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Abstract—Compressed Sensing (CS) has recently emerged as
an effective tool to simultaneously acquire and compress analog
waveforms in low-resource sensing devices. Its mechanisms have
been also extended by both adapting the sensing stage to the
actual class of input signals, and granting it the ability to reject
disturbances. Regrettably, the resulting design flow entails the
solution of two optimization problems with a potentially huge
number of variables. This work overcomes this impasse by
proposing a Project-Gradient-Descend method algorithm that
drastically reduces the required CPU time to obtain a solution.

I. INTRODUCTION

In many modern applications, sensors are the natural in-
terface between data processing and the physical world.
The produced data comes from analog waveforms that are
filtered, converted in digital words and eventually com-
pressed/encrypted before they are wirelessly dispatched. Fur-
thermore, in many distributed sending paradigms, sensors must
be as parsimonious as possible, i.e., signal acquisition, digital-
ization and any other signal manipulation before transmission
must be done at an almost negligible cost in order to preserve
battery lifetime.

In this scenario, Compressed Sensing (CS) [1] is as an
innovative solution capable to merge data compression and
low-power requirements. Compression can be performed di-
rectly in the analog domain [2]–[4]; alternatively, CS is to
be considered as a low-power digital compression algorithm
[5]–[7]. In addition, it also provides some level of privacy [8]
without paying the cost of implementing a typical encryption
system [10].

An encoder block based on CS take chunks of input
signals and projects them over a limited set of predefined
sensing sequences. The corresponding output, the measure-
ments, represent the compressed data to be transmitted to the
decoder stage that is able to recover the original waveform. By
arranging the sensing sequences in a matrix, one highlights the
main CS feature: data compression is performed by a simple
matrix multiplication. This simple approach is still able to
guarantee compression ratios that are close to values obtained
with other more computational hungry algorithms [8].

The classical CS theory has been extend by [11] with the
introduction of the rakeness concept that adapts the sensing
sequences to the actual class of input signal1 This rakeness-
based approach has been further expanded in [14] considering

1One exploits the statistical features of input signals to increase signal
reconstruction quality by suitably design matched acquisition sequence. This
is similar to what happens in (chaos-based) DS-CDMA communication, where
chip waveforms, spreading sequence statistics and rake receivers taps are
jointly selected to collect (rake) as much energy as possible at the received
side [12] [13]. Readers interested in the methodology for sequence generation
may see [15].
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Fig. 1. CS system block diagram including the effect of noise.

also the impact of disturbances affecting the acquired signal,
i.e., the sensing sequences statistics depend also on the distur-
bances features. A block scheme of this approach is reported
in Figure 1, where x and x̂ are the input and the reconstructed
signal while ν represents disturbances. In [14], disturbance
rejection is achieved by solving an optimization problem with
a number of variables that is quadratic with respect to the
signal dimensionality. The authors used a general purpose
solver that works only if the signal dimensionality is limited.
Yet, several CS applications involve highly dimensional signals
and a method able to solve the same optimization problem
for hundreds or thousands of variables is required. Here
we propose a tailored algorithm that uses projected gradient
descent and alternating projection.

The paper is organized as follows. Sec. II briefly introduces
CS theory and its extension with rakeness and disturbance
rejection. Sec. III describes the proposed algorithm in detail
and compares its computation times with a general purpose
solver, and in Sec. IV the effectiveness of the approach is
shown with a toy case. Finally, we draw the conclusion.

II. COMPRESSED SENSING, RAKENESS AND
DISTURBANCE REJECTION

A. Standard CS Approach

We consider a discrete-time input modeled as a vector
x ∈ Rn of signal samples composed of Nyquist rate samples
in a certain window, while ν ∈ Rn represents an additive
disturbance. CS bases its effectiveness on the κ-sparsity prior:
a basis D ∈ Rn×n exists such that expressing x along D
yields x = Dξ for a vector of coefficients ξ ∈ Rn with
at most κ � n non-zero elements. Under this assumption,
CS processes x + ν by projecting it onto m < n sequences
arranged as rows of a sensing matrix A ∈ Rm×n to obtain a
measurement vector y ∈ Rm

y = A(x+ ν) = Ax+Aν = ADξ +Aν (1)

Starting from y, a decoder may reconstruct x̂ = Dξ̂ as the
best approximation of x according to y and to the priors. The
recovery procedure exploits the sparsity prior to select, among
the infinite number of n-dimensional vectors ξ compatible with
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the values in y, the sparsest one ξ̂. Mathematically, ξ̂ is the
solution of the convex optimization problem

ξ̂ = arg min
ξ
‖ξ‖1 s.t. ‖ADξ − y‖22 ≤ ε2 (2)

where ‖ · ‖p is the `p-norm, and ε accounts for the effect of
disturbances. Classical CS theory (S-CS) [1] guarantees that
the reconstruction error ‖x̂− x‖2 is almost always vanishing
if, for example, the elements of A are instances of independent
and identically distributed (i.i.d.) Gaussian random variables
and m = O(κ log(n/κ)).

