...

p′Nmic
(t)

⎞
⎟⎟⎠=−

⎛
⎜⎜⎝

sin (πx1) sin (2πx1) . . . sin (Nmπx1)
sin (πx2) sin (2πx2) . . . sin (Nmπx2)

...
...

...

sin (πxNmic) sin (2πxNmic) . . . sin (NmπxNmic)

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η̇1(t)
π
η̇2(t)
2π
...

η̇Nm(t)
Nmπ

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)

The statistical errors of the microphones are assumed to be independent and Gaussian.
In the twin experiment, the pressure observations are created from the true state, with
a standard deviation σmic that mimics the measurement error. Pressure data cannot be
assimilated directly with the EnSRKF because the state vector contains the acoustic
modes, i.e. it does not contain the acoustic pressure. To circumvent this, we augment the
state vector with the acoustic pressure at the microphones’ locations according to (3.2).
Therefore, the new state vector includes the Galerkin acoustic modes, the dummy velocity
variables and the pressure at the different microphone locations, i.e. ψ ′ ≡ (η, η̇, v, p′

mic)
T,

with dimension N′ = 2Nm + Nc + Nmic. The augmented state equations are

dψ ′

dt
= F (α;ψ), ψ ′(t = 0) = ψ ′0 = (η0, η̇0, v0, p′

mic0)
T,

y = M(x)ψ ′ = p′
mic(x).

⎫⎬
⎭ (3.3)
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Real-time thermoacoustic data assimilation

With this, the modes will be updated indirectly during the assimilation step using the
microphone data and their experimental error.

3.2. Combined state and parameter estimation
Combined state and parameter estimation is the process of using a series of noisy
measurements into an estimation of the state of the dynamical systemψ and the parameters
α. The parameters are regarded as variables of the dynamical system so that they are
updated in every analysis step. This is achieved by combining the governing equations of
the thermoacoustic model with the equations that describe the evolution of parameters,
which are constant in time, but can change when observations are assimilated. The
equations for the augmented state of combined state and parameter estimation are

d
dt

[
ψ
α

]
=
[

F (α;ψ)
0

]
,

ψ(t = 0) = ψ0,
α(t = 0) = α0,

y = M(x)ψ .

⎫⎪⎬
⎪⎭ (3.4)

With a slight abuse of notation, the state vector ψ in (3.4) is equal to ψ ≡ (η, η̇, v)T in
(3.1) for the assimilation of acoustic modes, and equal to ψ ′ ≡ (η, η̇, v, p′mic)

T in (3.3) for
the assimilation of pressure measurements.

The data assimilation algorithm is applied to the augmented system for both the forecast
state and the parameters to be updated at every analysis step. The parameters need to be
initialised for each ensemble member from a uniform distribution with width 25 % of the
mean parameter value. In other words, we assume that the parameters are uncertain by
±25 %.

3.3. Performance metrics
The performance of the state estimation and combined state and parameter estimation
are evaluated with three metrics: (i) the trace of the forecast covariance, Cf

ψψ , which
measures globally the spread of the ensemble; (ii) the relative difference between the
true pressure oscillations at the flame location and the filtered solution, which measures
the instantaneous error; and (iii) for the combined state and parameter assimilation, the
convergence of the filtered parameters normalised to their true values, as well as the
root-mean-square error with respect to the true solution.

4. Data assimilation with bias estimation

In this section, we analyse the case of state, parameter and model bias estimation. Sources
of model bias in the model of § 2.1 include (i) idealised boundary conditions, (ii) a simple
heat-release law with no simulation of the flame, and (iii) zero mean flow effects. In this
paper, a higher-fidelity model produces data that account for these three sources of model
bias. We infer the model bias to correct the biased forecast state prior to the analysis step.
By performing state and parameter estimation on the unbiased forecast, we increase the
quantitative accuracy of the model prediction. First, we define the time-dependent model
bias U(t) as the difference between the true pressure state (from the higher-fidelity model)
at the microphone locations p′ t

mic, and the expected biased pressure 〈p′mic〉, i.e. the mean of
the ensemble of pressures

U(t) = p′ t
mic(t)−

〈
p′mic(t)

〉
. (4.1)

We propose an echo state network to predict the evolution of the model bias.

948 A35-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



A. Nóvoa and L. Magri

Input U(ti) Reservoir r(ti) Output U(ti+1)

WWin
Wout

Figure 3. Schematic representation of an echo state network.

4.1. Echo state networks
An echo state network (ESN) is a type of recurrent neural network based on reservoir
computing (Lukoševičius 2012). The ESNs learn temporal correlations in data by
nonlinearly expanding the data into a high-dimensional reservoir, which acts as the
memory of the system, and is a framework more versatile than auto-regressive models
(Aggarwal 2018).

Figure 3 shows a pictorial representation of an ESN. The reservoir is defined by a
high-dimensional vector r(ti) ∈ R

Nr and a state matrix W ∈ R
Nr×Nr , where Nr is the

number of neurons in the reservoir. We use Nr = 100 neurons, which are sufficient to
represent the dynamics of the thermoacoustic system (Huhn & Magri 2022). The inputs
and outputs from the reservoir are vectors of dimension R

Nmic because we define the
bias as the pressure error at each microphone (4.1). Their input and output matrices are
W in ∈ R

Nr×(Nmic+1) and W out ∈ R
Nmic×(Nr+1), respectively. At every time ti, the input bias

U(ti) and the state of the reservoir at the previous time step r(ti−1) are combined to predict
the reservoir state at the current time as well as the bias at the next time step U(ti+1) such
that

r(ti) = tanh
(

W in[Ũ(ti); 0.1]+W r(ti−1)
)

and U(ti+1) = W out[r(ti); 1], (4.2a,b)

where Ũ is the input bias normalised by the range, component-wise, and the constants 0.1
and 1 are used to break the symmetry of the ESN (Huhn & Magri 2020a). The operator
[ ; ] indicates vertical concatenation. The matrices W in and W are predefined as fixed,
sparse and randomly generated. Specifically, W in has only one non-zero element per row,
which is sampled from a uniform distribution in [−σin, σin], where σin is the input scaling.
Matrix W is an Erdős–Rényi matrix with average connectivity d = 5, in which each neuron
(each row of W ) has on average d connections (non-zero elements), which are obtained
by sampling from a uniform distribution in [−1, 1]; the entire matrix is then rescaled by
a multiplication factor to set the spectral radius ρ. The weights of W out are determined
through training, which consists of solving a linear system for a training set of length Ntr:

(RRT + γtI)W
T
out = RUT

train, (4.3)

where R ∈ R
(Nr+1)×Ntr is the horizontal concatenation of the augmented reservoir state

for each time in the training set [r(ti); 1] with i = 1, . . . ,Ntr, U train ∈ R
Nmic×Ntr is the

time concatenation of the output data, I is the identity matrix, and γt is the Tikhonov
regularisation parameter (Lukoševičius 2012). We employ recycle validation (Racca &
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Real-time thermoacoustic data assimilation

UESN (t1) UESN (t2) UESN (tNw
) UESN (tNw+2) UESN (tNw+3)UESN (tNw+1)

r(t0)

U(t0) U(t1) U(tNw) U(tNw)

r(t1) r(t2) r(tNw–1) r(tNw) r(tNw) r(tNw+1) r(tNw+2) r(tNw+3)

(b)(a)

Figure 4. Schematic representation of the ESN forecast methods: (a) open-loop forecast, and (b) closed-loop
estimation of the bias.

Magri 2021) to select the input scaling σin = 0.0126, the spectral radius ρ = 0.9667, and
the Tikhonov parameter γt = 1× 10−16.

4.2. Thermoacoustic echo state network
On the one hand, in open loop (figure 4a), the true bias data (4.1) are fed into every
forecast step to compute (4.2a,b). The output bias from the ESN is disregarded in open
loop, which is used to initialise the network (the washout), such that Uw ∈ R

Nmic×Nw .
State and parameters are not updated during the washout. On the other hand, in closed
loop (figure 4b), the true bias data (4.1) are fed in the first step, then the output bias from
a forecast step (4.2b) is used as the initial condition of the next step. The ESN forecast
frequency is set to be five times smaller than the thermoacoustic model time step, to reduce
the additional computation cost associated with the bias estimation.

