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Abstract: Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an
increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is
often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification
is presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based
electrocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with
SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different AI
algorithms to evaluate their ability to discriminate between subjects with and without documented
life-threatening arrhythmic events. The study group included 104 SQTS patients, 37 of whom had a
documented major arrhythmic event at presentation and/or during follow-up. Thirteen ECG features
were measured independently by three expert cardiologists; then, the dataset was randomly divided
into three subsets (training, validation, and testing). Five shallow neural networks were trained,
validated, and tested to predict subject-specific class (non-event/event) using different subsets of
ECG features. Additionally, several deep learning and machine learning algorithms, such as Vision
Transformer, Swin Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks,
and logistic regression were trained, validated, and tested directly on the scanned ECG images,
without any manual feature extraction. Furthermore, a shallow neural network, a 1-D transformer
classifier, and a 1-D CNN were trained, validated, and tested on ECG signals extracted from the
aforementioned scanned images. Classification metrics were evaluated by means of sensitivity,
specificity, positive and negative predictive values, accuracy, and area under the curve. Results prove
that artificial intelligence can help clinicians in better stratifying risk of arrhythmia in patients with
SQTS. In particular, shallow neural networks’ processing features showed the best performance in
identifying patients that will not suffer from a potentially lethal event. This could pave the way for
refined ECG-based risk stratification in this group of patients, potentially helping in saving the lives
of young and otherwise healthy individuals.

Keywords: artificial intelligence; shallow learning; deep learning; short QT syndrome; electrocardiogram;
sudden cardiac death; risk stratification; vision transformers

1. Introduction

Short QT syndrome (SQTS) is an inherited channelopathy, which was first linked to
an increased risk of developing atrial fibrillation [1] and, then, to sudden cardiac death
(SCD) [2] in young and otherwise healthy individuals. In 2003, Gaita et al. [2] described
two unrelated families with a corrected QT interval (QTc) less than 300 ms and familial his-
tory of SCD, outlining SQTS as a novel clinical entity with an autosomal dominant pattern
of inheritance. Shortly after, the genetic nature of SQTS was confirmed by the discovery of
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gain-of-function mutations in potassium channels [3–5]. Subsequently, mutations in other
channels were described [6,7], even though the yield of genetic screening in these patients
remains low (less than 30%).

According to 2022 European Society of Cardiology guidelines [8], SQTS diagnosis
is recommended in case of a QTc ≤ 360 ms and one or more of the following: con-
firmed pathogenic mutation; family history of SQTS; survival from a ventricular fibril-
lation/tachycardia (VF/VT) episode in the absence of heart disease. Moreover, SQTS
diagnosis should be considered in the presence of a QTc ≤ 320 ms or ranging between
320 and 360 ms together with history of arrhythmic syncope; finally, the diagnosis may be
considered in case of QTc ranging between 320 and 360 ms and family history of SD below
the age of 40 years.

Clinical presentation of SQTS patients is highly heterogeneous; in particular, the most
frequent (up to 32%) symptomatic presentation is SCD, which is often the first clinical
manifestation of the disease [9]. As a consequence, it is extremely important to discriminate,
among asymptomatic patients, those who will experience SCD from those who will not.

Until now, arrhythmia risk stratification in asymptomatic SQTS patients has been
suboptimal, since no solid clinical or electrocardiographic parameters predicting life-
threatening arrhythmic events are currently available [7,9–12].

The use of artificial intelligence (AI) in medicine is relatively recent, if compared
with other fields (such as speech analytics); however, it is rapidly receiving widespread
interest due to high expectations in terms of improving healthcare and reducing related
costs [13–17]. In particular, the application of AI in ECG analysis has recently gained
tremendous momentum due to the fact that ECG constitutes an ideal substrate for AI
application, being a low-cost and widely adopted cardiological tool [18]. Different groups
have reported favorable results obtained with AI-based ECG analysis in several clinical
settings, such as prediction of underlying atrial fibrillation in patients presenting with
sinus rhythm [19], arterial blood pressure estimation [20–24], estimation of age and sex [25],
prediction of underlying cardiac contractile dysfunction [26] and of hyperkalemia [27],
arrhythmia classification [28–30], detection of hypertrophic cardiomyopathy [31], early
detection of cardiovascular autonomic neuropathy [32], drug development [33], and, more
generally, heartbeat classification [34–36]. The high-level discrimination capabilities of such
AI models, which have shown very good predictive performances [37–39], together with
the quickness, availability, and cost-effectiveness of the ECG, highlight the high potential of
AI-based ECG analysis. However, to our knowledge, despite its potential, AI-based ECG
analysis has never been applied to SCD risk stratification in patients with SQTS.

