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Abstract: Recently, the agriconstruction machinery sector has been involved in a great technological
revolution. The reasons that may explain this are strictly connected to the mitigation of climate
change. At the same time, there is a necessity to ensure an adequate production level in order to
meet the increasing food demand due to the current population growth trend. In this context, the
development of autonomously driven agricultural vehicles is one of the areas on which tractor
manufacturers and academics are focusing. The fundamental prerequisite for an autonomous driving
vehicle is the development of an appropriate motion strategy. Hence, the vehicle will be able to follow
predetermined routes, accomplishing its missions. The aim of this study was the development of
path-planning and path-following algorithms for an agricultural four-whee differential-drive vehicle
operating in vineyard/orchard environments. The algorithms were completely developed within
the MATLAB software environment. After a brief description of the geometrical characteristics of
the vehicle, a parametric process to build a virtual orchard environment is proposed. Then, the
functional principles of the autonomous driving algorithms are shown. Finally, the algorithms are
tested, varying their main tuning parameters, and an indicator to quantify the algorithms’ efficiency,
named relative accuracy, is defined. The results obtained show the strong dependence between the
relative accuracy and lookahead distance value assigned to the rover. Furthermore, an analysis of
rover positioning errors was performed. The results in this case show a lower influence of the location
error when the accuracy of the positioning device is within 2 cm.

Keywords: autonomous driving; agricultural robot; path following; autonomous vehicles; path
planning; orchard; vineyard

1. Introduction

The agricultural sector plays a fundamental role in modern economics. According
to the Food and Agriculture Organization of the United Nations (FAO), almost one-third of
the worldwide population is involved in the primary sector, generating an income of USD
3.5 trillion globally [1]. The importance of this sector is expected to grow, since the world-
wide population growth trend is quite remarkable: indeed, estimates indicate that the
global population will reach almost 10 billion people by 2050 [2]. Thus, it will be necessary
to ensure that the increasing food demand is met. Another important topic for the agricul-
tural sector is represented by climate change [3,4]. There is a double relationship between
climate change and agriculture. On the one hand, the agricultural sector is one of the main
actors in terms of greenhouse gas emissions: indeed, agriculture is responsible for 11%
of the overall anthropogenic GHG emissions [5] (with peaks of 35% for developing coun-
tries) [6–9]. On the other hand, the effects of climate change are causing extreme weather
and unpredictable weather events, which may affect future crop production [10,11]. Last
but not least, the decline in the general agri-worker population should also be taken into
consideration [12].
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For all of these reasons, the agricultural machinery industry is at the heart of an authen-
tic industrial revolution. The aim of this revolution is to increase productivity [13], both in
terms of quality and quantity, efficiently. In this sense, the innovation attempts conducted
by the academic and the industrial world can be explained. They are trying to pursue
sustainability and, at the same time, increase efficiency through studying alternative tractor
powertrains [14–16] and propellants [17–20] and the design of automated platforms [21,22].
One of the outputs, which can provide all the aforementioned features, is agricultural
robots [23,24].

Agricultural robots are smart and automated vehicles designed to execute different
operations, from soil preparation to harvesting, spraying applications, and monitoring field
health status [25,26]. The benefits linked with the diffusion of agricultural robots involve
several areas: environment, politics, and society [27]. Indeed, autonomous agricultural
vehicles can lead to the better management of the use of pesticides and water [27,28].
Agricultural rovers are often equipped with electric powertrains and are lighter than the
traditional forms of machinery, reducing greenhouse gas emissions and, at the same time,
soil compaction [29]. The practice of precision farming enabled by agricultural robots can
help famers to improve their resource management, such as fertilizer use or harvesting time,
thus increasing crop productivity and quality [29,30]. One key element of an autonomous
agricultural robot is its autonomous driving algorithm, through which the vehicle can make
decisions in terms of the best strategy that it must adopt in order to reach a predetermined
goal point [31].

The pillars of an autonomous driving algorithm are the path-planning and path-
following phases. Autonomous driving applications for agricultural robots have been
relatively widely investigated in the literature. In the study presented by Han et al. [32]
on the performance of autonomous sprayers in orchards, the path planning phase was
conducted by manually driving the vehicle, which followed the planned route by regulating
its right and left crawler speeds. Ko et al. [33] developed a testing platform for precision
spraying applications. In this case, the planning strategy was based on tracking line
recognition, whereas the path-following algorithm was based on image-detection criteria.
Many works focused only on the path-planning phase [34]. Han et al. [35] proposed
an optimized path-planning strategy for a fleet of multiple unmanned tractors in peach
orchards in order to improve the operating time, whereas Hameed developed a path-
planning algorithm to improve fuel consumption [36]. Furthermore, some studies have
applied planning strategies that take into account the condition of the soil [37,38] or
robot dynamics [39]. Other studies, meanwhile, have focused their attention on the path-
following stage [40,41]. Huang et al. developed an optimization control method for
the headland turning management of front-wheel-steering vehicles using a pure pursuit-
based strategy [42]. Peng et al. proposed a strategy for a four-independent-wheel-drive
agricultural vehicle based on a non-lookahead strategy [43].

