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Summary

Introduction

This thesis addresses the challenges of modern edge computing, driven by the rise of data-
centric applications like Artificial Intelligence (AI) and Internet of Things (IoT), which expose
the inefficiencies of traditional von Neumann architectures. To overcome these limitations, it
proposes innovative solutions: a programmable near-memory computing architecture, NM-
Carus, that bridges flexibility and energy efficiency and a dynamically scheduled RISC-V
Central Processing Unit (CPU) core, LEN5, optimized for instruction-level parallelism and
coprocessor integration. Together, these contributions enhance computational throughput and
resource utilization, laying the foundation for scalable, energy-efficient edge devices.

NM-Carus: A Near-Memory Computing Architecture for Edge
Applications

This chapter introduces NM-Carus, a novel Near-Memory Computing (NMC) architecture,
depicted in Fig. 1, designed to address the inefficiencies of traditional Compute-In-Memory
(CIM) systems and enhance performance, energy efficiency, and programmability in edge
devices. By adopting a fully digital design leveraging standard Static Random-Access Mem-
ory (SRAM) macros and integrating a programmable RISC-V-based controller with a scalable
Vector Processing Unit (VPU), NM-Carus overcomes the limitations of existing In-Memory
Computing (IMC) and NMC solutions.

Its key contributions include:
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Figure 1: Top-level architecture of the NM-Carus NMC system, highlighting its SRAM-based Vector
Register File (VRF), RISC-V-based embedded controller, and VPU.

• Seamless integration into existing Microcontroller Unit (MCU) systems as a direct re-
placement for conventional SRAM banks, enabling easy adoption without major re-
designs.

• High energy efficiency and throughput for data-intensive workloads, demonstrated through
extensive post-layout simulations and benchmarking.

• Enhanced programmability via a custom xvnmc vector instruction set extension, sup-
porting a wide range of operations and bitwidths with minimal overhead.

Figure 2 shows the throughput improvements of the NMC-enhanced X-HEEP MCU com-
pared with its CPU-only version.

(a) Throughput improvement.

Figure 2: Throughput improvement (a) of the NMC-enhanced X-HEEP MCU compared with its CPU-
only version.
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Summary of the LEN5 Microprocessor Contribution

The LEN5 microprocessor addresses the limitations of in-order CPUs in edge computing by
leveraging Out-of-Order (OoO) execution to enhance performance and resource utilization.
Its modular and scalable design enables efficient integration of tightly coupled coprocessors,
making it suitable for diverse applications.

Key Features:

• Dynamic Scheduling: An enhanced Tomasulo’s algorithm enables out-of-order dis-
patch and execution using reservation stations (RSs), a reorder buffer (ROB), and a
common data bus (CDB).

• Speculative Execution: A gshare branch predictor, branch target buffer (BTB), and
return address stack (RAS) reduce control hazards.

• Latency Hiding: Supports tightly coupled coprocessors, with store-to-load forwarding
and out-of-order commit to maximize throughput.

• Configurability: Provides adjustable ROB, RSs, and execution units to balance perfor-
mance and area.

Physical Implementation: LEN5 was implemented in TSMC 65 nm low-power CMOS
technology, with three configurations: (1) Max Performance: 32-entry ROB, pipelined mul-
tiplier. (2) Balanced Performance: Smaller data structures, no divider. (3) Minimal Area:
Omitted multiplier/divider for area efficiency. Compared to CV32E40P, LEN5 shows a 11.3 %
area overhead in X-HEEP MCU while offering a 20 % higher clock frequency and significantly
higher Instructions Per Cycle (IPC) when coupled with long-latency coprocessors. Figure 3
shows the IPC comparison between LEN5 and CV32E40P over the Embench suite.

Future Work: The ARCANE In-Cache Computing System

The Adaptive RISC-V Cache Architecture for Near-Memory Extensions (ARCANE) system,
shown in Fig. 4, represents the evolution of near-memory computing by integrating NM-Carus
instances directly into the data cache of a system, transforming it into a tightly coupled com-
pute engine. This approach eliminates explicit memory management by offloading synchro-
nization and data movement to an augmented cache controller, enabling efficient instruction-
based programming for complex operations.
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Figure 3: IPC comparison with CV32E40P over the Embench suite (colored bars) and executed in-
struction composition (grayscale).

Key Features:

• Programmable Cache Controller: Manages synchronization, handles vector instruc-
tion offloading, and reduces data movement.

• Matrix-Based Instruction Set Architecture (ISA): Implements arbitrary software-
defined instructions to execute complex workloads on the NMC-based cache array. The
xmr instructions, together with a hardware Address Table (AT), handle hazards between
bus transactions and offloaded instructions, ensuring implicit synchronization with the
host CPU.

• Broadcasting and Parallelism: Supports tiling and distributing vector instructions
across multiple NM-Carus instances, improving scalability for large operations.

Integration with LEN5: Future integration of the LEN5 out-of-order CPU with ARCANE
aims to exploit the Instruction-Level Parallelism (ILP) opportunities exposed by the long-
latency offloaded instructions, allowing concurrent execution of scalar instructions and in-
cache computing operations.
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Figure 4: Top-level block diagram of the ARCANE system.