The purpose of this study was to analyze ECGs from SQTS patients with the aid of
different artificial intelligence systems in order to evaluate their ability to discriminate
between subjects with and without documented arrhythmic events.

The rest of the paper is organized as follows: Section 2 describes the methodology;
Section 3 presents the results, which are then discussed in Section 4; finally, Section 5 yields
the conclusions.

2. Methods
2.1. Definitions and Study Population

The study group included a total of 104 subjects (see Table 1). To our knowledge, this
is the first study to use AI for SQTS risk stratification; therefore, to avoid any bias, it was
chosen to define SQTS in a very conservative way, as proposed by our group in 2011 [9], as
the presence of a QTc interval (Bazett’s formula [40]) ≤ 340 ms. Alternatively, SQTS was
defined as a QTc interval ≤ 360 ms (or a QT/QTp ratio ≤ 88%) [9,41] associated with at
least one of the following conditions: personal history of SCD, aborted sudden death (aSD)
or syncope, or familial history of SCD or SQTS. In total, 84 patients presented with relevant
family history: 53 had family history of both SQTS and SCD, while the remaining reported
family history only of SCD (n = 11) or SQTS (n = 20).
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Table 1. Study population characteristics.

Variables N = 104
Family history, no. (%) 84 (80.8)

SCD 11 (10.6)
SQTS 20 (19.2)

SCD and SQTS 53 (51.0)
Event occurrence, no. (%) 37 (35.6)

SCD 7 (0.7)
aSD 19 (18.3)

Unexplained syncope 11 (10.6)

A major arrhythmic event was defined as the occurrence of SCD, aborted sudden death
(aSD), and/or unexplained syncope. Overall, 37 patients developed a major arrhythmic
event, both at presentation and/or during follow-up: 7 died suddenly (SCD), 19 had an
aSD, while 11 had unexplained syncope. Conversely, 67 did not experience any major
arrhythmic event.

To avoid event-related ECG alterations, the ECGs of patients with major arrhythmic
events were sampled far from the event (either before or after). In cases of SCD, since it
was not possible to acquire novel ECGs, a baseline ECG was used, recorded before the
event occurred. In cases of asymptomatic patients, a baseline ECG was selected from
those available.

2.2. Dataset Description and Features

For each patient, data regarding both personal and family history were collected
together with a 12-lead ECG with a paper speed of either 25 mm/s or 50 mm/s and a gain
of 10 mm/mV.

ECG parameters (features) were measured with 400% magnification (see Figure 1)
independently by three expert cardiologists, from the lead with the highest T-wave am-
plitude (usually ranging from V2 to V5), including (see Figure 1 right) RR interval, QT
interval, QRS duration, J point–T peak (J-Tp), T peak–T end (Tp-Te), J point–T end (J-Te),
and T-wave amplitude (Tamp). Furthermore, the following parameters were calculated:
QTp according to Rautaharju et al.’s formula [41], QT/QTp, and the values of QT, J point–T
peak, T peak–T end, and J point–T end corrected with Bazett’s formula. QT interval was
measured according to the tangential method [40]. The T peak was defined as the highest
point of the T wave. The complete feature set is summarized in Table 2.
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Table 2. Input feature set description.

Feature Description
RR (ms) Interval between two R waves

QT (ms)
Interval from the start of the QRS complex and the end of the T wave (defined using the tangential method);
this expresses global duration of ventricular electrical activity, although used to evaluate
ventricular repolarization

QTc (ms) QT interval corrected for heart rate using Bazett’s formulaQTc = QT/
√

RR
QTp (ms) QT interval predicted with Rautaharju et al.’s formulaQTp= 656/(1 + HR/100)
QRS (ms) Interval between start and end of the QRS complex; the expresses the duration of ventricular depolarization

J-Tp (ms) Interval between J point (junction between the end of the QRS complex and the beginning of the ST segment)
and the peak of the T wave; this represents the early phase of repolarization

Tp-Te (ms) Interval between the peak of the T wave and its end (defined using tangential method); this is a correlate of
global dispersion of repolarization

J-Te (ms)
Interval between J point (junction between the end of the QRS complex and the beginning of the ST segment)
and the end of the T wave (defined using the tangential method); this expresses the effective duration of
ventricular repolarization