In the existing literature, according to the authors’ knowledge, few papers have in-
vestigated the motion strategy of an autonomously driven agricultural rover in its entirety.
Indeed, some of them have focused only on one of the key elements of an autonomous driv-
ing algorithm. Considering the agricultural rover sector, very few studies have dealt with
the autonomous driving strategy for a four-wheel differential-drive rover. Furthermore,
the range of the applicability of this study is one of its most interesting elements, since it
provides a parametric motion planning strategy, and thus, it can be used for different types
of crops and vehicles.

The aim of this work was to develop an autonomous driving algorithm for a four-
wheel differential-drive agricultural robot operating in orchards/vineyards. The algorithm
is based on a lookahead methodology and was completely developed within the MATLAB
environment. After a brief description of the geometrical characteristics of the vehicle, a
parametric process to build a virtual orchard environment is described. Then, the motion
planning process and the path-following algorithm inspired from the pure pursuit controller
are exposed. Finally, the results section shows the efficiency of the algorithm with respect



AgriEngineering 2024, 6 1939

to the main parameters, defining a performance indicator to quantify the effects of the
parameters combination. The efficiency of the algorithm is guaranteed, also introducing
a random location error. However, in this last case, the use of a threshold value on the
minimum steering angle is recommended.

2. Materials and Methods

In this section, the developed autonomous driving algorithm is explained. The model
was completely developed within the MATLAB (R2021b) software environment. Starting
from the kinematic model adopted for the rover, the creation of a parametric operative
virtual environment, for testing the algorithm, is shown. Then, the global path-planning
and path-following algorithms are illustrated.

2.1. Vehicle Kinematic Model

First of all, before starting with the description of the autonomous driving algorithm
developed in this study, it is appropriate to proceed with an outline of the geometrical
and kinematic features of the rover. The vehicle considered in this article consists of a
small-sized rover (Figure 1a). This kind of agricultural robot usually does not exceed 1.5 m
in width and length [44], and it is used for monitoring operations such as disease and insect
detection or plant health status tracking [45,46]. Considering the top view, the rover can be
schematically represented as a rectangle of 1 × 1.5 m (width x wheelbase), equipped with a
fixed-wheel drive (tire radius equal to 0.4 m) on every corner of the chassis. This means
that each wheel speed can be controlled in an independent way with respect to the others.
The fixed-wheel drive prevents modeling the steering behavior of the vehicle as a classic
agricultural tractor, which is characterized by a front steering system and describable with
a bicycle kinematic model. In this case, the vehicle must handle the speed of each wheel
in order to turn corners. In this way, the rover satisfies the longitudinal and yaw speed
requirements, emulating the functioning of a vehicle differential. The main advantage of
this kind of vehicle is the possibility to consider its minimum turning radius equal to zero,
whereas its disadvantage is primarily related to a higher lateral stress on the tires during
turning. Furthermore, the rover is simpler from a mechanical point of view, due to the
absence of a physical steering system.
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The aim of this work is to demonstrate the reliability and the efficiency of the developed
control logic. As a consequence, this study considers only the kinematic behavior of the
agricultural robot. Given this premise, the following assumptions can be made:

• The vehicle consists of a rigid body; thus, all the effects related to its deformability can
be ignored.

• The algorithm was developed considering a 2-D operative environment since the rover
belongs to the category of land vehicles; hence, vertical movement is neglectable.

• The 2-D environment implies that the state of the vehicle is fully defined with
three degrees of freedom: two translational (longitudinal and lateral movements), and
one rotational (yaw) around the axis perpendicular to the movement plane.

• The 2-D environment also implies that the rolling and pitch angles can be ignored.
• The wheel–ground contact is in a condition of pure rolling.
• Lateral slip can be ignored because the rover working speed is quite low; thus, almost

all the effects related to vehicle dynamics are neglectable.

