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Abstract—This paper proposes a direct method for quantitative
real-time imaging based on a nonlinear correction of the approx-
imate linearized imaging kernel. The correction process relies
on a pseudo-Rytov approximation employing the ratio between
the total and incident fields in the scattering model, which can
be estimated analytically. Unlike traditional iterative algorithms,
there is no need for multiple computations of the direct scattering
model, gaining computational speed and robustness to numerical
inaccuracies. The procedure consists of two steps. First, a fast
direct inversion algorithm based on the Born approximation
provides the initial guess for the permittivity distribution; this
study employs the Truncated Singular Value Decomposition
(TSVD) and an in-house finite element-based solver to compute
the imaging operator. Second, the field correction factor is
transferred onto the object’s permittivity to enhance its quanti-
tative accuracy. The proposal viability is verified in 2D synthetic
experiments at microwave frequencies, verifying improvements
in the reconstructed unknown permittivity.

Index Terms—Born approximation, electromagnetic scattering,
microwave imaging, quantitative imaging, Rytov approximation.

I. INTRODUCTION

Microwave and millimeter-wave imaging explore various
solutions for inspecting the electrical properties of optically
opaque objects. The applications range from security screening
[1] and packaged food control [2] to medical imaging, as
in the case of breast tumor early detection [3] and brain
stroke diagnosis [4]. These technologies often target real-time
performance and quantitative outcomes, requiring optimized
imaging strategies to balance computational speed and infor-
mative potential.

The direct inversion algorithms operate through linearized
models of scattering, such as the one in the Born or Rytov
approximations, resulting in fast reconstruction time [5]. The
most common examples are radar-based methodologies, which
capture only qualitative information about the dielectric con-
trast distribution, i.e., its shape and location [5]–[7]. Aiming
to map the actual permittivity value, scattered-power mapping
(SPM) and quantitative microwave holography (QMH) pro-
pose to add physical information measuring the system point
spread function (PSF), i.e., the response to an electrically small
scatterer of known volume and permittivity [8]–[10].

In contrast, the quantitative nonlinear methods employ high
computational power in an iterative update of the permittiv-
ity estimate along with an update of the forward scattering

model, where the field solution is obtained via electromagnetic
(EM) simulations. In this process, difficulties may arise from
convergence to unwanted local minima, which may depend
on a priori information about the scatterer. Ensuring the
accuracy of such information is challenging, especially in
the biomedical context, where tissue complexity and vari-
ability between individuals preclude ideal modeling of the
EM scenario. Traditional examples are the contrast source
inversion (CSI) [11], [12], the distorted Born iterative methods
(DBIM) [13], and the multistage procedures in [14]–[16]. To
tackle the numerical burden, some authors have exploited high-
speed parallel computing [17], but this is not always feasible.
Recently, researchers have attempted faster solutions applying
an optimized 2D finite element solver along with a suitably
designed microwave tomography system [18]. In [19], the
logarithmic transformation of the microwave algorithm leads
to robust priors-independent convergence.

This work treats the nonlinearity of the EM problem in a di-
rect inversion procedure based on Born’s approximation (BA).
In particular, it defines a correction factor that acts directly on
the final output image to recover quantitative accuracy. The
contribution stems from the statement of the ratio between the
approximated and the actual total internal field, inspired by the
exponential relationship in Rytov’s approximation (RA) [5]. It
comes down to a single-stage solution relative to the initial
linear guess, avoiding the computational burden of iterative
updates of the total field. Moreover, an analytical solution is
available when the background Green function is known.

II. FORMULATION

The procedure has two phases. First, a linear scattering
model for fast inversion is applied, obtaining the initial guess,
∆ϵ0, for the permittivity distribution. Then, the correction
factor is derived and applied to obtain the enhanced image,
compensating for the errors stemming from the BA of the
total internal field.

The initial linearization relies on the zero-order BA, assum-
ing that the dielectric contrast source is small enough to leave
almost unperturbed the background field. However, in many
practical cases, BA only partially reflects the actual imaging
scenario, leading to significant quantitative errors and image
artifacts, especially within the regions where the differences
between total and incident field distributions are large [5].