Tamp (mV) Amplitude of T wave measured from the isoelectric line up to its peak
cJ-Tp (ms) Interval between J point and the peak of the T wave, corrected with Bazett’s formula
cTp-Te (ms) Interval between the peak of the T wave to its end, corrected with Bazett’s formula
cJ-Te (ms) Interval between J point and the end of T wave, corrected with Bazett’s formula
QT/QTp Ratio of the QT interval and the QTp

2.3. Neural Networks

Neural networks are a set of algorithms modeled on human brain functions, designed
to recognize patterns, i.e., the relationships, between the input and the output (target)
signals [42]. In this work, two complementary approaches (human-engineered features vs
automatic feature extraction) were tested to perform SQTS risk stratification. In the former
scenario, cardiologists measured the features reported in Table 2 and this set was then fed
to a shallow learning model, while in the latter case, ECG scans were fed directly to the
Vision Transformer without any prior feature extraction phase. Human-engineered features
have a direct, clear, medical explanation; for example, the R-R interval refers to the time
between two heartbeats. However, the performance of a shallow neural network is highly
affected by the input feature choice; since SQTS risk stratification is still an open problem,
feature selection is not straightforward. On the other side, Deep Learning models are able
to automatically extract the most significant features from the training input images and,
therefore, cannot be biased by human-based feature selection. However, they act as a black
box, which means they cannot provide any medical explanation of a good risk-stratification
performance. It is worth mentioning that, given the limited size of the input dataset, it is
probable that a shallow neural network would work better than Deep Learning models.

There are pros and cons in both scenarios; however, given the above, both approaches
are complementary and worthy to be explored in an experimental setting.

2.3.1. Shallow Neural Networks: Human-Engineered Features

In a standard multi-layer perceptron (MLP) configuration, the input layer is made of
a set of units (neurons), one per each feature, which work as an entry point to the neural
network. Indeed, this layer consists of passive nodes, which do not modify the input but
only transmit the information to each neuron of the subsequent layer (also known as fully
connected). The hidden layer has an arbitrary number of neurons, which depends on the
complexity of the problem at hand. Each hidden node combines the information received
from each unit of the input layer to achieve a complex representation of the phenomenon
under investigation. For this purpose, a non-linear activation function is employed, such as
the hyperbolic tangent sigmoid. Finally, the output layer yields the classification of input
data by means of the softmax function [43].

Due to the dataset size and the use of human-engineered features, it was chosen to use
a shallow learning model. For this purpose, a feed-forward fully connected neural network
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with one hidden layer was designed. Different hidden-layer sizes were tested to evaluate
the corresponding network classification performance; the best performing architecture had
30 and 1 neurons in the hidden and output layers, respectively, while the input layer size
depends on the experiment (i.e., on the size of the input feature set). Aside from achieving
superior performance, such configuration has a reduced capacity due to the lower number
of neurons in the hidden layer. This feature can help prevent overfitting, which is likely
to occur when analyzing such small datasets, threatening to invalidate the final results.
Hidden units were equipped with hyperbolic tangent sigmoid transfer function, while the
output layer used softmax to yield classification. The network training was performed
using the scaled conjugate gradient (SCG) [44] technique to minimize the cross-entropy
error function.

2.3.2. Shallow Neural Networks: Signals

A basic multi-layer perceptron was also fed with ECG signals extracted from the
two-heartbeat image crops, which are detailed in the next sections. A signal extraction
tool [45] was used, yielding 500-sample numerical signals for precordial leads (V1 to V3,
since leads V4 to V6 were too noisy to be digitized on several images). This process was
remarkably complicated and time-consuming. An example of an extracted numerical ECG
signal is shown in Figure 2.
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Figure 2. Example of a digitized ECG signal extracted from a scanned image.

Several configurations for the neural network were tested; the best-performing one had
50 neurons in the hidden layer and 1 neuron in the output layer. The same considerations
for the feature approach apply for this case.

2.3.3. Deep Learning Models: Convolutional Neural Networks

Despite being arguably surpassed by more recent models, convolutional neural net-
works (CNNs) are still the most common deep learning models for computer vision ap-
plications. CNNs apply different kernels over the input image in order to extract relevant
features [46]. Stacking several layers, each one with a different kernel in charge of capturing
a specific aspect of the picture, eventually allows the network to collect enough information
to execute tasks like classification, segmentation, object detection, and the like.