In detail, the pseudo-algorithm 1 summarises the procedure that we propose for
bias-aware data assimilation with an ESN: (1) the ensemble of acoustic modes is
initialised and forecast for the washout time; (2) we run the ESN in open loop to
initialise the reservoir; and (3) we perform data assimilation. When measurements become
available, we compute the ensemble of pressures by adding the estimated bias from
the ESN, U, to the expectation of the forecast pressure at the microphones, such that
the unbiased ensemble is centred around the unbiased pressure state p̂′mic j

= U + p′mic j

for j = 1, . . . ,m, where (ˆ) indicates a statistically unbiased quantity. Subsequently, we
perform the analysis step. The EnSRKF obtains the optimal combination between the
unbiased pressures and the observations, which updates indirectly the biased ensemble
of acoustic modes and parameters. The resulting analysis ensemble is used to re-initialise
the ESN for the next forecast in closed loop, such that the bias is the difference between the
observations and the expectation of the analysis pressures, i.e. U = p′ t

mic − 〈p′ a
mic〉. Finally,

the Rijke model and the ESN are time-marched until the next measurement becomes
available for assimilation.

4.3. Test case
The higher-fidelity model that we use is based on the travelling-wave approach of Dowling
(1999), which is described in detail by Aguilar Pérez (2019). The acoustic pressure and
velocity are written as functions of two acoustic waves that propagate downstream and
upstream of the tube (see (3.5) and (3.7) in Dowling 1999). As shown in figure 5, the waves
are defined as f and g, with convective velocities c̃0 ± ũ0,u in the region x̃ � x̃f , and h and
j, with convective velocities c̃0 ± ũ0,d in x̃ � x̃f . This model uses dimensional quantities,
so we transform our dimensionless thermoacoustic system (2.3) into its dimensional form.
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A. Nóvoa and L. Magri

Algorithm 1 Data assimilation with ESN bias estimation

Af (t0)← INITIALISEENSEMBLE
while t ≤ twashout do  Get ESN running

pf (t)← COMPUTEPRESSURE(Af (t)) (3.2)
U(t) = ptrue − 〈pf 〉
Af (t +�t)← FORECASTRIJKEMODEL(Af (t)) (2.9)
t = t +�t

[U(t), r(t)]← OPENLOOPESN(U(t0 : twashout)) (4.2a,b)
loop: for every t when observations ptrue are available  Start data assimilation

pf (t)← COMPUTEPRESSURE(Af (t))
p̂f

j (t) = pf
j (t)+ U(t), for j = 1 : m

A�←AUGMENTSTATE(Af , p̂f )
Aa ← ENSRKF(A�, ptrue) (2.14a)
pa(t)← COMPUTEPRESSURE(Aa(t))
U(t) = ptrue − 〈pa〉
while no observations are available at time t do

[U(t +�t), r(t +�t)]← CLOSEDLOOPESN(U(t), r(t)) (4.2a,b)
Af (t +�t)← FORECASTRIJKEMODEL(Af (t))
t = t +�t

Ru Rd

f

g

t̃

t̃

t̃

t̃

x̃

x̃

x̃

c̃0,u ũ0,u

c̃0,u ũ0,u

+
x̃

c̃0,d ũ0,d+
–

–
x̃

c̃0,d ũ0,d–
+

h

j

–

+

(t̃)Q̃·

Figure 5. Schematic of the acoustic waves travelling upstream and downstream of a flame in an open-ended
tube.

The equations that relate the travelling waves g(t̃) and h(t̃) to the heat-release rate ˜̇Q(t̃)
are, with a slight abuse of notation,

X
(

g(t̃)
h(t̃)

)
= Y

(
g(t̃ − τ̃u)
h(t̃ − τ̃d)

)
+
(

0( ˜̇Q(t)− ˜̇Q0

)
/
(
Ac̃0,u

)) , (4.4)

where A is the cross-sectional area of the duct, and τ̃u and τ̃d are the times taken for
the acoustic waves to travel from the flame to the upstream and downstream boundaries,
respectively. For completeness, the matrices X and Y are provided in the supplementary
material available at https://doi.org/10.1017/jfm.2022.653.

In contrast to the low-fidelity model of § 2.1, the travelling-wave approach accounts
for (i) mean flow effects, and (ii) non-ideal open boundary conditions, such that f (t̃) =
Ru g(t̃ − τ̃u) and j(t̃) = Rd h(t̃ − τ̃d), where Ru and Rd are the reflection coefficients. We
set the mean flow velocity upstream of the flame to ũ0,u = 10 m s−1, and the mean
heat release rate to ¯̇Q0 = 2000 W. The velocity downstream of the flame is computed
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Real-time thermoacoustic data assimilation

by applying the jump conditions in the energy and momentum equations (see (3.2) and
(3.3) in Dowling 1999). We set dissipative boundary condition to Ru = Rd = −0.999. In
addition, the higher-fidelity model employs a flame kinematic model, which simulates the
flame dynamics and provides the heat release as a function of the area enclosed by the
flame front (detailed code in Aguilar Pérez 2019). On the other hand, the low-order model
employs a simple time-delayed model in which the heat released by the flame is modelled
by two parameters (β and τ ) and a nonlinear law that links the acoustic fluctuation with
the heat release (adapted King’s law (2.4)).

We test the bias-aware data assimilation with the ESN for a limit cycle. We perform
unbiased state estimation, and combined unbiased state and parameter estimation
using synthetic pressure data obtained from the travelling-wave and flame kinematic
model as the truth (higher-fidelity data). For brevity, we perform parameter estimation
to the heat-source strength β̃ only, which we expect physically to be β̃ ∼ O(106)

(W s1/2 m−5/2)((2.7) in Juniper 2011). The results are discussed in § 8.

5. Nonlinear characterisation

In order to assess the performance of data assimilation, we first characterise the nonlinear
dynamics of the low-order model of § 2.1 by analysing the solutions at regime (after the
initial transient) with bifurcation analysis and nonlinear time series analysis (Kantz &
Schreiber 2003; Kabiraj, Sujith & Wahi 2012b; Guan, Gupta & Li 2020). The system’s
parameters are xf = 0.2, C1 = 0.1, C2 = 0.06 and Nm = 10.

In bifurcation analysis, we examine the topological changes in the pressure oscillations
at the flame location p′f as the control parameters vary. First, we study the two-dimensional
bifurcation diagram, which is shown in figure 6. The classification in the two-dimensional
diagram is obtained following the procedure of Huhn & Magri (2020b). This method
consists of obtaining the Lyapunov exponents λi through covariant-vector analysis. With
this, the dynamical motions are identified as: (i) fixed point if λ1 < 0; (ii) limit cycle if
λ1 = 0 and λ2 < 0; (iii) quasi-periodic if λ1 = 0 and λ2 = 0; and (iv) chaotic if λ1 > 0.
For small β and τ , the system converges to a fixed point because the thermoacoustic energy
is smaller than damping. As the heat-source strength increases, the Rayleigh criterion is
fulfilled and self-excited oscillations arise as limit cycles. When β reaches values over 2.5,
different types of solution appear, such as quasi-periodic or chaotic attractors. The refined
region in figure 6 shows that the type of solution is sensitive to small changes in the control
parameters, which has implications for data assimilation, as argued in the remainder of the
paper.