The kinematic model, used in this work, aims to define the relationships among the
operative conditions that the vehicle should satisfy (longitudinal and yaw speeds), and
the operative parameters that allow the vehicle to achieve that specific condition (angular
speeds of each wheel). Based on the hypothesis provided before, the rover object of study
can be represented as a symmetrical two-wheel independent drive vehicle (Figure 1b).

The equations that rule the kinematic model adopted are the same described in [47]:

ωr = v·1
r
+

.
θ· l

r
(1)

ωl = v·1
r
−

.
θ· l

r
(2)

where:

• ωr and ωl are the angular velocities of the right and left wheels, respectively.
• v is the longitudinal speed of the vehicle.

•
.
θ is the yaw speed of the vehicle.

• r is the wheel radius fixed at 0.2 m.
• l is the track width of the rover equal to 1 m.

2.2. Virtual Operative Environment Definition

Once the kinematic model is defined, it is necessary to build the virtual environment
in which the rover must operate. As previously stated, the aim of this work is to provide an
autonomous driving algorithm for a 4-wheel differential-drive vehicle operating in agricul-
tural orchard cultivations. For this reason, the developed map consists of a bidimensional
orchard field, characterized by a certain number of fruit plant rows equally distributed.
Furthermore, a parametric map-building process was developed in order to enhance the
field of application of this study. Indeed, it should be noted that orchard cultivations can
vary a lot with respect to one another. As a consequence, the number and the dimensions
of the fruit plant rows, as well the size of the fields, can be very different depending on the
specific cultivation considered. The map, generated at the end of the building process, is
substantially a matrix in which every element can have two different values:

• 1 in cases of the presence of an obstacle that the vehicle must avoid.
• 0 in cases of a free path.

The first step of the map generation process consists of the set-up of some parameters,
shown in Figure 2a, as follows:

• The number of fruit plants in a row n.
• The width w and length l of each fruit plant row, expressed in meters.
• The width L1 and length L2 of the orchard field, expressed in meters.
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• The dimensional value Ys to which each fruit plant row must start, expressed
in meters.

• The value of mesh refinement m, defined as the number of matrix elements contained
for each square meter.

The way through which the values are assigned can be explained with the following
block diagram (Figure 2b).

AgriEngineering 2024, 6 1941 
 

 

• The value of mesh refinement m, defined as the number of matrix elements contained 
for each square meter. 
The way through which the values are assigned can be explained with the following 

block diagram (Figure 2b). 

 
Figure 2. (a) Setting the parameters of the map generation algorithm; (b) map generation parametri-
zation process. 

Then, two other variables can be defined once the map parameters are determined: 
• The number of free rows N, defined as: 

N = n +1 (3)

• The recurring step of the fruit plant rows P, defined as: 

P = L1/N  (4)

• The occupied row area A, defined as the product between w and l. 
In this way, different configurations of orchards can be easily obtained (Figure 3). 

Figure 2. (a) Setting the parameters of the map generation algorithm; (b) map generation parametriza-
tion process.

Then, two other variables can be defined once the map parameters are determined:

• The number of free rows N, defined as:

N = n +1 (3)

• The recurring step of the fruit plant rows P, defined as:

P = L1/N (4)

• The occupied row area A, defined as the product between w and l.

In this way, different configurations of orchards can be easily obtained (Figure 3).
AgriEngineering 2024, 6 1942 
 

 

 
Figure 3. Examples of different configurations of orchards obtained with the parametric model. 

In order to illustrate the path-planning and path-following algorithms of this work, 
the parameters considered for the map (Figure 4) were: 
• n is equal to 9; hence, N is equal to 10. 
• w is equal to 2 m, and l is equal to 80 m. 
• L1 and L2 are equal to 100 m; hence, P is equal to 10. 
• Ys is equal to 10 m. 

 
Figure 4. Map configuration for path following and path planning used in this study. 

2.3. Global Path Planning 
Once the virtual operative environment is built, the path that the vehicle must follow 

to accomplish its mission must be defined. This section of the autonomous driving algo-
rithm is called global path planning since it considers the entire vehicle mission. The result 
of the motion planning process is the creation of a trajectory that allows for avoiding the 

Figure 3. Examples of different configurations of orchards obtained with the parametric model.



