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Abstract

In the last few years, there has been an increasing
amount of methods and algorithms that approach and au-
tomate different video and image editing tasks. A task
that so far has not been investigated too much in depth is
the analysis of video editing patterns. In this work, we
present LEMMS (Label Estimation of Multi-feature Movie
Segments), a methodology to analyze and label 30-second-
long movie editing patterns based on the following editing
features: shot size, shot subject, editing pace, and editing
trend. LEMMS can identify more or less fine-grained editing
classes using a multi-clustering approach. To evaluate the
robustness of LEMMS in assigning correct labels the perfor-
mance of an LSTM classifier is analyzed. For our study, we
extracted 24 363 segments of movie scenes from the AVE [1]
dataset. The performance of LEMMS in semi-automatic la-
bel identification for 30-second long movie segments is ac-
curate, as the proposed approach has an overall accuracy
of 92.8% for 50 classes.

1. Introduction
Recently more and more creative and astonishing results

have been achieved in different creative areas related to the
video and image editing context. On one hand traditional
image and video editor software developers such as Adobe
are implementing deep learning methodologies to improve
their editing tools or create new ones (Firefly), while on
the other hand, new algorithms, such as the latent diffusion
models [19], allows by themselves amazing results. These
new approaches vary from the generation and editing of sin-
gle video clips from an image and a prompt [14] to image
and video creation from a single textual prompt [24] and
more(see Section 2). Most of these models and algorithms
require massive data and resources to be trained. On the
other hand, a context that so far has not been investigated
too much in depth is the editing structure of videos. With
editing structure, we mean the concatenation of shots cho-
sen by the director to represent the scene. Many movie crit-

ics, such as [15], have always highlighted how the editing
process heavily defines the movie or video, as it deeply im-
pacts the viewer’s perception. By being able to label and
classify editing patterns more powerful video editing assist
tools could be developed. For instance imagine a text to
video model that also uses basic editing patterns. Instead
of creating a video made of a single clip it would be possi-
ble to create a video with multiple clips and coherent cuts.
To analyze the editing structures of videos we present the
LEMMS methodology. Additionally, our approach works
with metadata and light models and hence does not require
high computing resources. In order to study video editing
we represent the movie scenes as sequences of symbols that
encode different features. Since every scene is unique, in-
stead of analyzing them we analyze scene segments. Our
intuition is the following: similar situations can happen in
different scenes at different moments, but they will rely on
similar shots. For instance, a dialogue can happen in dif-
ferent scenes and in different moments of a scene, but most
likely close-ups and medium shots will be used to repre-
sent it. Depending on the mood of the moment, these shots
will be concatenated in a different order and with a differ-
ent frequency. If something else is happening, a different
editing pace and different shots will be used. This is not
surprising since the shots are chosen in relation to what
the director wants to show. Consider the example in Fig-
ure 1 to illustrate better what we mean. The top segment
is from the movie ”Thoroughbreds” by Cory Finley. The
second segment is from the movie ”The Birdcage” by Mike
Nichols. In both of these segments, the focus is on the inter-
action of people with objects. The reasons why the directors
chose to have people interact with objects are different, but
the way they portrayed it is similar. This is not the only
way to show people interacting with objects, since there are
many. The ”shot-reverse shot” technique shown in Figure2
is a more familiar example. The top segment is from ”The
Great Lebowski” by Joel and Ethan Coen, while the bot-
tom is from ”Pulp Fiction” by Quentin Tarantino. Again,
the same set of shots was used to describe a similar context,
namely two people talking to each other, but the reason why



they talk to each other and what they say to each other is dif-
ferent.

Keeping these elements into account, we have devised
LEMMS, a semi-unsupervised methodology to label scene
segments according to the editing pace adopted, the shot
size used, and the subjects shown. Additionally, we define
the scene segment trend, a feature that encodes information
concerning how the shot sizes in the segments are concate-
nated (see section 3). To sum it up, we present the follow-
ing contributions:(i)Segmented AVE: a dataset created from
AVE by rearranging the 5,591 scenes into 30-second long
segments characterized by shot size, shot size, and editing
pace, and trend; (ii)LEMMS: a semi-unsupervised approach
that relies on clustering algorithms[2] and Levenshtein[10]
distance to estimate the labels of the scene segments; (iii) a
preliminary quantitative and qualitative analysis of the iden-
tified segments and labels on the new dataset. The robust-
ness of LEMMS was validated by building an LSTM clas-
sifier on the results of the groups of movie segments. The
model was trained on 50 classes and tested with a 10-fold
stratified validation strategy, achieving an overall accuracy
of 92.8%.