The ill-posed linear problem needs to be inverted in a regu-
larized fashion. Here, the truncated singular value decomposi-
tion (TSVD) scheme [20] is adopted. It obtains the unknown
dielectric contrast function through the explicit formula:

∆ε0 =

Lt∑
n=1

1

σn
⟨∆S, un⟩ vn, (1)

where σn, [un], and [vn] are the singular values, right and left
singular vectors derived from the SVD of the discretized linear
operator, respectively, and Lt is the regularizing threshold.

As stated in [5], the scattering model in the frequency
domain is written in terms of the measured scattered response
Ssc as

Ssc
ζ =

j ω ε0
2 aζ

∫∫∫
VS

∆ε(r′)Einc
Rx (r

′, ω) ·Etot
Tx(r

′, ω)dr′, (2)

where ζ indicates the response type, which reflects the
transmitting and receiving antenna indices (i.e., Tx,Rx =
1, ..., Np); j is the imaginary unit; ε0 is thepermittivity of free
space; ω = 2πf is the angular frequency; aζ = aRxaTx is the
incoming root-power waves product. In the integral, ∆ε is the
relative permittivity contrast, Einc

Rx (r
′, ω) = Einc(r′, rRx, ω)

is the incident field due to the Rx antenna, and Etot
Tx(r

′, ω) =
Etot(r′, rTx, ω) is the total field due to the Tx antenna,
evaluated in each point r′ in the imaging domain VS .

Let us express the total field as

Etot
Tx(r

′, ω) ≈ Einc
Tx (r

′, ω)ψTx(r
′, ω), (3)

where ψTx(r
′, ω) is a correction factor that can be transferred

to the contrast permittivity distribution as follows:

Ssc
ζ =

j ω ε0
2 aζ

∫∫∫
VS

∆ε(r′)ψTx(r
′, ω)Einc

Rx (r
′, ω)·

Einc
Tx (r

′, ω)dr′.

(4)

Thus, given the initial direct solution, ∆ε(0), as previously
discussed, and provided that we know ψTx(r

′, ω), the contrast
can be obtained as

∆ε(r′) = ∆ε(0)(r′)/ψTx(r
′, ω). (5)

Here, it is worth noticing that ψTx(r
′, ω) is an implicit

function of ∆ε given its dependence on Etot
Tx(r

′, ω). Therefore,
(5) is, in principle, nonlinear in ∆ε. Moreover, the correction
factor depends on rTx, whereas ∆ε does not. Therefore, we
need a unique optimal solution ψo(r

′, ω), which ensures the
fulfillment of (5) for all Tx.

In order to verify if such a solution is available, we can
investigate the exact ψ in simulation, computing the ratio of
the total and incident fields in (3). Section III discusses the
results of this analysis. In reality, we do not know the total field
within the domain, in which case an analytical approximation
of the total-to-incident field ratio can be pursued.

Adhering to the proposed corrected linear model, it can be
shown that

ψTx(r
′, ω) = 1 + k20(ω)

∫∫∫
VS

∆ε(r′′)ψTx(r
′′, ω)

RTx(r
′, r′′, ω)Gb(r

′, r′′, ω)dr′′ ,

(6)

Fig. 1. Setup of the numerical experiment. The circles indicate the location
of the probes surrounding the imaging domain, Vs. All dimensions are in cm.

where the function RTx indicates the scalar ratio between the
incident fields at r′ (observation point) and r′′ (source point).
Considering a uniform background, the following approxima-
tion is employed:

RTx(r
′, r′′, ω) ≈ Gb(r

′′ − rTx, ω)

Gb(r′ − rTx, ω)
, (7)

which relies on the assumption that the Tx antenna pattern
cancels with no impact on the ratio. As a result, if Gb is
known, (6) leads to a simple direct solution for ψTx. Then
a strategy for its optimal estimate can be applied. A possible
approach is indicated in the case study reported in Section III.

III. NUMERICAL RESULTS

A. Experiment design

The numerical experiment is designed through a 2D EM
numerical model. The geometry is depicted in Fig. 1, consist-
ing of a cross-shaped scatterer inside a uniform background,
having complex relative permittivity εs = 63.4 − j28.3 and
εb = 45.4 − j13.9, respectively, and a maximum size l = 4
cm. These example parameters are intended to represent brain
hemorrhage imaging applications, as the one addressed by the
authors in [21], which deals with the detection of small blood
pooling (εs) inside the healthy brain tissue (εb).