AgriEngineering 2024, 6 1942

In order to illustrate the path-planning and path-following algorithms of this work,
the parameters considered for the map (Figure 4) were:

• n is equal to 9; hence, N is equal to 10.
• w is equal to 2 m, and l is equal to 80 m.
• L1 and L2 are equal to 100 m; hence, P is equal to 10.
• Ys is equal to 10 m.
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2.3. Global Path Planning

Once the virtual operative environment is built, the path that the vehicle must follow to
accomplish its mission must be defined. This section of the autonomous driving algorithm
is called global path planning since it considers the entire vehicle mission. The result of the
motion planning process is the creation of a trajectory that allows for avoiding the known
obstacles present on the map. On the contrary, the overcoming of unknown obstacles
is not included. There are several methods for solving the motion planning problem,
such as search-based or sample-based algorithms [48,49]. For this study, a path-planning
algorithm based on Dubins path theory was used [50,51]. According to this methodology,
the trajectory of an object can be traced with a combination of segments and circular arcs,
given a start and an arrival point and their relative orientation on the map. This technique
is particularly useful in the case of repetitive and structured operative environments, such
as an orchard. In this way, the planned path can be obtained with a reduced computational
cost. Indeed, in the case of an orchard, the vehicle usually executes two kinds of maneuvers:

• Traveling in a straight line along the fruit plant rows.
• Executing a hairpin turn in order to exit from a free row and enter the next one.

The motion planning problem has been solved parametrically even in this case. In
this way the path that the vehicle must follow can be generated independently from the
orchard considered. The adopted strategy consists of defining a series of checkpoints, and,
through their interpolation, the desired trajectory can be obtained. First of all, the start and
goal points are manually positioned, defining their relative coordinates and the vehicle
orientation on the map. Then, 2 checkpoints are positioned at the beginning and end of
each free row (see Figure 2a) in order to define the straight path that the vehicle has to travel.
The hairpin turn is obtained defining a three-point arc, whose apex is located alternatively
at the head or at the tail of each fruit plant row. The last phase of the path-planning process
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consists of the definition of the number of waypoints through which the checkpoints have
to be interpolated. The number of interpolating points is arbitrarily defined, assuming a
certain distance between two consecutive waypoints, namely the waypoint pitch (WPP).
The results obtainable with different configurations of orchards are shown in Figure 5.
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For the map configuration considered in this study (Figure 4), the results are shown in
Figure 6.
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2.4. Path-Following Algorithm

The obtained waypoints represent the results of the path-planning process described
in the previous subsection. They consist of a series of X-Y coordinates that the vehicle must
follow to cover the predetermined path, grouped in a 2-D element vector. The output of the
path-planning process represents the input of the path-following phase. The path-following
control logic is structured as shown in Figure 7.

AgriEngineering 2024, 6 1944 
 

 

 
Figure 6. Path-planned trajectories obtained for the orchard configuration used in this study. The 
red stars on the map represent the checkpoints. 

2.4. Path-Following Algorithm 
The obtained waypoints represent the results of the path-planning process described 

in the previous subsection. They consist of a series of X-Y coordinates that the vehicle must 
follow to cover the predetermined path, grouped in a 2-D element vector. The output of 
the path-planning process represents the input of the path-following phase. The path-fol-
lowing control logic is structured as shown in Figure 7. 

 
Figure 7. Path-planning control logic. 

Given the waypoint and the current position of the rover, in each cycle, the path-
following algorithm calculates the longitudinal and yaw speed necessary to reach the 
nearest waypoint. Then, both the speed terms are converted into the left and right wheel 
angular speed values, according to Equations (1) and (2). Lastly, the current position is 
updated, and the cycle repeats itself with the new current position input until the goal 
point is reached. 

The path-following algorithm used in this work is inspired by the Pure Pursuit Con-
troller [52,53]. According to this method, the aim is to identify the curvature that allows 
the vehicle to move from the start to the goal point. In this case, the scope is to determine 
the vehicle speed, intended as the longitudinal and yaw speeds, necessary for the path 
determined in the previous section. The algorithm is essentially made up of 2 phases: 
1. Definition of a “local” goal point (LGP). 
2. Definition of the commands that must be imposed in a way that the rover can reach 

the goal point calculated in the previous step. 

Figure 7. Path-planning control logic.

Given the waypoint and the current position of the rover, in each cycle, the path-
following algorithm calculates the longitudinal and yaw speed necessary to reach the
nearest waypoint. Then, both the speed terms are converted into the left and right wheel
angular speed values, according to Equations (1) and (2). Lastly, the current position is
updated, and the cycle repeats itself with the new current position input until the goal
point is reached.