CNN architectures deployed for this work included EfficientNetV2S, MobileNetV3,
and ConvNextTiny [47–49], together with a 1-D CNN applied to numerical signals extracted
from the images. Apparently, this approach did not yield the expected results, as detailed
in the next sections.

2.3.4. Deep Learning Models: Vision Transformer and Swin Transformer

A different type of approach is offered by the Vision Transformer (or ViT), a deep
neural network designed as a “computer vision version” of the original Transformer [50,51].
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This architecture processes images by dividing them into equally sized patches, which
are subsequently embedded and fed to the transformer. The embedding process also
accounts for patch position within the image, thus retaining the positional information
of each patch. The resulting vector is then processed inside the Transformer encoder by
blocks called heads, which exploit the attention mechanism [52] to evaluate the information
associated with each patch and how these “patches of information” are related to each
other. Multiple heads perform these operations at once, allowing the network to gather
knowledge about the global context of the picture. The encoder output is then fed to a
multi-layer perceptron to classify the image on the basis of the information that the network
was able to extract from it.

The stages of the Vision Transformer in image analysis are in many ways similar to
what the human eye and brain do when looking at a picture, trying to grasp its meaning
by merging information coming from details and knowledge gathered from the global
picture, providing a tool that is able to extract features autonomously. Conversely, shallow
learning models require ECG features as inputs to the network, thus implying the necessity
to gather medical knowledge about the topic before network deployment.

A different version of the Vision Transformer, called Shifted Window Transformer (Swin
Transformer) was developed in an attempt to make the basic ViT architecture better suited
to vision tasks [53]. In fact, visual entities can undergo large variations, and image pixels
can have significant resolution when compared to words in text. In order to overcome these
issues, the Swin Transformer’s hierarchical architecture can adapt to different scales, and
its computational complexity varies linearly with image size.

This model was applied to ECG images to assess performance against the Vision Trans-
former. Both Vision and Swin Transformers were pretrained on the ImageNet database [54]
and fine-tuned on scanned ECG images. In addition, a 1-D version of the original Trans-
former encoder was applied to numerical signals extracted from the images.

2.3.5. Deep Learning Models: Capsule Neural Networks

Capsule neural networks (CapsNets) were designed to overcome some of CNNs’
main limitations, like lacking the capability to preserve spatial relationships among image
elements [55]. In fact, to mention an “infamous” example, a CNN would typically identify a
human face even when its elements—e.g., nose, mouth, eyes—were misplaced with respect
to where they were expected to lie. With the introduction of capsule modules and dynamic
routing, these neural models are able to capture the orientation of parts within an image.

2.3.6. Logistic Regression

One of the most common machine learning algorithms, logistic regression fits input
data along a sigmoid function, assigning it to different classes according to where itlies
along the function plot [56]. This classifier can be fed with images to perform classification,
and in this case, it was applied to scanned ECG images.

2.4. Data Pre-Processing

The input dataset was pre-processed to enhance network training and avoid overfitting.
In the case of the shallow learning model, to reduce noise in the data and avoid bias in

the network training, data were statistically normalized (z score) to make the network able
to intrinsically determine the importance of each input feature for classification. Indeed,
without this step, it would have been possible that some features masked some others,
preventing the network from understanding the real contribution of each input attribute to
SQTS risk stratification.

On the other hand, for the deep learning models, images were initially cropped to
remove all the elements in the bordering part that did not strictly belong to an ECG
chart. These elements are usually accompanying information (e.g., annotations) and
are considered to carry no relevant data for the given task. Yet, if not removed, their
information content could erroneously be marked as noteworthy by the model, thus
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introducing unwanted biases in classification. Figure 3 shows an example of an ECG image
before and after the initial cropping.
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Figure 3. (a) ECG image before cropping; (b) ECG image after cropping.

In order to try and isolate possible elements of the image carrying more information,
images were later cropped to contain only two heartbeats, leading to two additional ver-
sions of the dataset: one containing two-heartbeat crops for each precordial lead (e.g.,: V1
only, V2 only, and so on, see Figure 4) and another one containing all two-heartbeat crops
for all precordial leads (which are considered to hold more information than peripheral
leads with respect to SQTS diagnosis).
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Figure 4. Two-heartbeat crop of a single precordial lead from a scanned image.

Subsequently, data augmentation techniques were implemented for all deep learning
models in order to help the network achieve better results during training. In particular,
input images went through the following stages, undergoing the RandAugment method
for image augmentation [57]: cropping at center; normalizing; horizontal flipping with
a 50% probability of rotation occurring; random cropping and resizing; final resizing to
the initial size. This process was especially necessary to try to level out the strong data
imbalance between the two classes, which would otherwise lead to a penalization of the
model’s generalization capabilities.