The paper is organized as follows. Section 2 discusses
the related works. Section 3 illustrates the step that we
have used to obtain a sequenced version of the AVE Dataset,
while Section 4 presents the LEMMS methodology that we
have developed to estimate the scene segment labels. In
Section 5 the experimental results along with the qualitative
and quantitative analysis are discussed. Finally, Section 6
presents the conclusions and future research directions.

2. Related Works
In the last years there have been different studies focus-

ing on a multitude of task concerning machine learning,
movies and video editing. Old studies focus on more classi-
cal machine learning tasks, such as image classification, but
applied to shot sizes or features. For instance, the authors
in [4] [21] [25] [11] addressed the shot size classification.
Some of them implement a more fine-grained classification
task [21] [25] relying on convolutional neural networks[23].
In [11], the classification of camera movement is performed
using motion vector fields. A different research studies
video editing tasks’ automation or partial automation. For
instance, in [6] they cut the video using as input the dia-
logue text, while in [18], the task addressed is video clip
segmentation. In more recent years a lot of improvements
have been made in the video generation field. For instance,
in Dreamix [14] the authors propose a framework that gen-
erates a video from an image and a textual prompt. They
can do so by implementing a video diffusion model based
on the popular and performing diffusion model[28]. In [24],
always relying on diffusion models, the authors develop a
methodology to train a video generator using only image-

text data and not video data. The model is then able to gen-
erate short videos from a textual prompt. All of these works
present astonishing results. However, these studies do not
take into account editing structures. In fact, they generate
single shots. While not many, there have been some works
in the past that focused on video editing features or struc-
tures. In [13] the authors perform a preliminary next shot
prediction task and focus on editing pace. Instead, in [5],
the focus is moved on how the concatenation of different
shots influences the viewer’s perception. In [26], the fo-
cus is on identifying editing patterns in 30-second long shot
sequences extracted from movies. Our methodology takes
inspiration from the methodology presented in [26], how-
ever, while the task at hand is similar, i.e. unsupervised
movie editing classification, the data is different since mul-
tiple features characterize it. Additionally due to the imbal-
ance of specific values in the feature space we have included
a multi step clustering strategy. In [9] the authors perform
movie style analysis showing how high-level features, such
as camera motion and pose estimation, are a better fit for
this task with respect to low level features, such as aver-
age shot length and color histogram. In [16] the authors
investigate how visual audio video patterns trigger cuts be-
tween different shots. Other studies focus on video analysis
on a larger scale. For instance, in [27], the authors present
the Long Video Understanding (LVU) dataset and develop
a methodology to perform different tasks. The main goal
is long-form video understanding, while the specific task
addressed range from content understanding, such as clas-
sifying the relationships among characters, to movie meta-
data predictions, such as director and genre. Also, in [8]
the authors perform movie metadata prediction and other
tasks on the LVU dataset and MovieNet [12]. They also
present two new datasets: MovieCL30K for movie meta-
data classification and the Mature Content Dataset for video
moderation. Other movie datasets that can be used to per-
form different tasks concerning movie and video analysis
have been released in recent years. The Condensed Movie
dataset [3] contains the main scenes from different movies
with metadata. Unfortunately, the shot sizes are not taken
into account. In [17] the authors present a video cut dataset
and perform cut transition recognition. A different dataset
is Cinescale [20]which contains 120 movies from six dif-
ferent directors. The movies are divided into frames, and
each frame has a label according to its shot size. Last year
also, the Anatomy of Video Editing Dataset (AVE)[1] was
released. It is a dataset that contains 5,591 scenes from dif-
ferent movies. Each shot in every scene is characterized by
multiple features such as shot size, shot subject, and shot
duration. Due to the multiple features available for every
scene, we have decided to use this dataset in our study.
While previous studies focus on different interesting appli-
cations only a few take into account video editing patterns.