These topological changes are investigated further with a one-dimensional bifurcation
diagram for a fixed time delay (τ = 0.2), shown in figure 7. Because the nonlinear
solutions at regime may vary with the initial condition, two sets of results are shown for a
small initial condition (ηj = η̇j/jπ = 0.005) and a large initial condition (ηj = η̇j/jπ = 5)
to capture subcritical behaviours. The bifurcation diagram is obtained by marching forward
in time the governing equations of the nonlinear dynamical system until the system reaches
a statistically stationary state. For each value of the control parameter, the bifurcation
diagram shows the peaks and troughs of the acoustic pressure at the flame location.
(The nonlinear time series analysis results are shown in the supplementary material.)
From left to right, first, the solution is the fixed point (region A), which is the case
of no oscillations. Second, the appearance of periodic oscillations from a fixed point is
observed with a large initial condition at β = 0.26, with a small region of hysteresis
from β = 0.26 to β = 0.34. This first self-sustained state is a period-1 limit cycle
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A. Nóvoa and L. Magri
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Figure 6. Two-dimensional bifurcation diagram. Classification of the attractor of the thermoacoustic system.
The area enclosed by the black rectangle corresponds to a refined grid. The coarse and fine sweeps are
performed with resolutions (�β,�τ) = (0.2, 0.01) and (�β,�τ) = (0.1, 0.005), respectively.
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Figure 7. One-dimensional bifurcation diagram. Maxima and minima of the pressure oscillations at the flame
location versus the heat-source strength. The solutions obtained for small/large initial conditions (IC) are shown
in a dark/light blue. This diagram identifies different nonlinear behaviours, which have implications for data
assimilation.

(region B), which originates from a subcritical Hopf bifurcation. Within region B, the
system undergoes a period-doubling bifurcation at β = 0.6 from period-1 to period-2
oscillations. Third, the period-2 limit cycle bifurcates into a 3-torus quasi-periodic motion
at β = 3.35 (region C). A quasi-periodic oscillation is an aperiodic solution that results
from the interaction between two or more incommensurate frequencies (also known as a
Neimark–Sacker bifurcation) (Kabiraj et al. 2012b). Fourth, the solution becomes chaotic
at β = 3.65 (region D). In summary, the evolution from region A to region D shows
that the system reaches a chaotic state via a quasi-periodic route to chaos, i.e. via a
Ruelle–Takens scenario (Kabiraj et al. 2012a). Fifth, after this first route to chaos, changes
in the control parameter drive the system back to a periodic limit cycle through a tangent
bifurcation (Kantz & Schreiber 2003) at approximately β = 4.25 (region E), with a second
region of hysteresis from β = 4.24 to β = 4.28. This high-amplitude limit cycles region
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Real-time thermoacoustic data assimilation

Parameter Value Parameter Value

xf 0.2 β [0.2, 0.4, 3.6, 7.7, 7.0]
Nm 10 τ 0.2
Nc 10 m 10
�t 0.001 σfrac 0.25
ηj(t = 0) 0.005 �tanalysis [2 (Non-chaotic), 0.5 (Chaotic)]
η̇j/jπ(t = 0) 0.005 Nmic 6
vi(t = 0) 0 σmic 0.01

Table 1. Parameters and initial conditions for generating the true solution and the assimilated observations.

becomes again chaotic at β = 5.61 (region F). Sixth, when β reaches 7.65, the system
evolves towards a frequency-locked state (region G). Frequency-locked solutions arise
from the competition between two or more frequencies, but in contrast to quasi-periodic
signals, these frequencies are commensurate. Seventh, at β = 7.85, the frequency-locked
solution bifurcates into a quasi-periodic solution (region H). Region H solutions show
a two-dimensional toroidal structure, in contrast to the three-dimensional torus from
region C. In region H, some of the simulations showed that there are areas of chaotic
dynamics, which can be appreciated by the difference in the solutions from the small and
large initial conditions in figure 7. (A higher region refinement could be performed to
fully understand the bifurcations within this region, however, that is beyond the scope of
this work.) The qualitative bifurcation behaviour of this reduced-order model is observed
in experiments (Kabiraj et al. 2012b; Kabiraj & Sujith 2012), which means that the
reduced-order model captures qualitatively the nonlinear thermoacoustic dynamics.

The bifurcation analysis shows a rich variety of solutions in a relatively small range
of parameters, i.e. small changes of a parameter, or a state, can generate solutions that
are topologically different. This nonlinear sensitivity has implications in the design of an
ensemble data assimilation framework, as discussed in § 6.

6. Twin experiments in non-chaotic regimes

We perform a series of experiments with synthetic data, which are generated by the
low-order model (§ 2.1). To mimic an experiment, we add stochastic uncertainty to the
synthetic data by prescribing an observation covariance matrix. This approach is also
known as the twin experiment (e.g. Traverso & Magri 2019). The EnSRKF algorithm is
tested in the different regions of figure 7, for the different nonlinear regimes: fixed point,
limit cycle, frequency-locked, quasi-periodic and chaotic. The filter is first tested in the
non-chaotic regimes for the assimilation of (i) acoustic modes (§ 6.1), and (ii) acoustic
pressure from microphones (§ 6.2). The assimilation of chaotic solutions, which presents
further challenges, is investigated in § 7. Different simulations are performed to determine
suitable values for the number of ensemble members (m), the time between analysis
(�tanalysis), the standard deviation (σfrac), i.e. the observations’ uncertainties during the
acoustic modes assimilation, and the standard deviation of the microphone measurements
(σmic). Table 1 shows the parameters and initial conditions of the reference (i.e. ‘true’)
solution. This range of parameters is justified from the literature in thermoacoustic
data assimilation (Traverso & Magri 2019). Computational time is discussed in the
supplementary material.
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A. Nóvoa and L. Magri

6.1. Assimilation of the acoustic modes
This subsection includes results for state estimation (§ 6.1.1) and combined state and
parameter estimation (§ 6.1.2).

6.1.1. State estimation
This subsection presents simulations performed assuming that there are observations
available for all acoustic modes, i.e. the number of observations is q = 2Nm = 20.
(Including observations for the dummy velocity variables would improve further the filter
convergence; however, they are not considered because the velocity advection field in
the heat-source region is not measured in a real engine.) Figure 8 shows the acoustic
pressure before assimilation (unfiltered solution) and after assimilation (filtered solution),
and the data at the assimilation steps (analysis steps), for the transient of a fixed point,
a period-1 limit cycle, a frequency-locked motion, and a quasi-periodic motion. In the
filtered solution, data assimilation is performed during the first 50 time units, and it is
marched in time without further assimilation for 10 more time units. The EnSRKF learns
successfully (i.e. infers) the true solution for all the nonlinear regimes. As expected, the
convergence is faster for the fixed point and limit cycle cases (figures 8a,b) because they
are simpler dynamical motions. (The unfiltered solution also converges to the same value
for these simple cases. This is due to the stable nature of their attractors, and because
their regions are unaffected by the chaotic butterfly effect.) For multi-frequency dynamical
regimes, figures 8(c,d) show that the Bayesian update can learn the frequency-locked
and quasi-periodic states of regions C and G in figure 7. However, these show more
discrepancies between the filtered and true solutions. Physically, this is due to the
multiple bifurcations that occur in a small range of parameters, which is typical of
thermoacoustic systems. In reference to figure 7, region C is next to the chaotic region D;
and region G is a short-range region surrounded by the chaotic region F and the mixed
quasi-periodic-chaotic region H. Therefore, the discrepancy in these cases is caused by
some ensemble members falling in different basins of attraction. To overcome this issue,
we propose a strategy in § 6.2.2.

