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Abstract—In this paper, the authors exploit the OpenROADM
standard model for the management and control of commercial
ROADMs via an open optical SDN controller. Since each ROADM
model has its own operating system, characterized by specific
proprietary languages and interfaces, an additional middleware
software layer must be introduced between the controller and the
ROADM devices. This middleware aims to expose commercial
devices through the OpenROADM model. Furthermore, the
controller can send requests via the OpenROADM standard to
the middleware.

I. INTRODUCTION

The growth of data traffic on the internet necessitates an
enhancement of network architecture. This can be achieved by
replacing static devices with software-based devices that run
their own operating systems. These entities form the founda-
tion of an open optical Software Defined Network (SDN)[13].
Within an SDN, software-based devices such as transceivers,
which inject signals into the network, and Reconfigurable
Optical Add-Drop Multiplexers (ROADMs), which manage
signal forwarding, play crucial roles.

Focusing on the ROADM entity, the transition from a
static device to a dynamic one allows for optimized signal
handling. Utilizing a ROADM enables the direct management
and forwarding of incoming optical signals while maintaining
them in the optical domain. In contrast, a static add-drop
multiplexer cannot process an optical signal directly; it re-
quires the signal to be converted to the electrical domain for
processing and then reconverted to the optical domain before
re-transmission. These conversion steps introduce significant

latency, thus highlighting the necessity of replacing static
devices with ROADMs. ROADMs are more efficient in signal
processing, as they reduce latency in forwarding operations.
This reduction in latency is critical to preventing network
congestion, especially as data traffic increases.

Additionally, the expansion of network devices is crucial to
accommodate growing traffic demands. Each transceiver can
only transmit data at a single frequency; thus, an increase in
traffic necessitates the deployment of more transceivers.

Typically, networks are oriented towards single-vendor solu-
tions, but transitioning to multi-vendor networks offers signif-
icant advantages. Multi-vendor networks enable cost control
through diverse market options, allowing for the selection
of various device models. Different vendors produce devices
and software with unique proprietary languages, necessitating
standard models to ensure interoperability within a multi-
vendor network.

Another reason to have standard models is to enhance the
ability of the optical digital twin (DT) [5] to facilitate inno-
vation and collaboration across industries. Standard models
enable the consistent representation and interpretation of data,
which is crucial for integrating digital twins into complex,
multi-stakeholder ecosystems. This uniformity allows different
organizations to collaborate more effectively, sharing and
utilizing data from digital twins without the need for extensive
customization or translation. It also accelerates the develop-
ment and deployment of digital twin solutions by providing a
common framework that developers can build upon, reducing
the time and cost associated with creating bespoke models.
Additionally, standard models support the scalability of digital



Fig. 1. Multi-vendor scenario in which each ROADM exposes a middleware for the translation of the OpenROADM commands

twin implementations, ensuring that as systems grow and
evolve, the digital twins can adapt without losing coherence or
functionality. By promoting compatibility and interoperability,
standards not only streamline current operations but also pave
the way for future advancements, driving the broader adoption
and success of digital twin technology in various sectors.

In this context, the interoperability between the controller
and a specific ROADM model was tested to demonstrate the
feasibility of multi-vendor communication. This test illustrated
how communication occurs between the controller, utilizing
OpenROADM [8], and a ROADM device with its proprietary
language.

II. OPTICAL NETWORK ARCHITECTURE

This paper follows the partially disaggregated architecture
proposed in [4]. An optical SDN architecture is characterized
by the disaggregation of the functions: the control plane is
managed by the controller, whose aim is to communicate
with the entities of the network, providing them the functions
that must be executed; the data plane is managed directly
by the devices, and it is related to the data transfer inside
the network [12]. In this paper, the software architecture
was built by embracing the disaggregated line approach:
the ROADMs and transponders are controlled by an SDN
controller while the Optical Multiplexer Section is controlled
by software that handles the management of the amplifiers
OMS-Controller [1]. This software architecture respects the
growing need for modern optical networks to move toward a
multi-vendor approach. In this context, the network controller
needs to communicate with different nodes in the network
even if they are from different vendors. With this in mind, we
have developed a software middleware that aims to abstract the
vendor singularities, exposing the device to the controller as
if it were a fully compatible device with the chosen standard,
OpenROADM. This standard will be described in deep in the
following.