Figure 1. Camera movement showing people interacting with objects from ”Thoroughbreds” (top), and ”The Birdcage”(bottom).

Figure 2. Shot reverse shot extracted from ”Pulp Fiction”(top) and ”The Big Lebowski”(bottom).

Figure 3. data preprocessing steps.

None of those studies consider all the features we use to
analyze editing patterns in this study.

3. Creation of Sequenced Ave

We have chosen the AVE Dataset [1] to extrapolate
movie editing sequences. In this dataset, each shot is char-
acterized by multiple features that can be grouped into the
following macro-categories; camera attributes: shot size,
shot angle, shot type, shot motion, set attributes shot lo-
cation, shot subject, number of people and additional at-
tributesound source, start time, end time. In order to have
a realistic representation of the editing patterns without in-
creasing the data variability too much, we selected some
specific features while discarding others. Start time and end
time were kept to compute the editing pace, while sound
source wasn’t since it is less relevant to the task at hand.
For the remaining features, the following consideration was
made. They can be divided into set attributes(subject, num-
ber of people, location) and camera attributes (size, angle,
movement, type). To represent the editing sequences with-

out increasing the complexity of the data representation too
much, we have chosen to represent them using one attribute
per set, specifically the shot size for the camera attributes
and the shot subject for the set attributes. Hence the filtered
metadata that we take from AVE is the scenes characterized
in terms of sequences of shots defined by size, subject, start,
and end time. An overview of the adopted pre-processing
steps can be seen in 3.

Symbol-Size(abbr) number of
samples

0 - other(O) 1,977
1 - extreme close-up (ECU) 405

2 - close-up (CU) 26,692
3 - medium shot (MS) 142,314

4 - wide shot (WS) 22,852
5 - extreme wide shot (EWS) 1,936

Table 1. Shot Sizes

Sequence Splitting. Since, rather than the scenes them-
selves, which are unique and have varying lengths, we want
to analyze the editing patterns in scene segments, similar to
[26], we have divided the scenes into 30-second long seg-
ments. Each segment is made of 30 shot tokens, one per
second. In this study, each token contains the shot size,
the shot subject, and the duration obtained from start and



Symbol-Subject(abbr) number of
samples

0 - other (ot) 3 000
1 - face (f) 5 671

2 - human (h) 97 696
3 - location (l) 69 959
4 - object (ob) 19 855
5 - animal (a) 8 995

Table 2. Shot Subjects

end times. By only splitting the scenes into 30-second seg-
ments, we would have lost most of the ending parts of the
scenes. Thus, instead of discarding the remaining seconds
from every scene, we have resampled the ending part of
every scene starting from the last 30 seconds. By doing
so, we obtained 24,363 movie scene segments from 5,591
movie scenes. Additionally by selecting a fixed time range
the editing pace and trend features can be easily extracted.

Symbol Creation Before applying the LEMMS method-
ology one more step is required, which is to convert the
textual features from text to numerical symbols. All the
shot sizes classes were kept, while some minor subject sizes
classes (text, limb, cartoon, other) were merged with the
class other. Tables 1 and 2 show the number of samples per
shot and subject, the numeric symbol used to represent it,
and the abbreviation used later on.

Additional Features To represent the editing pace we
count the number of different shots in a 30-second segment.
Depending on the number of shots the segment belongs to
one of the following editing pace classes; slow, medium,
and fast. Table 3 shows the number of samples per editing
class and how the number of different shots influences the
editing pace. To encode this information in the sequences,
we added a symbol to each token representing the shot. If
it is equal to 1, it means that the frame belongs to a new
shot, 0 otherwise. The trend token that composes the editing
segments is the last token that we add to every shot token.
This token is necessary because we are using numbers as
symbols. If we were to use numbers, we would obtain that
a medium shot (symbol 3) is three times an extreme close
up, or that the extreme close up (symbol 1) is an average
between a close up(symbol 2) and other (symbol 0). How-
ever, the shot size indicates on a loose scale how close the
camera’s point of view is to the action. Also, keeping track
of whether we are getting closer or further from the sub-
ject in a selected segment is important. Hence the addition
of the trend token. The token can have different values:(i)
0: which means that the shot size of the next shot is the
same;(ii) 1 means that the shot size of the next frame is
closer to its subject;(iii) 2 means that the shot size of the
next frame is further from its subject. The segments were
then labeled into four trend classes depending on their be-
havior. Table 4 shows the trend classes.