The data assimilation process depends on the observation’s uncertainty σfrac and
ensemble size m. Figure 9 shows the performance metrics (§ 3) for the quasi-periodic
solution of figure 8(d). As expected, the filtered solution is more accurate for a smaller
standard deviation because the observations are closer to the truth. Importantly, the
algorithm is capable of learning the reference solution for an ensemble having an error as
large as 50 % of the mean of the acoustic modes, which means that the data assimilation
algorithm is robust. For the pressure performance metric, the algorithm brings the relative
error below 10 % after 15 time units (in the worst case scenario, figure 9a). For the
covariance matrix trace performance metric, the EnSRKF continuously reduces the initial
ensemble variance up to a final plateau, which cannot be zero because of the non-zero
observation and forecast background noise (figure 9c). The evolution of the trace is an
indicator of the spread of the forecast ensemble, which informs on the uncertainty of the
solution. The ensemble size does not have a strong influence in the ensemble uncertainty
during the assimilation because the trace of the covariance matrix remains of the same
magnitude independently of the value of m (figure 9d). Nevertheless, the relative error
is significantly higher for a small ensemble with m = 4 (figure 9c). This means that four
ensemble members are not sufficient to give a sufficient ensemble distribution, therefore
the solution converges to an incorrect state, but with a small spread around it. Comparing
the errors for 10 and 50 ensemble members, we see no significant differences between the
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Figure 8. Real-time learning of the state. Assimilation of acoustic modes for state estimation of non-chaotic
regimes: (a) transient towards a fixed point (β = 0.2); (b) limit cycle (β = 0.4); (c) frequency-locked (β = 7.7);
and (d) quasi-periodic (β = 3.6). Left-hand plots: true pressure oscillations at the flame location (light grey),
unfiltered solution (dashed dark grey) and filtered solution (black). The analysis time steps are indicated with
red circles. Centre and right-hand plots: phase portrait and first return map of the true (dark blue), filtered (light
blue) and unfiltered (orange) solutions. Here, m = 10, σfrac = 0.25 and �tanalysis = 2.

solutions, which shows that having an ensemble size larger than the number of degrees of
freedom is not required. This is one of the benefits of using the square-root filter (in the
standard ensemble Kalman filter, larger ensembles are needed to avoid sampling errors
Livings et al. 2008). However, the computational time required for 50 ensemble members
was approximately 4 times longer than that for 10. Therefore, an ensemble size m = 10
provides a good approximation of the true state for the assimilation of acoustic modes,
while keeping the computation time minimal.

6.1.2. Combined state and parameter estimation
In this subsection, we analyse the combined state and parameter estimation to calibrate
both the state and parameters. The two uncertain parameters (α = (β, τ )T in (3.4)) are
added to the state vector and updated simultaneously with the acoustic modes and dummy
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Figure 9. Assimilation of acoustic modes for state estimation of a quasi-periodic regime – performance
metrics. (a,c) Effect of the standard deviation with m = 10. (b,d) Effect of the ensemble size with modes
measurement uncertainty σfrac = 0.25. The error evolution is shown with the relative difference between the
filtered solutions and truth (a,b) and the trace of the ensemble covariance (c,d). The dashed vertical line
indicates when data assimilation ends. Here, β = 3.6 and �tanalysis = 2.

velocity variables, as detailed in § 3.2. Figure 10 shows the evolution of the parameters,
normalised to their true value, for the four non-chaotic solutions. The convergence shows
that the EnSRKF update is capable of learning the true β and τ values for the four
dynamical motions.

For a comparison of combined state and parameter estimation with state estimation, we
compute the root-mean-square (r.m.s.) error. The r.m.s. error at each time step is defined
as the square root of the trace of the covariance matrix of the filtered ensemble, relative to
the true solution:

r.m.s. error =

√√√√√tr

⎛
⎝ 1

m− 1

m∑
j=1

(
ψ j − ψ true) (ψ j − ψ true)T

⎞
⎠. (6.1)

The r.m.s. error is evaluated for the state estimation and the combined state and parameter
estimation cases, using different initial uncertainties for β and τ . This is achieved in
state estimation by defining β = cβ true and τ = c τ true, where c is the defined initial
uncertainty. For the combined state and parameter estimation, the initial β and τ of each
member in the ensemble are taken from a uniform distribution centred around cβ true and
c τ true, with sample standard deviation 25 %. Figure 11(a) shows the r.m.s. error for the
initial parameters set to their true value. The state estimation outperforms the combined
state and parameter estimation only in this case, as the state estimation model works
with constant true parameters while the combined state and parameter estimation updates
the parameters in each analysis step with the EnSRKF update. The true parameters are
perturbed by 5 %, 25 % and 50 % in figures 11(b,c,d), respectively. The combined state and
parameter estimation simulations are capable of learning the true state up to a 25 % error
in the parameters initialisation, as the r.m.s. error is reduced by two orders of magnitude
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Figure 10. Real-time learning of the parameters and the state. Assimilation of acoustic modes for combined
state and parameter estimation of non-chaotic regimes: (a) transient towards a fixed point (β true = 0.2); (b) limit
cycle (β true = 0.4); (c) frequency-locked solution (β true = 7.7); and (d) quasi-periodic solution (β true = 3.6).
The dashed vertical line indicates when data assimilation ends. Here, τ true = 0.2, m = 10, σfrac = 0.25 and
�tanalysis = 2.
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Figure 11. Assimilation of acoustic modes of a quasi-periodic regime. Performance of state estimation (blue)
versus combined state and parameter estimation (orange) in a quasi-periodic regime. Initial conditions β =
cβ true and τ = c τ true, with (a) c = 1, (b) c = 1.05, (c) c = 1.25, (d) c = 1.5; and β true = 3.6, τ true = 0.2.
The dashed vertical line indicates when data assimilation ends.

from the initial state, such as in the case of figure 11(a). Combined state and parameter
estimation provides an improved approximation of the solution for the highly uncertain
case of 50 % error (figure 11d).
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A. Nóvoa and L. Magri

6.2. Assimilation of the acoustic pressure from microphones
As detailed in § 3.1, we consider the scenario of assimilation of pressure measurements
from Nmic microphones, located equidistantly from the flame location. This subsection
includes results for state estimation (§ 6.2.1) and combined state and parameter estimation
(§ 6.2.2).

6.2.1. State estimation
We consider a tube that is equipped with Nmic = 6 microphones, which measure multiple
frequency contributions in the signal. This value is chosen from the literature in
thermoacoustic experiments (Garita, Yu & Juniper 2021). Figure 12 shows the acoustic
pressure at the flame location of the true solution, the unfiltered solution and the
filtered solution, as well as their phase space reconstructions and first return maps (the
calculation procedure can be found in the supplementary material). In nonlinear regimes,
the algorithm learns successfully the pressure state. The accuracy of the solution is lower
than in the assimilation of the acoustic modes of § 6.1.1 because here, less information on
the state is assimilated. (The filter is not designed for statistically non-stationary problems,
which is why the transient fixed point solution is not fully learnt by the filter.)

The effect of the experimental uncertainty is analysed by varying the microphones’
standard deviation. Physically, the errors are larger than those in figure 9 because here,
we are assimilating 6 components of the augmented state vector out of 36 components,
whereas in § 6.1.1, the filter assimilates 20 out of the 30 components of the state vector.
Figures 13(a,c) show that after about 20 analysis steps, the filter follows the model more
closely than the observations for larger observation uncertainties. (In other words, the
filtered solution ‘trusts’ the prediction from the model more than the observations when
the experimental uncertainty is high.) We set σmic = 0.01 in the following simulations,
which models experimental microphone uncertainties (de Domenico, Rolland & Hochgreb
2017). The relative error is higher than 20 % for this case (figure 13a). Increasing the
frequency of analysis allows for a faster convergence with a smaller relative error (figures
13b,d). With a time between analysis �tanalysis = 1.5 or 1, the relative error of the
filtered solution becomes less than 10 % in only 10 time units, approximately. Thus for
the assimilation of microphone pressure data, a higher frequency of analysis is more
suitable. We choose the time between analysis as 1.5 time units. The evolution of the
trace of the forecast covariance matrix indicates that the spread of the ensemble shrinks
rapidly (figures 13c,d). Besides, the spread is two orders of magnitude smaller than in
the assimilation of the modes (figures 9c,d), and remains small even with large relative
errors. Physically, this is because the acoustic modes are updated directly in the modes
assimilation, but in this case, the acoustic modes are unobserved variables that are updated
indirectly through the microphone pressure observations.