The path-following algorithm used in this work is inspired by the Pure Pursuit Con-
troller [52,53]. According to this method, the aim is to identify the curvature that allows
the vehicle to move from the start to the goal point. In this case, the scope is to determine
the vehicle speed, intended as the longitudinal and yaw speeds, necessary for the path
determined in the previous section. The algorithm is essentially made up of 2 phases:

1. Definition of a “local” goal point (LGP).
2. Definition of the commands that must be imposed in a way that the rover can reach

the goal point calculated in the previous step.

Concerning the first point, the algorithm identifies a local goal point at a certain
distance from the actual rover position, called the lookahead distance (LD). To find the
target point, the path-following strategy creates a circumference centered in the actual
vehicle position, with a radius equal to LD (Figure 8).

The intersections between the circumference and the segments, which link the different
waypoints, identify the potential local goal point. If more valid LGPs are defined, then
the algorithm chooses the most appropriate one in order to follow the planned path. The
way the control logic selects the most appropriate LGP is described in the next paragraphs.
The LGP identification procedure repeats itself at each cycle until the final arrival point
is reached. The correct definition of the lookahead distance plays a very important role
for the successful execution of the rover mission. Indeed, if the LD value is too low, the
vehicle may start to oscillate around the waypoints, whereas a high value of LD may trigger
corner-cutting phenomena (Figure 9). Therefore, it is necessary to find the right balance to
follow the planned path in the most efficient way.
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Given two consecutive waypoints, P1 and P2, four situations can be generated by the
interaction between the circumference and the straight line defined by P1 and P2:

1. No intersections (Figure 10a).
2. Single or multiple intersections with the straight line, but the points found are not

included between P1 and P2 (Figure 10b); this case is interpreted by the algorithm as
the previous one.

3. Single intersection: The point found corresponds to the local goal point pursued by
the rover (Figure 10c).

4. Multiple intersections between P1 and P2: In this case, the algorithm chooses the
nearest point to the second waypoint (Figure 10d).
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Furthermore, two other measures must be adopted in order to make the algorithm
more reliable. The first one is needed when the algorithm identifies several valid local goal
points between more than two consecutive waypoints. This situation may occur when the
rover drives tight or U-shaped corners (Figure 11).
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In this situation, the vehicle selects as a local goal point the one identified in the
segment defined by the first two waypoints. In this way, the rover avoids skipping a
portion of the path by cutting the corner. A waypoint is marked as crossed when the
distance between it and the rover center of mass is below a certain predefined threshold
value Dth.

Lastly, a parameter called the current index has been defined and identifies the last
valid waypoint crossed. In this way, the rover will not go back along the path because it
considers local goal points associated with waypoints already passed as not valid. The
current index is useful also in case no valid local goal point is detected by the rover;
in this situation, the rover will move toward the last waypoint crossed and resume the
pre-established path.
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Once the local point has been identified, it is necessary to determine the longitudinal
speed v and the yaw speed

.
θ, which are then used to calculate the angular speeds of the

left and right wheels according to Equations (1) and (2). Considering the reference system
defined in Figure 3, it is possible to define the angles, as shown in Figure 12:

• Vehicle direction γ defines the actual rover direction.
• Goal point angle φ defines the direction of the segment, which links the goal point and

the rover center of mass, with respect to the reference system adopted and calculated
using the atan2 function.

• Steering angle θ.

The steering angle θ is defined as:

θ = φ − γ (5)

Given the steering angle and the cycle time t, the yaw speed can be defined as:

.
θ = θ/t (6)

The longitudinal speed is defined as a function of the steering angle θ and calculable
through the following equation:

v = vt·(1 − θ/θmax) (7)

where:

• v is the longitudinal speed of the vehicle.
• vt is the maximum rover speed.
• θ is the steering angle.
• θmax is the maximum steering angle and set to 360◦ because 4-wheel differential-drive

vehicles ideally can execute a pivot maneuver.

AgriEngineering 2024, 6 1947 
 

 

of the path by cutting the corner. A waypoint is marked as crossed when the distance 
between it and the rover center of mass is below a certain predefined threshold value Dth. 

Lastly, a parameter called the current index has been defined and identifies the last 
valid waypoint crossed. In this way, the rover will not go back along the path because it 
considers local goal points associated with waypoints already passed as not valid. The 
current index is useful also in case no valid local goal point is detected by the rover; in this 
situation, the rover will move toward the last waypoint crossed and resume the pre-estab-
lished path. 

Once the local point has been identified, it is necessary to determine the longitudinal 
speed v and the yaw speed θሶ , which are then used to calculate the angular speeds of the 
left and right wheels according to Equations (1) and (2). Considering the reference system 
defined in Figure 3, it is possible to define the angles, as shown in Figure 12: 
• Vehicle direction γ defines the actual rover direction. 
• Goal point angle φ defines the direction of the segment, which links the goal point 

and the rover center of mass, with respect to the reference system adopted and cal-
culated using the atan2 function. 