Class nshot in number of
segment samples

Fast nshot > 10 8,101
Medium 5 < nshot < 11 9,354

Slow nshot < 6 6,908
Table 3. Editing paces: definition and cardinality.

Class trend token number of
samples

Stable 0 8,410
Mixed 0, 1, 2 12,857
Further 2, 0 1,334
Closer 1, 0 1,762

Table 4. Trend classes: composition and cardinality.

Figure 4. LEMMS methodology:main building blocks.

Each segment is 30 seconds long and is represented by
30 tokens, one per second. Each token represents a shot and
is composed of four symbols, each symbol representing a
different feature, using the following scheme:

ShotSize, ShotSubject, tokenSameShot, tokenTrend

4. Methodology

Now that we have a segment representation that keeps
track of multiple features we can use the LEMMS methodol-
ogy to estimate the labels of the movie segments. The goal
LEMMS is to find labels representative of the editing pat-
terns that characterize the segments in terms of shot sizes
used, shot subjects, editing pace and trend. The methodol-
ogy overview is shown in Figure 4. In the first block through
a distance metric we represent the segments as points char-
acterized by size and subject coordinates. Then in the mul-
tiple steps clustering block we extract the final labels of the
segments. The first two phases identify clusters in terms of
shot sizes and subjects, while in the third one we obtain the
final labels characterized also in terms of editing pace and
trend.



4.1. Coordinates Extraction

In a first analysis step, we model the shot that makes up
each scene segment as tokens based on the shot size and
shot subject. After recomposing the sequences in terms of
shot sizes and subjects, the next step is to compute a dis-
tance metric to characterize the segments. We have used the
Levenshtein distance[10] taking inspiration from [26]. The
Levenshtein distance measures the number of substitutions,
additions, or subtractions required to transform a sequence
of characters A into a sequence of characters B. Since the
sequences have all the same length in our case, it indicates
only the number of substitutions required to transform one
sequence into another. Since the Levenshtein distance mea-
sures the substitution needed to transform a string into an-
other, in our case it is not so useful to apply it directly on our
segments. Hence we create artificial sequences. Each artifi-
cial sequence has 30 characters that are all set on the same
value, one value for each artificial segment. The characters
used are the same symbols used to represent shot sizes and
subjects. From every segment, we extract two segments,
one containing all the shot size tokens and one containing
all the shot subject tokens of the segment. Then for both
segments, we compute the Levenshtein distance with re-
spect to the artificial segments and we use those distances
all together as coordinates. The resulting set of coordinates
has the following shape: [Ds0, Ds1, Ds2, Ds3, Ds4, Ds5,
Dsb0, Dsb1, Dsb2, Dsb3, Dsb4, Dsb6]. The first 6 dis-
tances represent the distance of the sequence n with respect
to the artificial sequences, while the other six contain the
distance for the shot subject. These are the normal coor-
dinates. Additionally, we create a set of weighted coordi-
nates. These coordinates are weighted to make segments
with rarer shot sizes or subjects stand out. The rarer the
token, the higher will be the weight associated with its co-
ordinate.

4.2. Multi-step clustering

Since the different shot sizes and subjects that compose
the segments do not have a balanced distribution also the
resulting segments will have a majority of segments rep-
resenting the most used combinations of size and subject.
However in this context when the less common shots are
used it is important to keep track, hence we have relied on a
multiple step clustering approach. The first clustering step
is intended to separate the most specific patterns from the
most common ones; hence we will use the weighted coordi-
nates. With most specific patterns, we intend those editing
sequences that have less common shots, such as extreme
close-ups. To this aim, we use a KMeans++ [2] on the
weighted coordinates to identify the clusters that contain
rare patterns. To automatically identify the number of clus-
ters, we use the Silhouette index score [22], which measures
the cohesion and separation of the identified clusters. With

performance trend and pace no trend no pace
Silhouette 0.75% 0.99% 0.97%
Macro average 88% 76% 84%
weighted average 93 % 95% 94%

Table 5. LSTM performance in different scenarios.

this strategy we identify the Main Set, which is the cluster
that contains the majority of the samples, and the Rare Sets,
smaller clusters that contain data points that represent seg-
ments with the less common editing shots and subjects. The
Main Set on the other hand contains the data points repre-
senting the segments with more common subjects and shots.
We can move to the second clustering phase after identify-
ing the Main Set and the Rare Sets clusters.