6.2.2. Combined state and parameter estimation
The parameters β and τ are updated by the EnSRKF at each analysis step, which
occurs every 1.5 time units. Figures 14(a,b) show that for an ensemble of ten members,
the solution converges to the parameters β ≈ 6.6 and τ ≈ 0.4, which correspond to a
chaotic solution (see figure 6). Nevertheless, the true solution is a quasi-periodic oscillator
with β = 3.6 and τ = 0.2. This means that the filtered solution not only converges to
different parameters, but also belongs to a different nonlinear regime than that of the
true solution. Physically, this occurs because thermoacoustic dynamics experiences several
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Figure 12. Real-time learning of the state. Assimilation of acoustic pressure from microphones for state
estimation of non-chaotic regimes: (a) transient towards a fixed point (β = 0.2); (b) limit cycle (β = 0.4);
(c) frequency-locked (β = 7.7); and (d) quasi-periodic (β = 3.6). Left-hand plots: true pressure oscillations
at the flame location (light grey), unfiltered solution (dashed dark grey) and filtered solution (black). The
analysis time steps are indicated with red circles. Centre and right-hand plots: phase portrait and first return
map of the true (dark blue), filtered (light blue) and unfiltered (orange) solutions. Here, m = 10, σmic = 0.01
and �tanalysis = 2.

bifurcations in short ranges of β and τ (figure 7). This makes the sampling of nonlinear
thermoacoustics challenging. A way to circumvent this is to increase the ensemble size.
A parametric study of the effect of the number of realisations is shown in figure 14. Ten
ensemble members are not sufficient to learn the reference solution; however, the larger
the ensemble, the faster the EnSRKF converges to the true solution.

Occasionally, the EnSRKF provides unphysical parameters as the solution of the
optimisation problem, such as negative heat-source strength as the solution of the
optimisation problem. To avoid this, we reject the analysis steps that give unphysical
solutions and continue the forecast with no assimilation. This means that we are
left-truncating the Gaussian. Thus the parameters remain constant until the EnSRKF gives
a physical solution to the optimisation problem. (Ad hoc ways to bound parameters can
be designed (Li et al. 2019). This is beyond the scope of this work.) The thresholds
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Figure 13. Assimilation of pressure from microphones for state estimation of a quasi-periodic regime.
Performance metrics. (a,c) Effect of the microphones’ standard deviation with �tanalysis = 2. (b,d) Effect of
the assimilation frequency with σmic = 0.01. The error evolution is shown with the relative difference between
the true and filtered solutions (a,b) and the trace of the ensemble covariance (c,d). The dashed vertical line
indicates when data assimilation ends. Here, β = 3.6 and m = 10.
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Figure 14. Real-time learning of the parameters. Assimilation of acoustic pressure from microphones for
combined state and parameter estimation of a quasi-periodic solution: (a) normalised β; (b) normalised τ .
Here, Nmic = 6, β true = 3.6, τ true = 0.2,�tanalysis = 1.5 and σmic = 0.01. The shaded areas show the standard
deviation, which becomes smaller as more data are assimilated.

for rejection are defined as β ∈ [0.1, 10] and τ ∈ [0.005, 0.8]. Because the rejection is
effectively reducing the amount of information that can be assimilated, the ensemble
convergence slows down. This increase and reject approach is not always sufficient to
reach convergence. Figures 15(a,b) show the same simulation as in figure 14 with more
microphones, Nmic = 15, and �tanalysis = 1. In this case, the filtered solution is not
converging even for 150 ensemble members, which is caused by covariance collapse.
To accelerate the convergence and overcome the spurious correlations of finite-sized
ensembles (Evensen 2009), we introduce a covariance inflation to the ensemble forecast
when the solution of the analysis step provides unfeasible parameters. The inflation method
can be used to counteract the variance reduction due to the spurious correlations, and force
the model to explore more states. Here, we include the model uncertainty as stochastic
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Figure 15. Real-time learning of the parameters. Assimilation of acoustic pressure from microphones for
combined state and parameter estimation of a quasi-periodic solution: (a,c) normalised β; (b,d) normalised
τ . Effect of ensemble size is shown without inflation (a,b), and with inflation using ρ = 1.02 (c,d). Here,
Nmic = 15, β true = 3.6, τ true = 0.2, �tanalysis = 1 and σmic = 0.01. The shaded areas show the standard
deviation, which becomes smaller as more data are assimilated.

noise by adding an inflation factor ρ to the ensemble forecast:

A f = Ā f + ρ𝞧 f . (6.2)

In this case, ρ = 1.02 improves the analysis for the quasi-periodic solution. If necessary,
adaptive strategies can be designed following Evensen (2009). Figures 15(c,d) show
the parameters’ convergence for the same ensemble sizes as figures 15(a,b), but with
covariance inflation. This is sufficient to remove the plateau caused by the divergence
of the EnSRKF to unphysical parameters in large ensembles, thereby speeding up the
convergence.

To summarise, we propose an increase, reject, inflate strategy to learn the nonlinear
dynamics and parameters of thermoacoustics.

7. Twin experiments in chaotic regimes

This section addresses the assimilation in chaotic regimes. We perform a series of twin
experiments with synthetic data using the base parameters of table 1 and the obtained
suitable parameters in § 6. Both state estimation and combined state and parameter
estimation are tested in the chaotic region F. In the combined state and parameter
estimation, the initial conditions for β and τ are sampled from uniform distributions with
an upper bound 25 % larger than their true value, and a lower bound 25 % smaller than
the true parameters. Different simulations are performed to analyse the predictability of
the solutions and to determine a suitable time between analysis (�tanalysis), which is not
trivial in chaotic oscillations.

Figure 16 shows the comparison between the combined state and parameter assimilation
solution, an unfiltered solution, and the true state in the chaotic region F of the bifurcation
diagram with the same time between analysis as the previous non-chaotic studies. The
assimilation does not perform as well as in non-chaotic regimes. This is due physically to
the short predictability of chaotic systems.
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Figure 16. Real-time learning of the state. Assimilation of (a) acoustic modes and (b) pressure from
microphones for state estimation of a chaotic regime (β = 7.0). Left-hand plots: true pressure oscillations at
the flame location (light grey), unfiltered solution (dashed dark grey) and filtered solution (black). The analysis
time steps are indicated with red circles. Centre and right-hand plots: phase portrait and first return map of the
true (dark blue), filtered (light blue) and unfiltered (orange) solutions. Here, m = 10, σmic = 0.01, σfrac = 0.25
and �tanalysis = 2.

There are several ways to estimate the predictability of a chaotic system (Boffetta
et al. 2002). Here, the predictability is computed as the inverse of the maximal Lyapunov
exponent, which provides a time scale after which two nearby trajectories diverge (linearly)
due to the butterfly effect. The methodology followed is described in Magri & Doan
(2020). The maximal Lyapunov exponent is determined by analysing the growth of the
distance between two nearby trajectories. In a logarithmic scale, the Lyapunov exponent is
the slope of the linear region, which is computed by linear regression. Figure 17(a) shows
two trajectories that are the same until t1 = 980, when they are set apart by ε = 10−6.
After 10 time units, the two instantaneous solutions are completely different, which is
a manifestation of chaos. The logarithmic evolution of the distance between the two
trajectories is shown in figure 17(b), where the slope of the linear region gives the dominant
Lyapunov exponent. This method is carried out for several initial conditions in the attractor.
The resulting maximal Lyapunov exponent is λ1 = 0.74± 0.30, which corresponds to a
predictability time scale tλ = λ−1

1 = 1.62± 0.78. Physically, the predictability tλ is key
to the implementation of the EnSRKF for time-accurate predictions because if the time
between analysis is too large, then the forecast ensemble will already be far from the truth.
Figure 16 shows how the filtered chaotic solution with an assimilation time on the high
end of the time scale tλ is completely different to the true solution.

Figure 18 shows the effect of the time between analysis �tanalysis in the chaotic
assimilation. The EnSRKF time-accurately learns the true solution for�tanalysis < tλ only
as the relative error and the trace of the covariance are reduced significantly and converge.
Therefore, we consider a time between analysis �tanalysis = 0.5 for chaotic regions. (The
butterfly effect is not present in non-chaotic behaviours, therefore the time between
analysis considered in the fixed point, limit cycle, frequency-locked and quasi-periodic
cases can be increased to reduce the computation time, as long as the Nyquist–Shannon
criterion is fulfilled (Traverso & Magri 2019).)
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Figure 17. Calculation of the Lyapunov exponent to select the analysis time in data assimilation. (a) Time
evolution of the pressure oscillations at the flame location of two nearby chaotic solutions. (b) Logarithmic
growth of the trajectory separation.
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Figure 18. Assimilation of acoustic modes for state estimation of a chaotic regime. Performance metrics.
Effect of the assimilation frequency. (a) Relative difference between the filtered solutions and truth.
(b) The trace of the ensemble covariance. The dashed vertical line indicates when data assimilation ends.
Here, β = 7.0, m = 10 and σfrac = 0.25.