• Steering angle θ. 

 
Figure 12. Graphical representation of the steering angle definition. 

The steering angle θ is defined as: 

θ = φ − γ (5)

Given the steering angle and the cycle time t, the yaw speed can be defined as: 

θሶ  = θ/t (6)

The longitudinal speed is defined as a function of the steering angle θ and calculable 
through the following equation: 

v = vt·(1 − θ/θmax) (7)

where: 
• v is the longitudinal speed of the vehicle. 
• vt is the maximum rover speed. 
• θ is the steering angle. 
• θmax is the maximum steering angle and set to 360° because 4-wheel differential-drive 

vehicles ideally can execute a pivot maneuver. 
The two speeds represent the output of the path-following algorithm, which is used 

to first calculate the wheel angular speeds and to update the current position of the vehi-
cle. 

Figure 12. Graphical representation of the steering angle definition.

The two speeds represent the output of the path-following algorithm, which is used to
first calculate the wheel angular speeds and to update the current position of the vehicle.

The comprehensive flowchart of the autonomous driving algorithm developed for
this work is reported in Figure 13.
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3. Results and Discussion

In this section, the application of the autonomous driving algorithm for a four-wheel
differential-drive vehicle is shown, focusing on its most important input parameters. How-
ever, before discussing the results analysis, it is very useful to recap the main features of
the rover used in this study, which are displayed in Table 1. They also represent the input
variables on the basis of which the optimal trajectory was defined.

Table 1. Rover input parameters for path-following algorithm application.

Rover Features for Autonomous Driving Algorithm Application

Wheelbase 1.5 m
Track Width 1 m

Wheel Radius 0.2 m
Minimum Turning Radius 1 m

Reference Rover Speed 7 km/h

The value of 7 km/h was chosen as the reference rover speed because it represents an
average value among the working speeds of agricultural vehicles, which range from 5 to
10 km/h [54].

Concerning the input parameters of the path-following algorithm, there are essentially two:

• Waypoint pitch (WPP): This indicates the distance (in meters) between two consecutive
waypoints and can be obtained by splitting the total length of the planned path by the
total number of waypoints.

• Lookahead distance (LD): This indicates the radius of the circumference that the
vehicle uses to find the local goal point.

The correct planned trajectory pursuit by the rover can be obtained by adequately
tuning these two variables.

For this study, two performance indicators were defined in order to evaluate the
performance of the algorithm:

• Average trajectory deviation (ATD).
• Oscillating factor (OF).

For both the indicators, the concept of trajectory deviation is fundamental. For each
position occupied by the rover, the trajectory deviation is defined as the distance between
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the vehicle and the nearest point of the trajectory determined though the path-planning
phase. The average trajectory deviation (ATD) is equal to the mean value of the average
trajectory deviation calculated for every position occupied by the rover. As it can be
easily guessed, the lower the average trajectory deviation, the greater the efficiency of the
algorithm. The oscillating factor (OF) indicator is used to evaluate if the steering corrections
executed by the rover are appropriate or not for keeping itself on the planned trajectory.
Considering the trajectory deviation of the rover during its mission, it can be observed that
in the case of high steering correction, the deviation presents a wave-like trend. Otherwise,
the trajectory deviation trend is smoother. The oscillating factor evaluation is performed
counting the relative peaks of the trajectory deviation curve. Also, in this case, the lower
the number of peaks, the greater the efficiency of the algorithm. In Figure 14, two examples
of trajectory deviation curves with high and low steering corrections are reported for
easier understanding.

The assessment of the autonomous driving algorithm was conducted by executing nu-
merical simulations. In particular, given the characteristics of the rover, the were performed
by evaluating the average trajectory deviation and the oscillating factor indexes. The range
of LD considered was from 0.5 m to 2 m. Indeed, considering the typical dimensions
of an orchard fruit row, for values outside this interval, the behavior of the rover can be
considered non-compliant toward the mission that must be accomplished.

In Figure 15, the trends of the ATD as a function of the WPPs for different values of
LD are reported.