Another approach was the extraction of numerical signals from the two-heartbeat
crops of leads V1, V2, and V3, with the purpose of trying to retrieve the information
retained in the original ECG signals that were acquired by the time the data were collected.
This was achieved by exploiting the specific tool mentioned previously in Section 2.3.2.

For all AI models, both the input and target sets were randomly divided into three
sets as follows: 70% for training, 10% to validate that the network is generalizing and to
stop training before overfitting, and the remaining 20% to independently test the network
classification performance. To ensure the input data distribution (i.e., the amount of non-
event/event cases) was preserved in the three sets, the random division was performed
separately for non-event and event subsets.

2.5. Classification Metrics

Classification accuracy was estimated by analyzing the confusion matrices and the
associated ROC curve. The former, shown in Figure 5, measures the number of times the
network correctly classified the input; in this sense, it yields an estimate of how well a single
class (negative/positive), i.e., a medical condition (non-event/event), was understood by
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the neural model. The rows and the columns correspond to the actual (i.e., target) and
predicted classes, respectively. The diagonal cells correspond to the true observations (true
positive and true negative) correctly classified, while the off-diagonal cells correspond to
the false observations (false positive and false negative) incorrectly classified.
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To better analyze the network performance, five advanced classification metrics can
be derived from the confusion matrix:

• Sensitivity, also referred to as True Positive Rate or Recall, measures the percentage of
positive examples correctly labelled as positive by the classifier. In medicine, highly
sensitive tests are generally used for screening purposes due to their ability to rule out
the disease/event occurrence.

• Specificity, also known as True Negative Rate, measures the percentage of negative
examples correctly labelled as negative by the classifier. In medicine, highly specific
tests are typically used for confirmation purposes due to their ability to rule in the
disease/event occurrence.

• Positive predictive value (PPV), also known as Precision, is the ratio between the total
number of correctly classified positive examples and the total number of predicted
positive examples. It yields the correctness achieved in positive prediction, which
means it measures the likelihood that an event will truly occur given the corresponding
network’s positive outcome.

• Negative predictive value (NPV) is the ratio between the total number of correctly
classified negative examples and the total number of predicted negative examples.
It yields the correctness achieved in negative prediction, which means it measures
the likelihood that an event will truly not occur given the corresponding network’s
negative outcome.

• Accuracy refers to the percentage of correct predictions. It is an average measure of the
network quality.

• F1 Score is the harmonic mean of PPV and sensitivity. It is better suited than accuracy
for unbalanced datasets.

Although accuracy provides a single global measure of the classification quality, it is
just a mean value of the network performances. In contrast, the area under the ROC curve
(AUC) yields a more precise measure (the higher the better) of the predictive accuracy
because it represents the probability that a randomly chosen positive sample is ranked
higher than a corresponding negative one.

3. Results

The classification ability of the proposed shallow learning model was tested on dif-
ferent input configurations, i.e., different input human-engineered feature sets, to study
which features were the most relevant to correctly discriminating subjects who will have
an event from those who will not. In this sense, the importance of the QT interval and that
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of the T wave in distinguishing the two classes (i.e., non-event/event) were investigated.
Therefore, the experiments could be grouped into five categories as per Table 3:

• QT: only the QT-related features were considered;
• Twave: only the T-wave features were considered;
• QT + Twave: both the QT-related and T-wave features were considered;
• Twave ext: T-wave features were considered together with their Bazett-corrected values;
• All: all input features were considered.

Table 3. Input dataset taxonomy.

Input Configurations

Feature QT Twave QT + Twave Twave ext All
RR (ms) X X X X
QT (ms) X X X
QTc (ms) X X X
QTp (ms) X X X

Tamp (mV) X X X X X
QRS (ms) X X X
J-Tp (ms) X X X X

Tp-Te (ms) X X X X
J-Te (ms) X X X X

cJ-Tp (ms) X X
cTp-Te (ms) X X
cJ-Te (ms) X X
QT/QTp X

To assess the network classification performances, sensitivity, specificity, PPV, NPV,
and accuracy were evaluated. The results for the test set (see Table 4), which checked the
ability of the models to perform on new and previously unseen samples, can be summarized
as follows:

• Sensitivity: this was generally low in all configurations, with a maximum value of 63.6%
in the Twave input configuration and a minimum of 36.4% in the All configuration.