Figure 19 shows the results of state estimation in a chaotic regime. The assimilation
of the acoustic modes is shown in figure 19(a), while the assimilation of pressure
observations is shown in figure 19(b). The results are generated with an ensemble size
m = 100. The results indicate that the filter learns the pressure state in chaotic regimes
for the two assimilation approaches. Because of the butterfly effect, the filtered pressure
and the true signal start differing after removing the filtering due to the chaotic nature
of the solutions. The agreement is also evident in the phase space reconstruction and
first return map. Figure 20 shows the results of state estimation in the form of the power
spectral density (PSD). The top PSDs are computed during the assimilation window (t ∈
[900, 1200]), and the bottom PSDs are computed after removing the filter and propagating
the filtered solution without data assimilation (t ∈ [1200, 1500]). The PSDs during the
assimilation indicate that the filter learns as well almost exactly the frequency spectrum
of the solution, while the unfiltered solution exhibits significant discrepancies. After
removing the filter, the PSDs of the true and filtered solutions remain qualitatively similar,
but differ slightly due to the chaotic divergence of the solution.

Finally, the data assimilation algorithm is able to estimate β and τ in the combined state
and parameter estimation in chaotic regimes for the assimilation of both acoustic modes
and pressure from microphones (figures 21a,b, respectively). The results indicate that
there is a successful convergence of the parameters even though their initial uncertainty
is large. These simulations are performed with a large ensemble of 300 members and by
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Figure 19. Real-time learning of the state. Assimilation of (a) acoustic modes and (b) pressure from
microphones for state estimation of a chaotic regime (β = 7.0). Left-hand plots: true pressure oscillations at
the flame location (light grey), unfiltered solution (dashed dark grey) and filtered solution (black). The analysis
time steps are indicated with red circles. Centre and right-hand plots: phase portrait and first return map of the
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Figure 20. Power spectral density (PSD) during (a,b) and after (c,d) assimilation of the true pressure
oscillations (dark blue), unfiltered solution (orange) and filtered solution (light blue), during state estimation
in a chaotic regime (β = 7.0). (a,c) Assimilation of acoustic modes. (b,d) Assimilation of pressure from
microphones. Here, m = 100, σmic = 0.01, σfrac = 0.25 and �tanalysis = 0.5.

inflating the ensemble when the assimilation is neglected due to unphysical parameters.
The inflation parameter required for convergence in the assimilation of pressure data
(figure 21b) is large (ρ = 1.2). Figure 22(b) shows that the convergence is significantly
faster and requires a smaller inflation (ρ = 1.02) if the number of microphones is increased
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Figure 21. Real-time learning of the parameters. Assimilation of (a) acoustic modes and (b) pressure from
microphones for combined state and parameter estimation of a chaotic regime. Time evolution of the parameters
and their standard deviation. Chaotic solution (β = 7.0). The dashed vertical line indicates when data
assimilation ends. Here, m = 300, ρ = 1.2, σmic = 0.01, �tanalysis = 0.5 and Nmic = 6.
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Figure 22. Real-time learning of the parameters. Assimilation of (a) acoustic modes and (b) pressure from
microphones for combined state and parameter estimation of a chaotic regime. Time evolution of the parameters
and their standard deviation. Chaotic solution (β = 7.0). The dashed vertical line indicates when data
assimilation ends. Here, m = 300, ρ = 1.02, σmic = 0.01, �tanalysis = 0.5 and Nmic = 15.

to 15, as they provide a greater amount of information on the system, i.e. the problem is
less ill-conditioned.

The data assimilation successfully learns the true state and parameters for chaotic
regimes in the twin experiments by increasing the assimilation frequency, the ensemble
size and the inflation parameter.

8. Bias-aware data assimilation with echo state networks

The ESN is trained with the bias, which is the difference between the statistically
stationary solution of the travelling-wave model with the flame kinematic model
(§ 4.3) and a single statistically stationary realisation of the low-order model with
β̃train = 106 (W s1/2 m−5/2). The training set is short (1.2 s), and sampled at 2000 Hz.
This sampling frequency is consistent with experimental works (e.g. Garita et al. 2021).
The washout consists of 0.025 s of observations sampled at the same frequency. Following
the results from § 6, the simulations in this section use ensemble size m = 100, inflation
factor ρ = 1.02, microphone standard deviation σmic = 0.01, and time between analysis
�t̃analysis = 3× 10−3 s.

Figure 23 shows the unbiased state estimation results. The biased filtered solution
represents the expectation of the forecast pressure, while the unbiased filtered solution
is the resulting pressure state after correcting the model bias with the ESN. The amplitude
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Figure 23. Real-time learning of the model bias and unbiased state. (a) True pressure oscillations at x̃/L̃0 =
0.18 (light grey), biased filtered solution (dashed dark grey) and unbiased filtered solution (black). The analysis
time steps are indicated with red circles; the vertical dashed lines show the assimilation window. (b) Phase
portrait, (c) power spectral density (PSD), and (d) first return map of the true pressure oscillations (dark blue),
biased filtered solution (orange) and unbiased filtered solution (light blue).

of the pressure oscillations outputted by the higher-fidelity model is about 5 % of the
atmospheric pressure, which is a typical pressure level for oscillations in a ducted flame
(Bloxsidge, Dowling & Langhorne 1988). Because the Mach number and acoustic pressure
are small, the linear assumption on the acoustics is justified. After 1 s of assimilation-free
forecasting, when both the truth and the low-order solutions are statistically stationary, the
ESN is initialised with 0.025 s of washout. At t̃ = 1.025 s, the state estimation begins. The
results indicate that the ESN estimates the model bias favourably. This allows the EnSRKF
to recover the true pressure time series, as well as to learn its frequency spectrum and the
attractor (figure 23b). Figure 24 shows the performance of the ESN at the start of unbiased
state estimation, and after the data assimilation ends. After the open-loop initialisation, the
agreement between the estimated bias and the actual bias is favourable. In the autonomous
evolution (closed loop), a re-initialisation every 3× 10−3 s is sufficient to maintain the
accuracy on the inferred bias. The ESN is trained with the bias resulting from a simulation
using β̃ = β̃train, so it is expected to provide good estimates of the bias when initialising
the ensemble to the same value of β̃, provided that there is a long enough washout.

The results for combined unbiased state and parameter estimation are shown in figure 25.
The values of heat-source strength for the ensemble members are initialised far from
the training β̃train, as a uniform random distribution with 10 % standard deviation and
mean value β̃ = 3 β̃train. The data assimilation with the ESN algorithm converges to a
physical value of heat-source strength (β̃ = 1.70× 106 (W s1/2 m−5/2) in figure 25(a),
which recovers the dominant frequencies of the higher-fidelity simulation (figure 25b).
By comparing figures 26 and 24, it can be seen that the time series of the model
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Figure 24. Real-time learning of the model bias and unbiased state. Comparison of the actual bias and the
estimated model bias from the ESN during state estimation. (a) Open-loop initialisation and sequential closed
loops re-initialised at analysis steps. (b) Echo state network’s closed-loop forecast after data assimilation ends.
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Figure 25. Real-time learning of the model bias, unbiased state and parameters. (a) Time evolution of the
parameter β̃ with the standard deviation. (b) Power spectral density (PSD) of the pressure oscillations at x̃/L̃0 =
0.18 of the true pressure oscillations (dark blue), biased filtered solution (orange) and unbiased filtered solution
(light blue). The vertical dashed lines show the assimilation window.
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Figure 26. Real-time learning of the model bias, unbiased state and parameters. Comparison of the actual bias
and the estimated model bias from the ESN during state and parameter estimation. (a) Open-loop initialisation
and sequential closed loops re-initialised at analysis steps. (b) Echo state network’s closed-loop forecast after
data assimilation ends.

bias for a low-order model with β̃ = 1.70× 106 (W s1/2 m−5/2) is significantly different
from that of β̃train. This means that, although the ESN is trained on data with a fixed
β̃train = 106 (W s1/2 m−5/2), it is able to infer adaptively the bias of unseen data (with a
different β̃).
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A. Nóvoa and L. Magri

9. Conclusions

Low-order thermoacoustic models are qualitatively correct, but they can be quantitatively
incorrect. In this work, we introduce data assimilation to make qualitative models
quantitatively (more) accurate. This is achieved by combining the knowledge from
observations, such as experimental data, and a physical model prediction. Data and model
predictions are combined with a Bayesian data assimilation method. The algorithm learns
the state, such as the acoustic pressure, and the parameters of the model, every time that
reference data become available (real-time).