A. The OpenROADM device model

OpenROADM [8] is a Multi-Source Agreement initiative,
active since 2015 and comprising several network operators
and optical system and component vendors, aiming at defining
interoperability specifications for ROADMs, transponders and
pluggable optics. From the control plane perspective, Open-
ROADM defines data models for device, network, and service
modelling, targeting the fully disaggregated network model.
The device model covers detailed configuration information,
alarm, and performance monitoring and defines several objects
to abstract the implementation of a ROADM device. The most
notable are: circuit-packs that represent a physical piece of
equipment which contains a group of hardware functional
blocks; the ports container defines the ports associated with a
circuit pack; the internal-links object reflects the connectivity
within each circuit pack; the physical-links container reflects
the connectivity between ports across different circuit packs;
interfaces that defines supported interface types and the as-
sociation with Port objects; roadm-connections lists the cross-
connections between couples of interfaces. The OpenROADM
consortium publishes also whitepapers explaining how to
exploit the YANG models and how common operations should
be encoded. In particular, the OpenROADM device whitepa-
per [10] defines how the above mentioned objects should
be used to model network devices (ROADMs, transponders,
amplifiers and pluggables) and the operations that an external
controller can perform on them. The procedure to create a
cross-connection between two ROADM ports it’s relevant in
the scope of this paper. Considering an express-connection,
i.e. a cross-connection between two degrees, the procedure
requires the creation of Media Channel (MC) interfaces on the
involved ports, specifying the lower and upper frequencies of
the spectral slot, then the creation of Network Media Channel
(NMC) interfaces on the previously created MC interfaces and,
at last, the creation of the roadm-connections between the two
NMCs.



B. The OpenROADM agent

A software agent has been developed to implement the
procedures defined by the OpenROADM consortium. It ex-
poses a NETCONF interface implemented using Netopeer
[9] and the transAPI tool [11], both based on libnetconf.
By means of the transAPI is possible to invoke a specific
call-back function whenever an edit-config Remote Procedure
Call (RPC) operation performs changes on a branch of the
configuration. The agent has therefore call-back functions that
manage the controller requests for the creation of the MC and
NMC interfaces and the roadm-connections. To decouple the
OpenROADM model processing from the action required by
the underlying hardware, the agent can load specific drivers
at runtime. Drivers are coded as Linux dynamic libraries
associated to a circuit-pack-type and loaded by the main
module when an edit-config RPC creates a new circuit-
pack of that type. The driver implements a few functions
to perform actions on the corresponding circuit-pack. The
most important functions are: i) init called during agent
startup, to set-up the communication session and perform
initial circuit-pack setup; ii) close: called at agent closing to
free all the allocated resources; iii) make connection: for the
creation of the cross-connection (spectral window) between
circuit-pack ports; iv) delete connection: for cross-connection
removal. Moreover, the agent encompasses also the datastore
describing the implemented device configuration. To improve
agent flexibility and portability, it is implemented as a docker
container encompassing simple drivers for emulated circuit-
packs and a complete datastore for a 3 degree ROADM. A
different device can be supported sharing a directory from
the host’s filesystem into the container folders containing the
drivers and the datastore by means of the mount docker option.

III. SETUP

Fig. 2 illustrates the configured laboratory setup, featuring
three Adtran ROADMs, each comprising three degrees. Each
degree is composed by a twin of multiplexer (MUX) and
demultiplexer (DMX): each one is composed by one network
port used to transmit and receive the signal from the OMS, and
12 client ports used both to interconnect the different degree
within the ROADM and to connect add/drop modules. Each
port is capable of both transmitting and receiving: from the
hardware prospective, the presence of two connectors labeled
TX and RX allows the handling of the signal’s direction.

Connections between degrees are established using optical
fibers, which must be correctly inserted into the appropriate
client ports according to the transmission direction, i.e., from
a transmitting client port to a receiving client port, which
must belong to different degrees. The connections control-
lable by the operating system are those between a network
port and a client port. In this context, the SDN controller
communicates with optical switches and transponders using
standardized protocols such as NETCONF, allowing for real-
time adjustments to routing paths, bandwidth allocation, and
network topology in response to varying traffic demands and
network conditions. Communication between the controller

Fig. 2. Laboratory three node network setup picture. This photo focuses
on the switching part of optical laboratory setup, each node is connected to
optical line system which is not shown in this picture.

and the ROADMs is facilitated by the OpenROADM standard.
As described in Section II-A, this standard was developed to
create a general model capable of communicating with all
ROADMs, regardless of the vendor. In this setup the com-
munication is not direct, as the ROADMs are not supporting
the OpenROADM models; hence, a middleware is introduced
to translate commands from the OpenROADM standard to
the proprietary language. The selected controller is the Open
Network Operating System (ONOS) [7], an open-source SDN
controller that supports the OpenROADM standard.