In observing the chart, it emerges that the ATD is substantially constant at the different
WPPs considered. On the other hand, the LD index plays a fundamental role in determining
the average deviation. Indeed, it can be noted that, outside of a certain range of LD, namely
from 0.5 to 1 m, the best performance cannot be obtained in terms of path adherence with
respect to the ideal planned trajectory. In particular, high values of LD cause an increase in
the ATD because the local goal point found by the rover is too far from its current position.
As a consequence, the vehicle ignores the portion of path between itself and the local goal
point, and it moves away from the ideal route. In the case of low values of LD, the local
goal point is too close to rover current position. As a consequence, it starts to describe
a pendulum-like trajectory in order to reach the local goal point, oscillating around the
waypoint, as described in Figure 9b. The behavior of the rover is confirmed by observing
the trend of the oscillating factor at different WPPs (Figure 16).
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In the plot, it appears evident that with an increasing value of LD, the number of
steering corrections decreases, and, therefore, the rover reduces the pendulum movement
around the ideal trajectory, whereas the curve-cutting phenomena become more evident.
This is clear in Figure 17.
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Based on the results obtained in this study, a final indicator to evaluate the overall
quality of how the rover pursuits the planned trajectory is proposed. It is called the relative
accuracy (RA), and it can be determined through the following equation:

RA =
1

(ATD·OF)
(8)

This indicator is defined as “relative” because it is not possible to evaluate the quality
of the autonomous driving algorithm in absolute terms since its performance depends on
several factors, such as the main features of the vehicle, and the operative environment
conditions. However, the RA can help to find the best combination of the factors that may
influence the result. In Figure 18, the RA trend as a function of LD and WPP is reported.
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Figure 18. RA trend as a function of LD and WPP; the best results match with the highest values of
RA because it means that the trajectory deviation and the pendulum-like movement along the ideal
path are lower.

Looking at the graph, it can be noted that the best performance of the vehicle can
be obtained for an LD value of 0.75 m and WPP values between 0.16 and 0.66 m. This
factor combination allows for obtaining RA values of 0.33–0.34 m−1, which represent the
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maximum values obtained for the proposed study. This is also confirmed by observing the
behavior of the vehicle during the execution of a hairpin turn for different values of RA
(Figure 19).
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study, is shown. 
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Figure 19. Examples of hairpin turn execution for different values of RA: (a) 0.13 m−1; (b) 0.21 m−1;
(c) 0.34 m−1.

Lastly, in Figure 20, the actual path followed by the rover along the entire map with
respect to the planned one, corresponding to the max value of RA determined in this study,
is shown.
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The results obtained are quite interesting because they prove the possibility of im-
plementing this kind of control logic on agricultural rovers equipped with this kind of
powertrain. Furthermore, the proposed methodology may be a helpful instrument for
farmers during the planning of a robot mission. The geographical coordinates of the out-
ermost points of the orchard/vineyard can be used to build a cartesian system, like the
one proposed in this study. In this way, given the geometrical features of the orchard and
of the vehicle, it is possible to accurately tune the algorithm input parameters in order to
generate the correct waypoint sequence, and the latter can successively be implemented in
the rover during its mission profile definition.

Influence of Positioning Error

In this sub-section, the impact of the location error on the algorithm reliability and
precision is described. Indeed, almost every autonomous driven vehicle is equipped with
a proper locating device, without which it is not able to find its way on the map. The
devices based on GPS-RTK technology are the best performing because they are able
to reach centimetric-level precision [55,56]. However, the position read by the device is
not perfect but is affected by error, known as the accuracy. The accuracy indicates the
maximum difference (expressed in meters) between the actual location of the rover and the
one measured by the locating system.

In this study, the impact of the locating error was considered in evaluating the RA
performance indicator, given a certain degree of accuracy. The baseline for the sensitiv-
ity analysis is represented by the best result obtained for the ideal case (WPP = 0.33 m,
LD = 0.75 m, and RA = 0.34 m−1). The simulations were carried out implementing, in the
algorithm, a random error on the read rover position. The random error was proportional
to the level of accuracy considered. The range of accuracy, considered for the analysis, was
between 0.01 m and 0.1 m. It did not make sense to consider values outside of this range
since they would not be applicable for real-case scenarios. The flowchart in Figure 21 helps
to better understand the working principle of the location error in the algorithm.
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Figure 21. Working principle of location error assessment.

The coordinates of the measured position are determined summing a random contri-
bution, in the range of [− accuracy; + accuracy], to the ones that define the current position
of the rover. In this way, it is possible to emulate the behavior of a GPS positioning device.
If the accuracy level is set to 0, the obtained results correspond to the ideal case.

The obtained results in terms of the relative accuracy (RA) are reported in Table 2.

Table 2. Impact of location error analysis results.