• Specificity: this metric was generally high across all the different explored input
configurations, with values ranging from 85% (Twave) to 95% (QT, Twave ext, and All).

• PPV and NPV: these two metrics did not show optimal values in any of the proposed
input configurations; in particular, PPV showed better results compared with NPV
(maximum PPV: 83.3% in QT and Twave ext; maximum NPV: 81% in Twave).

• Accuracy: this evaluation metric was generally suboptimal across all the evaluated
configurations, with all the configurations showing 77.4% accuracy with only the
exception of the All input configuration, which showed slightly reduced accuracy in
the test set (74.2%).

• F1 Score: this evaluation metric was generally suboptimal across all the evaluated
configurations, with the Twave configuration reaching the highest value of 66.6 and
QT + Twave showing roughly the same performance (63.1).

Finally, Table 5 reports the AUC values for the five evaluated feature sets. While the
training-set AUCs are generally satisfying, the same cannot be said for the test-set AUCs. In
fact, as can be appreciated, AUC values drop to poor values (AUC < 0.60) or just acceptable
values (AUC 0.60–0.70) in all the configurations, except for the QT + Twave configuration,
which also presents a good AUC in the testing set (0.81).

Tables 6 and 7 summarize the results for the other approaches (signal and image
analysis). Reported metrics are the test accuracy and the AUC scores obtained by feeding
the networks with signals and single lead images. Results are quite similar, regardless of
the input type and/or the network architecture: apparently, none of those methods was
able to capture any significant difference between the two categories, interpreting every
input as a case without an SCD event.
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Table 4. Shallow network (human-engineered features) classification performances: sensitivity,
specificity, PPV, NPV, accuracy, F1 score. Values are in percentages. The highest values for each metric
are highlighted in bold.

QT Twave QT + Twave Twave ext All
Sensitivity 45.5 63.6 54.5 45.5 36.4
Specificity 95.0 85.0 90.0 95.0 95.0

PPV 83.3 70.0 75.0 83.3 80.0
NPV 76.0 81.0 78.3 76.0 73.1

Accuracy 77.4 77.4 77.4 77.4 74.2
F1 Score 58.9 66.6 63.1 58.9 50.0

Table 5. Shallow network (human-engineered features) classification performances: AUC.

QT Twave QT + Twave Twave ext All
Training Test Training Test Training Test Training Test Training Test

AUC 0.86 0.58 0.75 0.67 0.85 0.81 0.72 0.59 0.76 0.53

Table 6. Signal classification approach performances: test accuracy (percentage) and AUC.

Shallow Network 1-D CNN 1-D Transformer
Test Accuracy 63.6 64.0 64.0

AUC 0.50 0.51 0.51

Table 7. Image classification approach performances: test accuracy (percentage) and AUC.

EfficientNetV2S MobileNetV3 ConvNextTiny
Vision

Transformer
(ViT)

Swin
Transformer

Capsule
Networks

Logistic
Regression

Test Accuracy 56.2 56.2 65.6 63.3 64.1 65.0 55.0
AUC 0.47 0.47 0.55 0.52 0.50 0.51 0.45

Comparison with Classical Machine Learning Algorithms

Since the dataset is very small (104 samples and at most 13 features), the one-hidden-
layer perceptron is not guaranteed to perform better than other classical ML models.
Therefore, to better assess the quality of the proposed shallow learning model, an additional
comparison was performed with classical machine learning algorithms including logistic
regression [58], decision tree [59], boosted decision tree [59], bagged decision tree [60],
support vector machine (SVM) [59], and k-nearest neighbors (KNN) [61]. Also, a PCA
feature-selection technique [62] was employed as preprocessing, retaining 90% of the overall
explained variance, to see whether reducing the input space would imply an improvement
in the classification [63].

Table 8 yields the results for the test set, where different settings of these methods are
reported. In more detail:

• Fine tree, medium tree, coarse tree: decision trees with Gini’s diversity index as split
criterion and a maximum number of splits equal to 100, 20, 4, for fine, medium, and
coarse trees, respectively.

• Boosted decision tree: ensemble of decision trees using the AdaBoost algorithm
(maximum number of splits: 20, number of learners: 30, learning rate: 0.1).

• Bagged decision tree: ensemble of decision trees [59] using Bag algorithm (maximum
number of splits: 72, number of learners: 30).

