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Abstract—Second-order memristors are two-terminal devices
that present a conductance depending on two orders of variables,
namely the geometric parameters and the internal temperature.
They have shown to be able to mimic some specific features of
neuron synapses, specifically Spike-Timing-Dependent-Plasticity
(STDP), and accordingly to be good candidates for neuromorphic
computing. Spiking memristor networks have been broadly
investigated, mainly through extensive simulations in the context
of unsupervised and supervised learning. In this manuscript, we
study such networks from a different perspective by exploiting
a recent developed almost-analytical model. We show that they
can be accurately characterized as discrete nonlinear dynamical
systems, with mem-conductances as state variables and pre and
post-synaptic spikes as inputs and outputs, respectively. Under
this approach, the network global dynamic behavior and the
related learning mechanism can be deeply analyzed by employing
advanced nonlinear dynamic techniques. As a preliminary result,
we show that the network response to periodic presynaptic inputs
can be readily determined by computing the system equilibrium
points and discussing their stability properties.

I. INTRODUCTION

Memristor and memristive systems were theoretically con-
ceived by L. O. Chua [1] and firstly realized as thin-film
electrical elements, based on Titanium Oxide [2]. They have
been widely exploited in analog and digital systems for a broad
scope of applications, including amplifiers, filters, oscillators,
and logic gates. In terms of voltage-current characteristics,
a two-terminal memristor device is described by a mem-
conductance, which may depend on a set of first and second
order state variables linked to the internal geometric parame-
ters and to the internal temperature respectively. Due to their
intrinsic properties, memristors have been found to be suitable
to emulate some synaptic functions and consequently to be
attractive candidates for neuromorphic computing [3], [4],
[5], [6]. In particular second-order memristors have shown
to be able to mimic a crucial synaptic feature, specifically
Spike-Timing-Dependent-Plasticity (STDP) [4] and memristor
crossbar structures appear to be qualified to implement locally
competitive algorithms (LCA) and to tackle classification
problems by exploiting STDP rules and temporal learning
techniques [7], [8].

In the last two decades, many studies and experiments
in neuroscience have shown the effect of spike-timing on
synaptic efficacy [9]. Computational studies have mainly re-
garded learning rules associated with STDP, starting from
the relation between spiking and Hebbian learning [10] , and

spiking networks in the context of supervised, unsupervised,
and reinforcement learning. [11], [12].

In this manuscript, we study the behavior of memristor
spiking networks from the perspective of nonlinear dynamic
systems. By exploiting an almost analytical model that we
have derived and discussed in previous papers [13], [14], we
characterize such networks as discrete nonlinear dynamical
systems. First, we explicitly derive the state equations gov-
erning the mem-conductance evolution by considering pre-
synaptic spikes and post-synaptic spikes as input and output,
respectively. Then, as a preliminary result, we show that the
network response to periodic pre-synaptic inputs can be readily
determined by computing the system equilibrium points and
discussing their stability properties. We are confident that,
under this approach, the network global dynamic behavior and
the underlying learning mechanism can be deeply analyzed by
employing advanced nonlinear dynamic techniques.

II. MEMRISTOR CONDUCTANCE MODEL

We consider the second order memristor illustrated in
Fig. S8b of the SI Appendix of [4], which exhibits a conductive
region divided into three serial parts: base-conductive filament
(CF), sub-CF, and depleted gap. The device behavior is de-
scribed by a rather complex system of algebraic-differential
equations, from which it is seen that the conductance depends
on two geometric parameters, namely the radius of the sub-CF
region and the gap length, and on the internal temperature. In
[13], [14] we have shown that the model can be simplified
by adopting some reasonable approximations, and we have
derived a very accurate analytical expression of the time-
derivative of the mem-conductance Ĝ, only depending on the
internal temperature T :
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where v is the voltage applied to the two-terminal memristor,
Ea = 0.85 eV represents the ion migration energy barrier,
kb = 1.38 10−23 J/K is the Boltzmann constant, Rs denotes
the resistance of the base-CF, and the other geometric (r0,



rm) and physical (a, β, f ) parameters are defined in the
SI Appendix of [4] and reported in [13].

In accordance with [4], a typical input spike is composed by
the sequence of a programming and a heating pulse of duration
ts and tH respectively. By denoting with ∆t = γtH the time
shift between the beginning of the programming pulse of the
second spike and the end of the heating pulse of the first spike,
the parameter γ turns out to be positive if the programming
pulse occurs after the end of the heating pulse and negative
otherwise. By slightly elaborating the results shown in [13] ,
a very accurate analytic expression of the temperature T(γ)
associated to the programming voltage can be derived:
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where VH and VP denote the heating and programming pulse
magnitude, Ĝ denotes the approximate conductance (which
is assumed to present slow variations with respect to the
Temperature), kth1 and kth2 denotes the effective thermal
conductances of the internal and bulk temperature respectively,
defined in [13] and τb is the bulk temperature time constant
(see [13] for details).