First, we develop a sequential data assimilation algorithm based on the ensemble
square-root Kalman filter in the time domain. This nonlinear filter selects the most likely
state and set of physical parameters that are compatible with model predictions and
their uncertainties, and with observations and their uncertainties. The filter is physical,
i.e. it is not a purely machine learning technique, as it provides estimates that are
compatible with the conservation laws, which makes it robust and principled. The data,
once assimilated, do not need to be stored. For the data assimilation, which is based on
a Markov assumption, we transform the time-delayed dynamics (non-Markovian) into an
initial value problem (Markovian). Second, we perform twin experiments in each region
of the bifurcation diagram with reference data on (i) the acoustic Galerkin modes, and (ii)
the acoustic pressure taken from multiple microphones. On the one hand, in non-chaotic
oscillations, the frequency with which data should be assimilated needs to fulfil the
Nyquist–Shannon criterion with respect to the dominant acoustic mode. On the other hand,
in chaotic oscillations, we highlight that the assimilation frequency should scale with the
Lyapunov exponent. During the combined state and parameter estimation with pressure
observations, it is observed that occasionally, the filter provides unphysical solutions,
such as negative time delays, that lead to convergence to incorrect solutions. This is due
to the bifurcations and hystereses that occur in a small range of parameters. Hence we
propose an increase, reject, inflate strategy to overcome this. In detail, we increase the
ensemble size to better capture the correct dynamics, we reject the analysis steps that
provide unphysical parameters, e.g. negative time delays, and we inflate the ensemble
covariance by adding noise as a regularisation term. With the twin experiments in data
assimilation, we show that: (i) the correct acoustic pressure and parameters can be learnt
accurately (i.e. inferred); (ii) the ensemble size is small (in contrast to standard Kalman
filters), from 10 to 100 depending on the multi-frequency content of the solution; (iii) the
learning is robust because it can tackle large uncertainties in the observations (up to 50 %
of the mean values); (iv) the uncertainty of the prediction and parameters is naturally part
of the output; and (v) both the time-accurate solution and statistics (through the power
spectral density function) can be learnt successfully. Third, we propose a data assimilation
framework to learn the model error (bias). The model bias is inferred by an ESN, which
is a data-driven tool that is more general than an auto-regressive model. We perform data
assimilation using reference data from a higher-fidelity acoustic model, which contains
a mean flow, non-ideal boundary conditions, and a kinematic model for the flame. The
ESN is trained a priori, and then it is run in parallel with the sequential data assimilation
algorithm. We show that with a short training set, the reservoir learns the dynamics of the
thermoacoustic model error. The proposed methodology learns successfully in real time
both the time-accurate solution and the statistics of it.

The technology developed in this paper is being applied to improve the quantitative
accuracy of reduced-order models with experimental data from pressure sensors, to learn
different model parameters, and to provide estimates of the model error. Data assimilation
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with an ESN opens up new opportunities for real-time prediction of thermoacoustics by
combining physical knowledge and data synergistically, as well as for estimating the model
bias beyond the field of thermoacoustics.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.653.
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Appendix A. Derivation of the EnSRKF

Before starting with the derivation of the filter, some definitions are introduced. For
m ensemble members and a state vector ψ i ∈ R

N×1, the matrix that encapsulates the
ensemble members and the ensemble mean are defined as

A = (ψ1,ψ2, . . . ,ψm) ∈ R
N×m and ψ̄ ≈ 1

m

m∑
i=1

ψ i. (A1a,b)

With these, the following definition for the ensemble perturbation matrix applies:

Ψ = (ψ1 − ψ̄,ψ2 − ψ̄, . . . ,ψm − ψ̄). (A2)

The ensemble covariance matrix can be determined from (A3), introducing a factor
(m− 1) to avoid a sample bias – the covariance matrix is defined as an approximation
because it is derived from a statistical sample:

Cψψ ≈ 1
m− 1

Ψ Ψ T. (A3)

Accounting for these definitions, the Kalman filter update (2.12a) for the ensemble is, in
matrix form,

Aa = A f +
(

M C f
ψψ

)T [
Cεε + M C f

ψψ MT
]−1 (

Y − M A f
)
, (A4)

where Y ∈ R
q×m is the matrix containing the q observations of each member in

the ensemble, M ∈ R
q×N is the measurement operator matrix, and Cεε ∈ R

q×q is the
observations’ error covariance matrix.
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A. Nóvoa and L. Magri

Using the definition for the ensemble covariance in (A3), the ensemble mean of (A4) is

Āa = Ā f + Ψ f (M Ψ f )T[(m− 1)Cεε + M Ψ f (M Ψ f )T]−1(Y − M Ā f ), (A5)

where Ā is an N × m matrix of identical mean analysis states in each column. Now
introducing the covariance expression into the analysis error update (see (2.12b)) yields
the analysis covariance matrix

Ca
ψψ =

Ψ f Ψ f T

m− 1
−
(

M
Ψ f Ψ f T

m− 1

)T [
Cεε + M

Ψ f Ψ f T

m− 1
MT

]−1 (
M
Ψ f Ψ f T

m− 1

)
. (A6)

Equations (A5) and (A6) can be simplified by introducing the matrices

S = M Ψ f and W s = SST + (m− 1)Cεε, (A7a,b)

leading to

Āa = Ā f + Ψ f ST W−1
s (Y − M Ā f ), (A8)

Ca
ψψ =

1
m− 1

Ψ f (I− ST W−1
s S)Ψ f T

, ∴ Ψ a Ψ aT = Ψ f (I− ST W−1
s S)Ψ f T

.

(A9a,b)

The key idea of the EnSRKF is to find a matrix Ψ a with the covariance of (A9), which
is added to the mean ensemble in (A8) to compute the full ensemble. First, the matrix
W s defined in (A7a,b) can be eigen-decomposed such that W s = ZΛZT because it is
a symmetric square matrix, where Λ and Z are the matrices of eigenvalues (diagonal)
and eigenvectors (orthogonal), respectively. Substituting the eigen-decomposition into the
definition of the analysis perturbation matrix, (A9) is rewritten as

Ψ a Ψ aT = Ψ f (I− STZΛ−1 Z S)Ψ f T = Ψ f (I− X T X )Ψ f T
, (A10)

where X = Λ−1/2 ZT S. Similarly to the decomposition of W s, the symmetric matrix
given by the product X T X can be expressed as X T X = VΣV T, where V is an orthogonal
matrix of eigenvectors, and Σ is a diagonal matrix of eigenvalues. Next, introducing this
decomposition into (A10) yields

Ψ a Ψ aT = Ψ f (I− VΣV T)Ψ f T

= Ψ f V (I−Σ)V TΨ f T

= [Ψ f V (I−Σ)1/2V T][Ψ f V (I−Σ)1/2V T]T. (A11)

Hence a solution for the analysis ensemble perturbations, which preserves the zero mean
in the updated perturbations and keeps the EnSRKF unbiased, is (Sakov & Oke 2008)

Ψ a = Ψ f V (I−Σ)1/2 V T. (A12)

Finally, the analysis state of the ensembles is determined by adding the analysis
ensemble perturbations to the mean analysis ensembles. This analysis state is then
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propagated in time using the nonlinear forecast model, i.e.