• SVMs: support vector machines [59] with different kernel functions, i.e., linear,
quadratic, cubic, Gaussian with kernel scale equal to 0.5 (fine Gaussian), 2 (medium
Gaussian), and 8 (coarse Gaussian).
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• Fine KNN, medium KNN, coarse KNN: k-nearest neighbors algorithm using Euclidean
distance as the metric and numbers of neighbors equal to 1, 10, 100, for fine, medium,
and coarse KNN, respectively.

• Cosine KNN: k-nearest neighbor algorithm using a number of neighbors equal to
10 and cosine distance as the metric.

• Cubic KNN: k-nearest neighbor algorithm using a number of neighbors equal to
10 and Minkowsky distance as the metric.

Table 8. Accuracy classification performances of state-of-the-art ML methods for the five input
configurations, with or without PCA data preprocessing (90% of explained variance retained). Values
are in percentages. The highest values in each column are highlighted in bold.

QT Twave QT + Twave Twave ext All

No PCA PCA No PCA PCA No PCA PCA No PCA PCA No PCA PCA
Logistic Regression 58.1 64.5 64.5 67.7 58.1 64.5 58.1 64.5 61.3 64.5

Fine Tree 67.7 58.1 48.4 54.8 51.6 71.0 54.8 64.5 48.4 64.5
Medium Tree 67.7 58.1 48.4 54.8 51.6 71.0 54.8 64.5 48.4 64.5
Coarse Tree 58.1 74.2 58.1 58.1 58.1 67.7 45.2 64.5 45.2 58.1

Boosted Trees 54.8 67.7 54.8 64.5 64.5 71.0 64.5 45.2 41.9 54.8
Bagged Trees 64.5 67.7 54.8 45.2 67.7 64.5 58.1 58.1 58.1 67.7
Linear SVM 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5

Quadratic SVM 71.0 58.1 67.7 64.5 64.5 71.0 54.9 61.3 64.5 71.0
Cubic SVM 58.1 64.5 54.8 54.8 58.1 67.7 41.9 58.1 54.8 67.7

Fine Gaussian SVM 64.5 71.0 58.1 58.1 64.5 64.5 61.3 64.5 64.5 61.3
Medium Gaussian SVM 64.5 64.5 61.3 61.3 64.5 64.5 64.5 64.5 67.7 64.5
Coarse Gaussian SVM 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5

Fine KNN 64.5 67.7 64.5 58.1 51.6 58.1 61.3 54.9 51.6 61.3
Medium KNN 54.8 64.5 61.3 61.3 61.3 54.8 67.7 58.1 67.7 54.8
Coarse KNN 64.5 64.5 64.2 64.5 64.5 64.5 64.5 64.5 64.5 64.5
Cosine KNN 54.8 64.5 61.3 61.3 64.5 58.1 67.7 58.1 64.5 61.3
Cubic KNN 58.1 64.5 61.3 61.3 61.3 58.1 67.7 58.1 67.7 58.1

Despite some of these methods showing promising results (i.e., 71.0% accuracy), none
reached the same accuracy as the shallow learning (i.e., 77.4%). Only the coarse tree with
PCA arrived at 74.2% accuracy, still below that of the shallow learning. The results for PCA
behavior are not conclusive, since in some cases it improved performances, while in some
other cases it worsened them, even for the same technique; as an example, see medium tree
vs coarse tree, or quadratic SVM vs cubic SVM.

4. Discussion

SQTS is an inherited channelopathy related to increased risk of SCD. SCD is often the
first symptomatic presentation, demanding an important effort to better stratify the risk of
arrhythmia in patients who are still asymptomatic at medical evaluation. Until now, risk
stratification in asymptomatic patients has been unsatisfactory. To our knowledge, this
is the first work using an AI-based approach to analyze ECGs in patients with SQTS in
order to refine arrhythmia risk stratification. In this study, we used two different AI-based
approaches to this purpose: the first approach requires manual feature extraction from the
ECG, which is used as input for shallow learning models; other approaches directly use
the scanned ECG image or the signal extracted from it as input, automatically performing
feature extraction. The main findings are summarized in the following.

Shallow learning models based on different configurations of manually extracted
(human-engineered) ECG features achieved suboptimal performance, in particular regard-
ing the NPV, which never exceeded 81%; this is clinically relevant, since it means 2 out of
10 patients with an event were incorrectly classified in the non-event group, potentially
leading to under-treatment.
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All other approaches did not seem to grasp any significant difference between the
two classes and ended up considering each input as a case with no SCD event. There are
several possible factors that might have influenced such results:

• Scanned ECG images were extremely different from each other, in terms of resolution,
format, color, and background grid color, and most of them suffered from noisy,
poor quality; this hindered the possibility of developing a consistent preprocessing
procedure that could work efficiently on all dataset images.