The scene is sequentially illuminated through 40 point-like
sources at 1.4 GHz. An in-house 2D solver based on the finite
element method (FEM) computes the 40×40 scattering matrix
[22]. It also provides the input to the TSVD imaging algorithm,
and the electric field distributions inside the domain Vs, in the
background alone (incident field) and in the presence of the
scatterer (total field).

B. Nonlinear correction results

From (3), it is possible to compute the distribution of ψo

in Vs, usually not available in experimental data. Here, the
optimal solution has been selected as the averaged ψ among
all the Tx:

ψo(r
′, ω) =

1

Np

Np∑
i=1

ψi(r
′, ω). (8)



This strategy assumes that all contributions are equally
weighted and summed for each point r′, consistent with
the imaging inversion scheme, but alternative ways may be
investigated. Figure 2 shows the magnitude and phase of ψ0.
As expected, the ratio of the total and incident field values
increases inside the dielectric contrast region and the nearby
areas, where the scattered field is not negligible.

Then, the correction can be applied in the imaging process
according to (5). As a reference, Fig. 3(a) shows the actual
permittivity contrast of the imaged object, where the scatterer’s
contrast has real and imaginary parts equal to 18 and -14.4,
respectively. Figure 3(b) shows the ideal TSVD reconstruction,
which employs the actual integral kernel Einc

Rx ·Etot
Tx. The result

is obtained with a threshold Lt = −50 dB, and it represents
the best possible solution with this TSVD reconstruction
algorithm. This result, too, can serve as a reference.

Finally, the initial guess ∆ε0 and its corrected counterpart
∆εcorr are shown in Fig. 4. It is evident, that the corrected
reconstructed permittivity is very similar to the ideal TSVD
reconstruction, where the actual total internal field has been
employed.

To quantify the improvement due to the proposed correction
method, the root-mean-square error of the retrieved permittiv-
ity contrasts is calculated as

RMSE =

√√√√ 1

M

M∑
m=1

[∆ϵx(rm)−∆ϵtgt(rm)]2, (9)

where M is the number of pixels and the variable ∆ϵx is the
real or imaginary permittivity contrast of the studied cases (i.e.,
the initial guess, the correction, or the ideal case), compared to
the target case (ϵtgt). These results are listed in Table I. They
confirm that a quantitative improvement is possible, with a
major effect on the real part.

(a) (b)

Fig. 2. (a) Magnitude and (b) phase of the correction factor, ψo.

TABLE I
RMSE WITH RESPECT TO THE TARGET PERMITTIVITY CONTRAST

Real part Imaginary part

∆ε0 2.40 0.94

∆εcorr 1.11 1.10

∆εideal 0.80 0.83

Fig. 3. (a) Real (left) and imaginary (right) parts of the target permittivity
contrast and (b) the corresponding ideal reconstruction using TSVD inversion
scheme. Axis dimensions are in cm.

Fig. 4. (a) Real (left) and imaginary (right) parts of the initial guess of the
TSVD algorithm employing the Born approximation and (b) the reconstruction
obtained by applying ψo correction. Axis dimensions are in cm.



IV. CONCLUSION AND PERSPECTIVES

This work addresses an innovative strategy in real-time EM
inverse scattering, aiming to recover quantitative information
lost through the direct inversion process using a correc-
tion variable that accounts for nonlinearities. Furthermore,
it proposes an original approach to an optimal simulation-
free direct solution via analytical derivation of the internal
fields, since these fields are usually not available in real-
life applications such as microwave imaging. The numerical
validation demonstrates the possibility of recovering signif-
icant quantitative information, and the relative improvement
is expected to increase when the Born accuracy limitation is
strongly violated.

Future work is devoted to completing the development of an
explicit analytical formulation of the designed procedure and
testing it for efficient fast inversion. Moreover, it is planned
to extend the analysis to the 3D configuration in view of the
validation in real imaging applications.
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