Next, we take into account only the Main Set. In order to
identify the different clusters instead of using the weighted
set of coordinates we use the regular ones. Like in the previ-
ous step, we apply a KMeans++ clustering algorithm to the
set of coordinates in order to identify the different classes,
while assessing the most ideal number of clusters by con-
sulting the Silhouette index score. At this point we have
defined the basic editing sets. These clusters contain the
points representing the sequences in terms of subjects and
sizes. Thus each cluster is characterized by a set of shot
sizes and subjects, but there is no information concerning
how the shots are concatenated. This information is en-
coded in the editing pace and segment trend labels.

In the last phase of the multiple steps clustering, we join
the editing pace and trend labels to the cluster id of basic
editing sets. As a consequence every data point is charac-
terized by three labels. On this new data configuration, we
apply the KMeans++ clustering algorithm once more while
consulting the silhouette index score. The clusters identified
at the end of the multiple steps clustering represent the data
points in terms of shot size and shot subject used, editing
pace and sequence trend. Each of these data points repre-
sents a scene segment.

4.3. Validation

At the end of the previous phase, we obtained clusters
of data points representing different features of the scene
segments. We can use a classifier to evaluate the robust-
ness of LEMMS in correctly identifying well-separated and
well-connected groups of sequences. A classifier is built
on the original input data enriched with the labels provided
by LEMMS, and the ability of the model to correctly clas-
sify each 30-second sequence is evaluated. Good predic-
tion metrics are indicators of a good robustness of LEMMS
in correctly performing the data labeling task. In our case,
since the segments are made of tokens that are made of sym-
bols, we can treat the symbols as text and use an LSTM
model[7] for sequence classification. We have used the se-



Phase Cluster Number of main main
samples sizes subjects

1 1 33 ECU Ot-F
1 2 227 O Ot
1 3 93 ECU Ot-Ob
2 4 1498 MS - WS H
2 5 1659 WS - MS l
2 6 1166 MS - CU f-h
2 7 8441 MS h
2 8 1713 MS - WS h-ob
2 9 1781 CU l
2 10 922 MS-WS a
2 11 6830 MS l

Table 6. The different clusters identified after the first two cluster-
ing phases.

quences as training data and the cluster id of points repre-
senting the segments as labels.

5. Experimental Validation

In this section, we present a case with 50 editing classes.
In these experiments, we have used as the clustering algo-
rithm the KMeans++. To assess the number of clusters, we
have analyzed how the silhouette index changed in relation
to the number of clusters.

In the first clustering phase, we stopped at 4 clusters. By
increasing the number of clusters to 5 the silhouette index
drops from 0.89 to 0.86, with 6, it drops to 0.76. One cluster
contains the majority of the segments, the Main Set, while
the other clusters contain more specific patterns, the Rare
Sets.

In the second cluster phase, we focus on the Main Set,
which has 24,010 samples. This time we use the normal co-
ordinates. The clustering algorithm used is once more the
KMeans++ algorithm. After trying with a wide range of
number of clusters (2-60) we chose the number 8. The sil-
houette index is lower with respect to the previous cluster-
ing phase, but it reaches its best value (0.63) with 8 clusters.
It makes sense for the silhouette to be lower since although
these clusters identify sequences with a predominance of
certain shot sizes and subjects, they also contain the other
sizes and subjects in lower quantities. We call Basic Editing
Sets the set of clusters made of the union of the Main Sets
with the Rare Sets.