There are various methods to interact with the ROADM’s
operating system: Secure Shell Protocol (SSH), REST-
CONF [3], or NETCONF [6] protocols. In this case, the
RESTCONF protocol was chosen. RESTCONF commands are
converted into software written in C language, which runs
inside the OpenROADM agent. The main functions developed,
as mentioned in Section II-B, are now described from the
ROADM perspective, detailing the necessary commands the
ROADM’s operating system must execute.

The first function, init, is used for the login operation.
Commands sent to the ROADM are written according to
the RESTCONF protocol, which requires specific headers in
the request, including a token necessary for authorizing the
execution of all commands. This function retrieves a temporary
token to be included in the request headers, allowing the
execution of subsequent functions. The init and close functions
are also used for purposes outlined in Section II-B.

Two additional functions, make connection and



delete connection, manage connections within the ROADM.
The former creates a new connection between two ports
using the respective MUX or DMX, while the latter deletes
an existing connection.

To connect two ports, several steps must be executed: i)
the creation of a Spectrum Slot Group (SPSLG); ii) the
creation of an Optical Tributary Signal Assembly (OTSiA);
iii) the connection of the two ports via the media port; and iv)
changing the OTSiA status. All steps, except the third, must
be repeated for both ports. Detailed explanations of these steps
are provided below.

The first step involves creating a spectrum slot group, which
consists of one or more spectrum slots. For simplicity, one
spectrum slot per SPSLG is typically created. A spectrum slot
is a continuous spectrum characterized by a central frequency
and a channel width, according to the following rules: the
central frequency must fall within the C-Band (191.3 THz
to 196.1 THz), and the channel width must range from 37.5
GHz to approximately 5 THz, following the equation W =
K · 6.25 + 37.5, where K is an integer. In each port, created
spectrum slots must not overlap. Another crucial parameter
is the direction: a slot can be unidirectional (transmitting or
receiving) or bidirectional (transmitting and receiving).

The creation of a spectrum slot facilitates filtering an
incoming signal by dividing the entire stream into specific
slots characterized by central frequency and width. The di-
vided signal inside each channel can be managed separately
according to specified rules, allowing some channels to be
dropped and others forwarded.

The second step involves creating the OTSiA, which serves
as the carrier of the signal, allocating resources to transport the
signal contained within the spectrum slot. This step must be
performed for each port the signal crosses, with the OTSiA
associated with a specific spectrum slot of a specific port,
sharing the same central frequency, width, and direction.

The third step allows the ROADM to connect two spectrum
slots physically linked by a MUX or DMX within a degree,
creating a connection between a client port and a network
port. This command requires specifying both endpoints (the
spectrum slots of each port). If the connection is bidirectional,
the port order is irrelevant; for unidirectional connections, the
receiving spectrum slot must be specified first, followed by
the transmitting slot. The connected slots must have the same
central frequency and width and belong to a network port and
a client port, respectively.

Finally, the OTSiA state for each port must be set to in-
service (IS) to initiate signal forwarding through all relevant
ports. By default, the OTSiA state is out-of-service (OOS)
upon creation. If not switched to IS, no change in the signal
spectrum is observed as the channel remains inactive.

These steps are illustrated in Fig. 3, showing the required
actions to set up a connection within a MUX or DMX. These
processes are encapsulated in the driver controlling the Adtran
model and are executed when the OpenROADM agent sends
a command to create a connection between two ports of a
degree. The necessary parameters include the degree, the two

ports to be connected (according to the datastore mentioned
in Section II-B), the central frequency, and the channel width
(specified in MHz). These parameters must conform to the
spectrum slot creation rules, and one port must be the network
port while the other is a client port. The port order is significant
as the stream is unidirectional.

To create a cross-connection, the function make connection
must be invoked two times: at first, the connection is per-
formed inside the first degree, while a second call must be
executed with the specification of the second degree.

On the contrary, the delete connection function removes a
connection between two ports, requiring the degree and the
two ports as parameters.

Finally, it is important to note that the ROADM’s operating
system can detect if a connection cannot be established, pro-
viding error explanations in the response body. For example,
it can identify if a spectrum portion is already occupied
or if the chosen central frequency is outside the C-band.
These features enable parameter adjustments to ensure correct
function execution.

IV. RESULTS

Figs. 6 and 7 show NETCONF handshake snapshot where
OpenROADM capabilities are retrieved: this is the initial step
of the environment creation in which the OpenROADM agent
runs. Furthermore, when the OpenROADM agent is launched,
the init function is invoked. As outlined in Section III, this
function not only configures the initial environment, but also
provides the token string required for executing commands
directed to the ROADMs.