The simplified model developed in [13] and briefly illus-
trated above, besides being easily handleable, involves only
two variables, the mem-conductance and the internal temper-
ature, which are directly attributable to the two fundamental
quantities, synaptic efficacy and calcium concentration, used
in biophysical models for reproducing a large variety of STDP
curves [15].

III. MEMRISTOR SPIKING NETWORK STATE EQUATIONS

We consider a structure composed by N presynaptic neu-
rons and M postsynaptic neurons, connected through a matrix
of second-order memristors, which exhibit a conductance de-
scribed by eqs. (1)-(2) and (3). The input data may be encoded
through a temporal or rate code, giving rise for each neuron
to a set of presynaptic spikes. Each presynaptic/postsynaptic
spike may be modeled as a positive/negative programming
pulse of amplitude Vpre/Vpost and duratiom ts, followed by
a longer negative/positive heating pulse of magnitude VH and
duration tH . We indicate with Xj and Yi the ensembles of
all the spikes of the generic presynaptic neuron j and post-
synaptic neuron i respectively:

Xj =
{
tprej,1 , t

pre
j,2 , ... , t

pre
j,Kj

}
Yi =

{
tposti,1 , tposti,2 , ... , tposti,Hi

}
(4)

where tprej,k (1 ≤ k ≤ Kj) denotes the time when neuron j

emits its kth presynaptic spike and tposti,h (1 ≤ h ≤ Hi) denotes
the time when neuron i emits its hth postsynaptic spike.

We conventionally assume that all spikes occur at the
beginning of the programming pulse of duration ts and that
the postsynaptic neuron voltage ui(t) is reset to zero, as soon
as it exceeds a given threshold uth and consequently emits
a post-synaptic spike tposti,h . The voltage ui(t) turns out to be
described by the following expression:
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where tposti,0 = 0, [tposti,0 tposti,Mi+1] represents the interval under
consideration, τm is the postsynaptic neuron time constant,
and tsh = ts + tph, with tph denoting the time shift between
the programming and the heating pulse, shown in Fig. (1)).

By denoting the voltage threshold with uth and with Ĝh
i,j

the value assumed by the time-variant mem-conductance in
the time interval [tposti,h , tposti,h+1), the mem-conductance dynamic
evolution can accordingly be described by the following set
of N ×M discrete-time state equations:
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with

ui(t
post
i,h ) = uth and ∀ t 6=post

i,h → ui(t) < uth (1 ≤ h ≤Mi)
(8)

In the above equations, khF and khL are the indexes of the
first and of the last presynaptic spike of neuron j occurring
in the time interval [tposti,h , tposti,h+1), Ĝh+1/2

i,j denotes the con-
ductance value due to the first variation ∆

post/pre
G determined

by the post/pre pair and Ĝh
i,j denotes the final value of the

conductance due to the second variation ∆
pre/post
G determined

by the pre/post pair. Gmax and Gmin represent the maximum
and the minimum value, that each mem-conductance can reach
[13], [14].

The conductance variations ∆
post/pre
G (Ĝh

i,j , γ
post/pre) and

∆
pre/post
G (Ĝ

h+1/2
i,j , γpre/post) can be readily computed by

substituting in (1)-(2) the conductance values and in (3) the
appropriate values of γpost/pre, γpre/post given in (7).



Figure 1: Example of a sequence of pre-synaptic input spikes of
period T (upper figure), giving rise to post-synaptic output of period
3T . Each pre/post synaptic spike is represented by a programming
pulse of magnitude VP and duration ts, followed by a heating
pulse of duration tH ; the time interval between the beginning of
the programming pulse and the beginning of the heating pulse is
denoted with tsh. It is assumed that the post-synaptic spike occurs
αtH time units before the end of one of the pre-synaptic spike
(with 0 ≤ α ≤ 1) and the following parameters, reported in (13),
are derived for some mem-conductances: γpost/pre1,2 (related to the
time shift between the end of the post-synaptic heating pulse and
the beginning of the presynaptic programming pulses) and γpre/post2,3

(related to the time shift between the end of the pre-synaptic heating
pulses and the beginning of the post-synaptic programming pulse).