Aa = Āa + Ψ a, (A13a)

A f (t +�t) = F(Aa(t)), (A13b)

where F is a compact representation of the nonlinear thermoacoustic equations. Note
that in the absence of observations, there would be no data assimilation and the initial
conditions for the next forecast are the forecast states rather than the analysis states, hence

A f (t +�t) = F(A f (t)). (A14)

REFERENCES

AGGARWAL, C.C. 2018 Neural Networks and Deep Learning, vol. 10, pp. 978–983. Springer.
AGUILAR PÉREZ, J.G. 2019 Sensitivity analysis and optimization in low order thermoacoustic models. PhD

thesis, University of Cambridge.
BALASUBRAMANIAN, K. & SUJITH, R.I. 2008 Thermoacoustic instability in a Rijke tube: non-normality and

nonlinearity. Phys. Fluids 20 (4), 044103.
BANNISTER, R.N. 2008 A review of forecast error covariance statistics in atmospheric variational data

assimilation. I: characteristics and measurements of forecast error covariances. Q. J. R. Meteorol. Soc.
134 (637), 1951–1970.

BANNISTER, R.N. 2017 A review of operational methods of variational and ensemble-variational data
assimilation. Q. J. R. Meteorol. Soc. 143 (703), 607–633.

BLOXSIDGE, G.J., DOWLING, A.P. & LANGHORNE, P.J. 1988 Reheat buzz: an acoustically coupled
combustion instability. Part 2. Theory. J. Fluid Mech. 193, 445–473.

BOFFETTA, G., CENCINI, M., FALCIONI, M. & VULPIANI, A. 2002 Predictability: a way to characterize
complexity. Phys. Rep. 356 (6), 367–474.

COLBURN, C.H., CESSNA, J.B. & BEWLEY, T.R. 2011 State estimation in wall-bounded flow systems. Part
3. The ensemble Kalman filter. J. Fluid Mech. 682, 289–303.

CULICK, F.E.C. & KUENTZMANN, P. 2006 Unsteady motions in combustion chambers for propulsion
systems. Tech. Rep. RTO-AG-AVT-039. NATO Research and Technology Organization Neuilly-Sur-Seine.

DEE, D.P. & DA SILVA, A.M. 1998 Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc.
124 (545), 269–295.

DOAN, N.A.K., POLIFKE, W. & MAGRI, L. 2021 Short- and long-term predictions of chaotic flows and
extreme events: a physics-constrained reservoir computing approach. Proc. R. Soc. Lond. A 477 (2253),
20210135.

DE DOMENICO, F., ROLLAND, E.O. & HOCHGREB, S. 2017 Detection of direct and indirect noise generated
by synthetic hot spots in a duct. J. Sound Vib. 394, 220–236.

DOWLING, A.P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180 (4), 557–581.
DOWLING, A.P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394, 51–72.
DOWLING, A.P. & MORGANS, A.S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid

Mech. 37 (1), 151–182.
DRÉCOURT, J.-P., MADSEN, H. & ROSBJERG, D. 2006 Bias aware Kalman filters: comparison and

improvements. Adv. Water Resour. 29 (5), 707–718.
ECKART, C. 1960 Hydrodynamics of Ocean and Atmosphere. Pergamon.
EVENSEN, G. 2003 The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean

Dyn. 53 (4), 343–367.
EVENSEN, G. 2009 Data Assimilation: The Ensemble Kalman Filter. Springer.
FRIEDLAND, B. 1969 Treatment of bias in recursive filtering. IEEE Trans. Autom. Control 14 (4), 359–367.
GARITA, F., YU, H. & JUNIPER, M.P. 2021 Assimilation of experimental data to create a quantitatively

accurate reduced-order thermoacoustic model. Trans. ASME J. Engng Gas Turbines Power 143 (2), 021008.
GELB, A. 1974 Applied Optimal Estimation. MIT.
GOTODA, H., IKAWA, T., MAKI, K. & MIYANO, T. 2012 Short-term prediction of dynamical behavior of

flame front instability induced by radiative heat loss. Chaos 22 (3), 033106.
GOTODA, H., NIKIMOTO, H., MIYANO, T. & TACHIBANA, S. 2011 Dynamic properties of combustion

instability in a lean premixed gas-turbine combustor. Chaos 21 (1), 013124.
GRIGORYEVA, L. & ORTEGA, J.-P. 2018 Echo state networks are universal. Neural Netw. 108, 495–508.
GUAN, YU., GUPTA, V. & LI, L.K.B. 2020 Intermittency route to self-excited chaotic thermoacoustic

oscillations. J. Fluid Mech. 894, R3.

948 A35-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



A. Nóvoa and L. Magri

HASEGAWA, K., FUKAMI, K., MURATA, T. & FUKAGATA, K. 2020 Machine-learning-based reduced-order
modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34 (4),
367–383.

HECKL, M.A. 1990 Non-linear acoustic effects in the Rijke tube. Acustica 72, 63–71.
HOUTEKAMER, P.L. & ZHANG, F. 2016 Review of the ensemble Kalman filter for atmospheric data

assimilation. Mon. Weath. Rev. 144 (12), 4489–4532.
HUHN, F. & MAGRI, L. 2020a Learning ergodic averages in chaotic systems. In International Conference

on Computational Science (ed. V.V. Krzhizhanovskaya, G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A.
Sloot, S. Brissos & J. Teixeira), vol. 12142. pp. 124–132. Springer.

HUHN, F. & MAGRI, L. 2020b Stability, sensitivity and optimisation of chaotic acoustic oscillations. J. Fluid
Mech. 882, A24.

HUHN, F. & MAGRI, L. 2022 Gradient-free optimization of chaotic acoustics with reservoir computing. Phys.
Rev. Fluids 7 (1), 014402.

JAEGER, H. & HAAS, H. 2004 Harnessing nonlinearity: predicting chaotic systems and saving energy in
wireless communication. Science 304 (5667), 78–80.

JAYNES, E.T. 1957 Information theory and statistical mechanics. Phys. Rev. 106 (4), 620.
JAYNES, E.T. 2003 Probability Theory: The Logic of Science. Cambridge University Press.
JAZWINSKI, A.H. 2007 Stochastic Processes and Filtering Theory. Courier Corporation.
JUNIPER, M.P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass

transition. J. Fluid Mech. 667, 272–308.
JUNIPER, M.P. & SUJITH, R.I. 2018 Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev.

Fluid Mech. 50 (1), 661–689.
KABIRAJ, L., SAURABH, A., WAHI, P. & SUJITH, R.I. 2012a Route to chaos for combustion instability in

ducted laminar premixed flames. Chaos 22 (2), 023129.
KABIRAJ, L. & SUJITH, R.I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame

blowout. J. Fluid Mech. 713, 376–397.
KABIRAJ, L., SUJITH, R.I. & WAHI, P. 2012b Bifurcations of self-excited ducted laminar premixed flames.

Trans. ASME J. Engng Gas Turbines Power 134 (3), 031502.
KALMAN, R.E. 1960 A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Engng

82 (1), 35–45.
KANTZ, H. & SCHREIBER, T. 2003 Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press.
KASHINATH, K., WAUGH, I.C. & JUNIPER, M.P. 2014 Nonlinear self-excited thermoacoustic oscillations of

a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399–430.
LABAHN, J.W., WU, H., CORITON, B., FRANK, J.H. & IHME, M. 2019 Data assimilation using high-speed

measurements and LES to examine local extinction events in turbulent flames. Proc. Combust. Inst. 37 (2),
2259–2266.

LANDAU, L.D. & LIFSHITZ, E.M. 1987 Fluid Mechanics, 2nd edn. Pergamon.
LEWIS, J.M., LAKSHMIVARAHAN, S. & DHALL, S. 2006 Dynamic Data Assimilation: A Least Squares

Approach. Encyclopedia of Mathematics and its Applications, vol. 13. Cambridge University Press.
LI, R., JAN, N.M., HUANG, B. & PRASAD, V. 2019 Constrained ensemble Kalman filter based on

Kullback–Leibler divergence. J. Process Control 81, 150–161.
LIEUWEN, T.C. 2012 Unsteady Combustor Physics. Cambridge University Press.
LIEUWEN, T.C. & YANG, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience,

Fundamental Mechanisms, and Modelling. American Institute of Aeronautics and Astronautics.
LIVINGS, D.M., DANCE, S.L. & NICHOLS, N.K. 2008 Unbiased ensemble square root filters. Physica D

237 (8), 1021–1028.
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