We use the Basic Editing Sets with the editing pace
and trend labels in the third clustering step. These labels
are treated as categorical variables and fed to a Kmeans++
model. This time we stop at 50 classes with a silhou-
ette index of 0.91. We could further increase the number
of classes; however, if we increase the number of clusters
too much, the corresponding labels are too specific and do

Cluster final classes (n sample)
1 44(11), 8(22)
2 30(14), 44(81), 8(132)
3 14(25), 16(28), 21(23), 30(13), 42(4)
4 10(72), 14(510), 16(99), 21(496), 30(141), 42(180)
5 1(541), 31(301), 34(265), 41(163),

10(189), 32(200)
6 20(382), 25(438), 47(138), 46(113),

13(19), 22(2), 32(65), 48(4)
7 15(1381), 19(372), 45(131),

49(131), 6(2356), 7(1421),
2(1421), 22(764), 13(220), 35(201), 48(96)

8 23(521), 3(714), 38(164), 43(133)
2(1), 22(1), 29(16), 35(79), 4(83), 48(1)

9 17(614), 24(160), 28(289), 39(236),
29(95), 37(197), 4(190)

10 11(301), 26(381), 36(25), 9(31),
5(49), 12(19), 37(102), 40(8)

11 0(1207), 27(457), 33(258), 18(651),
9(234), 36(321),
40(226), 5(2196), 12(1284)

Table 7. On the right are the clusters identified from the first two
phases; on the right are the final labels identified for those classes.

layer(type) output shape number of parameters
Embedding (None, 30, 30) 300,000
LSTM (None, 100) 52,400
Dense (None, 50) 5,050

Table 8. Total trainable parameters 357,450

not contain enough samples. To validate our representation
now, we use an LSTM classifier. To validate our model we
have used a 10-fold stratified cross-validation. The overall
accuracy is 92.8%.

5.1. Experimental Settings

The clustering algorithm used was the KMeans++, the
number of initialization was set to 20. The LSTM model for
sequence classification used was an adaptation of the code
available here[7]. The number of words is 10,000, while the
embedding vector length was set to 30. Table 5.1 shows the
architecture of the LSTM model used. The optimizer used
was Adam, while the loss function is the categorical cross-
entropy. The batch size is 32 and the number of epochs
is 20. The code was developed in Python using the SciKit
Learn and Keras Libraries.

5.2. Preliminary Analysis

Table 5 shows the composition of the Basic Editing Sets
and which final classes are formed from them. The classes
in italics are the classes that are created from different Ba-



Precision Recall f1-score
macro average 85.7% 85,8% 85.5%
weighted average 92.0% 92.8% 92.4%
Accuracy 92.8%

Table 9. The different cluster identified after the first two clustering
phases.

sic Editing Sets. Of the 50 final classes, 28 are created from
just one class, while the remaining 22 are created from mul-
tiple Basic Editing Sets. Table 5.2 shows the results of the
LSTM classifier in terms of Precision(P), Recall(R), and f1-
score(f1). Mavg is the macro-average, i.e., the f1-score is
calculated for each label and then averaged without taking
into account the proportion of different classes, while Wavg,
the weighted average, does. All scores are averaged over the
10 scores from the 10 different folds. Overall, the perfor-
mance of the classifier is good enough, but there are some
areas where the performance drops. For classes 8 and 44, it
is not able to detect a single sample. First of all, both classes
do not have many samples and are mixed classes. So they
also contain samples from different classes. The problem
with mixed classes is that they group samples from different
basic processing patterns based on similarities in trend and
editing pace. One way to solve this problem is to increase
the number of clusters in the third clustering stage. How-
ever, this degrades the performance of the classifier, which
in turn complicates the analysis of the segments. For exam-
ple, if one increases the number of classes to 70, the over-
all accuracy remains in the same range, while the macro-
average of the f1 score is slightly worse at 84%, which
means that the classifier recognizes a lower percentage of
classes. If the number of classes is increased to 90, the f1
score drops to 75%. On the other hand if we reduce the
number of classes the performance is better but the classes
are less defined. In table 4.3 we have reported the perfor-
mance of an LSTM trained with 30 classes. In this table we
have also included the results of the LSTM classifier trained
without the editing pace and without the editing trend sce-
narios. While accuracy and weighted f1-score marginally
benefit from the elimination of the trend and editing pace
attributes the macro average significantly drops, especially
when the trend attribute is removed.