The set of equations (6) - (7) - (8) together with (5) can
be effectively employed to study the dynamic behavior of a
memristor spiking network, with arbitrary presynaptic input
spikes Xj . As a preliminary example we will examine the
network response to periodic inputs

IV. NETWORK RESPONSE TO PRESYNAPTIC PERIODIC
INPUT SPIKES

In order to show the potentiality of the method of analysis
that we have developed, we consider the network response to
a sequence of periodic presynaptic spikes. By employing the
formalism introduced in (4), with Kj = 1 for all cells, the
series of N presynaptic spikes can be visualized by the vector
below assuming that the time shift between two subsequent
spikes be constant and equal to a constant period T :

I =
{
tpre1,1 , t

pre
2,1 , · · ·, t

pre
N,1

}
(tprej+1,1−t

pre
j = T, 1 ≤ j ≤ N−1)

(9)

Since in memristor crossbar networks, all columns are
uncoupled, without losing in generality we only consider a
post-synaptic neuron i. According to (5), we assume that
the contribution of the programming pulses to the membrane
voltage ui(t) is negligible because of their negligible duration.
Consequently, a given threshold uth triggering a post-synaptic
spike may only occur in correspondence to a presynaptic
neuron heating pulse. In such a case, we denote with αjtH
(αj > 0) the time shift between the post-synaptic spike and the
end of the generic jth heating pulse at which the threshold uth

is reached (see Fig. (1) for details). The following Proposition,
that for lack of space is not proved here, can be readily derived.

Proposition: Let a network be composed of N presynaptic
neurons and one post-synaptic neuron and let us assume
that the input I is presented to the post-synaptic neuron an
arbitrarily high number of times, theoretically infinitely many
times. Let us consider the following set of P + 1 equations:
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If there exist α > 0 and P mem-conductances Ĝp, (1 ≤
p ≤ P ) satisfying the above set of P + 1 equations (10) -
(11) then post-synaptic spikes occur with a period P T and
consequently also mem-conductances patterns exhibit the same
periodicity.

A first application of the this result regards the study of the
dynamic behavior of spiking networks. In fact, for given T and
P , a solution of the above set equations, Ĝ1, Ĝ2, · · ·, ĜP

represents an equilibrium point of the discrete dynamical
systems jointly described by (6) - (7) - (8) and a further
analysis of (10) - (11) shows that the point is stable. In addition
the exact periodicity and time location of postsynaptic spikes
can be readily determined. A second application concerns
the investigation of some unsupervised learning mechanisms
occurring in memristive networks. Extensive numerical solu-
tions of (10) - (11) show that each pre-synaptic frequency is
dynamically encoded onto a mem-conductance pattern. Hence
such patterns can be exploited for classifying different sets
of pre-synaptic spikes. Finally, a third application regards
the possibility of developing supervised learning techniques
to optimize network performance. As shown in [11], this
would require estimating the mem-conductance pattern, which
maximizes the probability of a given post-synaptic output. We
expect that also this task could be effectively addressed by
further elaborating our dynamic system-based approach.

As a preliminary example, we have examined a network of
60 presynaptic neurons. The results are shown in Fig. 2 and
3 for tH = 2τb and increasing values of the input period,
i.e. decreasing values of the input frequency. The following



Figure 2: Spiking network composed by 60 presynaptic neurons
and one post-synaptic neuron. Upper part: mem-conductance pattern
periodicity (2T for T

τb
= 1.25 tH

τb
and 3T for T

τb
= 1.3 tH

τb
); lower

parts: mem-conductance variations, due to a sequence of post/pre/post
spikes.

observations hold: 1) as expected, the mem-conductance pat-
tern and the post-synaptic spike periodicity increase with the
pre-synaptic periodic input T , ranging from a period of 2T
for presynaptic period T

τb
= 1.25 tHτb to a period of 5T for

T
τb

= 1.45 tHτb ; 2) the first P − 1 mem-conductances converge
to a stable value comprised in the range (Gmin, Gmax),
characterized by a zero of the post-pre-post curve, with a
negative slope; 3) the P th mem-conductance assumes the
value Gmax, in accordance with (12), because the post-pre-
post variation is always positive for any Ĝ in the interval
(Gmin, Gmax); 4) the network simulation, obtained by apply-
ing 240 iterations of each input sequence, reproduces precisely
the results theoretically predicted by (10) - (11). As a final
remark, we note that the results also provide a theoretical
framework for understanding temporal learning properties of
second order memristors [7], [8].

V. CONCLUSION

In this manuscript, we have shown that memristor spiking
networks can be investigated through a nonlinear dynamic-
based approach. We have characterized such networks as
discrete nonlinear dynamical systems by exploiting a recently
developed simplified memristor model. The network state
equations governing the mem-conductance evolution have
been explicitly derived. As a preliminary result, we have
shown that the network response to periodic pre-synaptic
inputs can be readily determined by computing the system
equilibrium points and discussing their stability properties.
Further work will regard the characterization of all network
periodic attractors and their stability properties. We are confi-
dent that the network response to arbitrary synaptic inputs and
the underlying learning mechanism, with their dependence on
the network parameters, can be effectively analyzed and under-
stood by employing advanced nonlinear dynamic techniques.

Figure 3: Spiking network composed by 60 presynaptic neurons
and one post-synaptic neuron. Upper part: mem-conductance pattern
periodicity (4T for T

τb
= 1.4 tH

τb
and 5T for T

τb
= 1.45 tH

τb
); lower

parts: mem-conductance variations, due to a sequence of post/pre/post
spikes.
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