• Dataset cardinality was particularly low; this could represent an obstacle for some of
the deep learning models chosen, for both the image and the signal approaches. In
fact, such architectures often contain a vast number of parameters, and are usually
trained on very large datasets.

• Image cropping was performed manually, both for lead isolation and signal digitiza-
tion; this might have introduced some errors due to the lack of specific methods and
criteria for accurate and precise definition of the cropping area.

• The image and signal approaches were conceived to be specular to the feature ap-
proach: tested models were supposed to automatically extract relevant features in an
unbiased manner, potentially uncovering aspects of the ECG chart that can enrich the
knowledge about SQTS and unveiling elements that can hint at an increased risk of an
SCD event. Therefore, this methodology cannot leverage any a priori information that
could steer the feature search towards a specific direction.

These results suggest that AI-based ECG analysis, in particular using the features
approach, might help in refining risk stratification in SQTS patients, supporting clinical
decision making in a context where incorrect risk appraisal might translate into the death
of young and otherwise healthy individuals. A refined risk stratification means that the
clinician may offer the patients the most appropriate treatment to prevent SCD, including
cardiac devices. Implantable cardioverter defibrillators (ICDs) still represent the mainstay
of treatment for patients with SQTS who are survivors of SCD or have documented sponta-
neous sustained VT [64], despite significant risk of device-related complications, such as
inappropriate shocks (33%), device-related infection (10%), lead failure and fracture (21%),
and psychological distress (3.5%) [65,66]. In this sense, better risk stratification might lead
not only to earlier adoption of life-saving therapy for patients deemed at higher risk of
SCD but also to avoiding implantation of ICDs in low-risk patients, potentially sparing the
risk of device-related complications.

Study Limits

The present work has some limitations, which need to be addressed. First, we acknowl-
edge that the number of patients was limited; however, it should be borne in mind that
SQTS is a rare disease, and this constitutes the widest cohort of SQTS patients published
so far. Given the limited quantity of ECGSs, it was not possible to refine the analysis into
different subgroups, since the results would not have been significant from a statistical
point of view.

For the shallow learning model, ECG features were not automatically extracted, but
manually calculated by three experienced cardiologists (albeit with 400% magnification to
minimize measurement errors), which is prone to errors in manual measurement. Moreover,
the study suffers from an implicit bias in terms of the selected features set: although the
thirteen features were selected based on the current medical knowledge, they may not be
the most relevant to perform SQTS risk stratification. Further studies with different feature
sets should be considered. Future works will investigate different methods of feature
selection, e.g., L1 regularization, and deepen the relationships among the features and the
classification performances.

Finally, to increase generalizability and better assess their reliability, the results pre-
sented in this study will be verified in an external SQTS population originating from
different regions or medical centers.
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5. Conclusions

Short QT syndrome is an inherited channelopathy linked with an increased risk of
SCD in young and otherwise healthy individuals. Clinical presentation of patients affected
by SQTS is highly heterogeneous, with SCD often being the first clinical presentation, and
risk stratification is particularly challenging in asymptomatic subjects.

The analysis of ECGs from SQTS patients with the aid of neural networks shows
promising results in terms of discriminating between subjects with and without docu-
mented arrhythmic events. This could pave the way for refined ECG-based risk stratifica-
tion in this group of patients, potentially helping in saving the lives of young and otherwise
healthy individuals, such as in the initial study performed on Brugada syndrome [59].

Future studies should focus on automatic calculation of the features from digital ECG
recordings (either using raw digital ECG data or digitized data from paper-based ECGs).
This will guarantee increased reproducibility compared with manual extraction of relevant
ECG features. In addition, other deep learning models assessing the whole raw digital ECG
signal and/or ECG images should also be explored and should be compared with other
architectures. As an example, images will be converted to the frequency domain to apply
frequency-domain filters or Wiener filters for noise reduction, so that it will be possible
to provide cleaner input to vision-based deep learning models. In parallel, authors will
continue to collect SQTS ECGs of subjects who have developed an event, to increase the
cardinality of the dataset and further validate the proposed approach; for this purpose, it
will probably be necessary to include different cohorts originating from different regions
and medical centers. Finally, data augmentation by means of GANs will be explored to
increase the quantity of ECG images and, thus, the classification performance.
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