To verify the interaction between ONOS and the Ad-
tran model of the ROADM, the function tested was
make connection. The ROADM output is depicted in Fig. 4.
The plot illustrates that six channels were established, each
characterized by a constant width of 62.5 GHz, with varying

Fig. 3. Connection between a network and a client port



central frequencies. Specifically, six connections were created
and forwarded to the network port within the first degree
of the first ROADM of the optical line. For this scope,
the make connection function was invoked six times, with
each call specifying the necessary parameters for connection
creation as explained in Section III.

Fig. 4 presents results obtained from both the internal
Optical Channel Monitor (OCM)[14] of the ROADM and the
Optical Spectrum Analyzer (OSA)[2]. The integrated OCM
displays six points, one per channel, while the OSA provides
a more precise curve representing the entire power spectrum
within the C-Band. The OCM’s resolution is equivalent to
the channel width, with a minimum resolution of 37.5 GHz,
and in this case, 62.5 GHz. The OCM output represents the
integral of the power within the channel; hence, increasing
the channel width results in a higher power integral, yielding
higher values. Each network port is equipped with an OCM
capable of providing power values associated with channels in
both directions. To verify the reliability of OCM values, the
spectrum obtained via the OSA is also plotted. The peaks of
the channels in the OSA spectrum correspond to the power
values recorded by the OCM.

These results affirm that the OCM integrated with the
ROADM is a valuable tool, enabling users to verify if the
signal behaves correctly. In general, the OSA is an instrument
used in the labs for double checking the results, but it is not
present in the optical line. Since it is not possible to access to
the OSA, also for his expensive cost, the integrated OCM is a
good instrument that allow a first approximation of the power
evolution at each ROADM.

The established channels are subsequently propagated to
another ROADM at the end of OMS. In this case, as illus-
trated in Fig. 5, plots obtained with the OCM and the OSA
are provided, capturing power values at the exit of the last

Fig. 4. This is a plot obtained retrieving the data at the beginning of the
optical line, from the OCM inside the ROADM and the OSA connected at
the exit of the ROADM

amplifier, before the fiber enters in the receiving network port
of the first degree of the ROADM that terminates the optical
line. The plot shows that the six channels created at the line’s
origin are clearly visible. The primary difference lies in the
power values of the channels. Fig. 4 presents measurements
at the exit of the first ROADM’s multiplexer, before the first
amplifier, where channel peaks are low. On the contrary, Fig.
5 shows channel peaks much higher, influenced by the last
amplifier’s gain. In general, a ROADM hosts an amplifier at
the exit of the MUX, at which is correct to measure the power
that enters in the optical line. In this context, the first amplifier
is outside the ROADM module: the power measured at the
MUX is much lower if compared to the exit of the amplifier. To
obtain consistent values, power measurement at the transmitter
should be performed after the first amplifier.

V. CONCLUSION AND COMMENTS

Fig. 4 and 5 are crucial as they demonstrates the feasibility
of establishing a connection between a controller and a device
produced by different vendors. This finding is significant as
it supports the viability of multi-vendor networks. In this
scenario, the device successfully executes a command de-
livered by the controller, facilitated by middleware capable
of translating from a standard to a proprietary model. This
additional layer is necessary to establish a communication
towards the devices and must be adapted to the examined
entity. Additionally, it allows the devices within a network
to use the same controller’s standard, independently from the
model: the introduction of a middleware layer represents a
fundamental support for the interoperability in multi-vendor
networks, avoiding a redefinition of the SDN controller. This
layer may introduce latency since the communication between
the controller and the devices is not direct and requires addi-
tional resources to handle the interoperability, but it strongly

Fig. 5. This is a plot obtained retrieving the data from the OCM inside the
ROADM and the OSA at the exit of the last amplifier of thee optical line



Fig. 6. Client NETCONF capability request. In the snapshot subset of the
capabilities are shown.

Fig. 7. Middleware NETCONF capabilities subset reply logs.

simplifies the overall communication among the diverse enti-
ties that populate the network.

The development of a multi-vendor network necessitates
a comprehensive understanding of various device models,
that comprehends both hardware and software perspectives.
To create code that effectively manages the device under
examination, it is essential to study the supported protocols
and determine the commands, written in the syntax of the
chosen protocol, that the device must execute. Knowledge of
the hardware is also crucial, as it provides insight into the level
at which the developed software operates. For instance, under-
standing the physical structure of the Adtran ROADMs used in
the setup is necessary for configuring commands appropriately.
Additionally, familiarity with the selected controller and the
chosen standard is fundamental.

Thus, the establishment of a multi-vendor network is the
culmination of developing a standard that can communicate
with all devices and thoroughly studying the specific devices
within the network. In this context, the development of code
for translating OpenROADM commands to the proprietary
model necessitates an in-depth understanding of managing the
Adtran ROADM model, particularly regarding the essential
commands required to fulfill OpenROADM requests delivered
by the ONOS controller.
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