The identified classes characterize more or less specific
patterns. If we look at two segments coming from two
classes defined by different basic editing patterns, editing
paces, and trends, the differences are evident. For in-
stance, 6 is a segment taken from ”StarTrek:Insurrection”
by Jonathan Frakes. There is a fast editing pace and a mix
of mainly medium and wide shots in which the characters
run and shoot across the location. A completely different
structure is shown in segment 2 7, taken from ”Children
of a Lesser God” by Randa Haines. This segment is taken

Figure 5. Precision Recall and f1 score

from class 46, a class that derives from a basic editing pat-
tern that is characterized by close-ups and medium shots of



Figure 6. Segment from StarTrek. For a better visualization https://www.youtube.com/watch?v=-1gCG8m1SHU, from the
0:30 to 1:00

Figure 7. Segment from Children of a lesser god. For a bet-
ter visualization https://www.youtube.com/watch?v=
1pJywLQLzcA, from 1:30 to 2:00

Figure 8. Segment from Thoroughbreds https://www.
youtube.com/watch?v=1bBOUr7rAHw, from the 0:30 to
1:00

humans, usually representing dialogues. In this scene, we
have a much slower pace with respect to segment 1 and the
focus is more on the characters rather than the global con-
text. If we take two segments from different classes that
come from the same basic editing pattern cluster we notice
fewer differences. The segments shown in 1 are extracted
from class 43, which is entirely created from basic editing
set 8. The complete segments are reported in Figure 8 and
in Figure 9. The scene segment represented in both cases
contains mainly medium shots of people interacting with
objects. The fact that the two segments end in the same way
is partly coincidental. By this, we mean the segments repre-
sented by a class can have varying structures as long as they
stay within the limits indirectly defined by the editing pace
and trend labels.

5.3. Limitations

In some cases, the sequences identified by the same la-
bel, while they look alike from a segment representation
visually, are different. We can show the reason behind this
issue with a unique segment 10. This segment is represented
with all medium shots. However, the shot sizes vary. This
is because the medium shots shown are at the extremities
of the medium shot class. Hence one looks more like a
close-up while the other one looks more like a long shot. To
overcome these issues, a more fine-grained shot size classi-
fication system could be implemented while also including
more features from the AVE dataset, such as number of peo-
ple and camera movement. These countermeasures would
also enrich the data representation allowing us to charac-

Figure 9. Segment from the birdcage. For a better visualization
https://www.youtube.com/watch?v=1pJywLQLzcA,
from 1:00 to 1:30

Figure 10. Segment from Pacific Rim. For a better visualization
https://www.youtube.com/watch?v=-7Sow81yi24,
from 1:30 to 2:00

terize more complex editing patterns. Another issue is that
even if LEMMS can identify more defined labels, there are
not enough data examples for the LSTM classifier to learn
and thus properly validate them. Thus, if we want to iden-
tify more labels and their corresponding segments, we need
to increase the amount of data to be analyzed.

Finally, although the trend attribute has proven useful in
characterizing editing sequences a smarter strategy should
be implemented to better characterize the mixed trends.

6. Conclusion and future work

Although the qualitative and quantitative analysis re-
vealed some limitations of the current approach, overall the
LEMMS methodology achieves good results. We identified
and distinguished 50 classes of editing patterns, character-
ized by shot size, shot subject, and editing pace represent-
ing real movie scene segments. To validate the identified
classes, we successfully trained an LSTM classifier with an
overall accuracy of 92.8%. Aside from overcoming current
limitations, interesting future research directions include
the integration of the LEMMS methodology with video edit-
ing tools and additional features, such as the textual scene
labels provided in the Condensed Movies dataset[3].

https://www.youtube.com/watch?v=-1gCG8m1SHU
https://www.youtube.com/watch?v=1pJywLQLzcA
https://www.youtube.com/watch?v=1pJywLQLzcA
https://www.youtube.com/watch?v=1bBOUr7rAHw
https://www.youtube.com/watch?v=1bBOUr7rAHw
https://www.youtube.com/watch?v=1pJywLQLzcA
https://www.youtube.com/watch?v=-7Sow81yi24
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