Accuracy (m) RA (m−1) ∆RA % with Respect to Baseline

0 (baseline) 0.34 0%
±0.01 0.0272 −91.77%
±0.02 0.0317 −90.43%
±0.05 0.0316 −90.45%
±0.1 0.0273 −91.75%
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It seems that with the introduction of a positioning error, the developed algorithm is
not able to drive the vehicle along the path. However, in investigating the obtained results
further, it emerged that the drop in the RA was due to a very strong rise in the value of the
oscillating factor (OF). This growth was caused by a lot of steering angle micro-corrections
because the vehicle always aims to follow the ideal trajectory. Micro-corrections are often
very small and undetectable, and they are not the cause of an effective bad behavior of the
rover during driving. This is more evident in observing the behavior of the rover during
the execution of a hairpin turn (Figure 22).
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Figure 22. Examples of hairpin turn execution for different values of position accuracy: (a) 0 m
(baseline), (b) 0.1 m.

However, this kind of behavior cannot be considered coherent with a real-case scenario:
indeed, it is unthinkable that, in each cycle, which is in the order of milliseconds, the
vehicle makes an infinitesimal steering correction. For this reason, a threshold value on
the minimum steering angle was implemented in order to avoid micro-corrections. The
obtained results with the updated model are shown in Table 3.

Table 3. Impact of location error analysis results in the case of a 2.5◦ threshold on the steering angle.

Accuracy (m) RA (m−1) ∆RA % with Respect to Baseline

0 (ideal case) 0.7232 118.4%
±0.01 0.6421 93.92%
±0.02 0.6219 87.80%
±0.05 0.3022 −8.74%
±0.1 0.0601 −81.85%

In observing the results, it emerges that the introduction of a cutoff value on the
steering direction had a powerful effect on the improvement of the algorithm RA. Indeed,
the results obtained are a lot better than the baseline case. Furthermore, it can be noted
that the location error had low influence on the reliability of algorithm when the rover was
equipped with the GPS-RTK positioning device and a fixed signal (accuracy range within
2 cm [57]).
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4. Conclusions

In this work, an autonomous driving algorithm for a four-wheel differential-drive
agricultural rover, operating in orchards or vineyards, has been proposed. The entire model
was developed within the MATLAB software environment. After a brief description of the
vehicle, a parametric procedure to build the operative environment was developed. The
successive paragraphs focused on the autonomous driving algorithm, which is made up of
two phases: path planning and path following. The aim of the first phase is to generate
the path that the rover must follow in order to accomplish its mission. The path-planning
algorithm is based on Dubins theory. The path-following phase consists of the control
logic adopted by the vehicle in order to follow the planned route. The adopted strategy is
inspired by the pure pursuit controller and consists of the definition of a local goal point and
the command settings that must be implemented in the vehicle in order to reach the desired
goal point. The obtained results underline that, by fixing the rover operative conditions,
the algorithm performance could be influenced by two parameters: the lookahead distance
(LD) and the waypoint pitch (WPP) distribution. To measure the reliability of the algorithm,
two performance indicators were proposed in this article: the average trajectory deviation
(ATD) and the oscillating factor (OF). The first one is linked to the overlap between the
actual and planned paths. The second one is linked to the steering correction frequency
carried out by the vehicle to follow the ideal trajectory. Then, a further indicator to identify
the best tuning parameters, called the relative accuracy (RA), was defined. What emerged
is that WPPs generally have low influence on the results. Instead, the algorithm reliability is
strongly influenced by the LD value: indeed, it is necessary to determine the right balance
because values of LD that are both too high and too low are not suitable. Finally, the impact
of the location error of the rover on the algorithm efficiency was performed to enhance
the applicability of this study also to real-world case scenarios. The simulation results
underline the reliability of the algorithm when the accuracy of the rover positioning device
is within 2 cm, which is the upper limit for GPS-RTK fixed-signal systems.

This work lays a foundation for interesting future developments. The introduction of
a dynamic value of LD may lead to improved algorithm efficiency and computing time.
The development of an adequate obstacle avoidance strategy represents a very important
upgrade because, in this way, the rover will be able to avoid unexpected obstacles. At the
same time, a field test campaign needs to be carried out. Indeed, performing experimental
validation of the algorithm can lead to several benefits:

• Empirical assessment of the algorithm’s reliability.
• The introduction of possible corrective coefficients linked with the dynamic behavior

of the rover.

Other developments are strictly connected with the algorithm itself but with the effects
of sensor network with which the rover is equipped, such as the correlation between motion
strategy and the tasks that the vehicle must perform in order to accomplish its mission.
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