B. The Rakeness-based CS Approach

The classical approach has been extended in [7], [11] with
the rakeness CS (R-CS) approach. Let Cx = E[xx>] be the
correlation matrix of the input signal, and ·> indicate the
transpose operator. We define the localization of x as

Lx =
tr(Cx2)

tr(Cx)2
− 1

n
(3)

where tr(·) is the matrix trace. Mathematically, Lx is an
indication of the deviation of Cx from the n × n identity
matrix In characterizing a white signal, for which Lx = 0.

Under the additional (typically verified [11]) assumption
that the class of input signal is localized, CS performance
can be improved by designing A according to the R-CS. To
sketch it, let a> ∈ Rn be a generic row of A. The idea behind
R-CS is to increase the energy of the signal-related part Ax
of y = A(x + ν), i.e. ρ = E

[(
a>x

)2]
= tr (CaCx). This

is done by drawing a as a random vector with a correlation
matrix Ca = E[aa>] that depends on Cx and thus on the Lx.
Mathematically, one has to solve

ρ∗ = max
Ca

tr (CaCx) (4a)

s.t. Ca> = Ca, Ca � 0 (4b)
s.t. tr(Ca) = 1, La ≤ τLx (4c)

where (4b) ensure that Ca is a correlation matrix (i.e., it
is symmetric and positive semidefinite), and the first in (4c)
normalizes the average energy of a. The role of 0 ≤ τ ≤ 1
in the second of (4c) is to limit the localization La of a to a
fraction of Lx thus avoiding overadaptation, a common setting
is τ = 1/4. Problem (4) has been solved analytically [7], [11]:

ρ∗ = tr(Cx)

(
1

2
Lx +

1

n

)
(5a)

Ca =
1

2

(
Cx

tr(Cx)
+
In
n

)
(5b)

where In is the n × n identity matrix. In order to improve
performance, one can simply generate the a according to the
correlation matrix in (5b) [15].

C. Rakeness-based CS With Disturbance Rejection

If Cν = E[νν>], it has been shown in [14] that reduc-
ing the average energy E

[(
a>ν

)2]
= tr (CaCν) then the

disturbance-related part Aν in y = A(x + ν) results in an

1

0 0.1 0.2 0.3 0.4 0.5

�40

�30

�20

�10

0

f{fs

N
or

m
al

iz
ed

PS
D

[d
B

]

Sxpfq
Sνpfq

SRCS
a pfq

SRCSd
a pfq

Fig. 2. With n = 64, normalized Power Spectral Densities of the considered
class of input signals (Sx(f)) and disturbances (Sν(f)) along with profiles
for both R-CS (SRCS

a (f)) and R-CSd with r = 0.95 (SRCSd
a (f)).

attenuation of the noise term in the reconstructed signal x̂. In
other terms, we have a disturbance rejection effect without the
need of any additional filter.

Being able to increase tr (CaCx) and, at the same time,
to decrease tr (CaCν) will help the reconstruction stage to
recover x (as for R-CS) and, at the same time, will reduce the
contribute of the disturbance. This results in a trade-off as it
is not possible to maximize tr (CaCx) and at the same time
minimize tr (CaCν). The authors of [14] propose an approach
R-CSd based on the following minimization problem.

min
Ca

tr (CaCν) (6a)

s.t. (4b) (4c)
s.t. tr(CaCx) ≥ rρ∗ (6b)

where 0 ≤ r ≤ 1 is a parameter whose value is typically close
to 1 and sets how much we are allowed to depart from the
solution of the rakeness problem (4).

The ratio behind (6) is to minimize the energy collected
from the disturbance under the constraints ensuring that Ca
is a proper correlation matrix, and providing that the energy
collected from the signal is not too small with respect to what
could be collected when the disturbance was not considered.

Figure 2 shows normalized power spectral densities for a
toy case with n = 64. Here a band-pass signal is perturbed by
a disturbance composed by two contribution, one passband
with a partial overlap with the input signal, and a second
narrowband signal. Figure reports also spectra for the R-CS
problem as well as for the R-CSd problem. The SRCSd

a (f)
profile is high in the same band of the signal, as for SRCS

a (f),
while it rapidly decreases when the Sν(f) is high.

III. PROJECTED-GRADIENT-DESCENT AND ALTERNATING
PROJECTIONS APPROACH

The optimization problem in (6) is well-formed as it entails
a linear objective function and convex constraints. Hence, it
may be solved by means of standard convex solvers like CVX
[20]. Yet, general purpose solvers tend to suffer from the
increase of problem dimensionality that, in our case, is O(n2)
as we have to determine the entries of an n × n correlation
matrix. Regrettably, quite often the application of CS to signal
acquisition entails signal dimensionalities in the hundreds (or
thousands) and the resulting problem sizes may be completely
out of the reach of non-specialized solvers. This is why we
develop here a tailored iterative procedure for solving (6) in
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which the complexity of each iteration is O(n2) and can be
easily executed on standard workstations.

The first step is reformulating (6) in terms of convex subsets
of the space of n×n matrices. Let CPSD be the subset of all
symmetric and positive semidefinite n×n matrices. With this,
constraints (4b) can be simply written as Ca ∈ CPSD. Let also
be CEn the class of matrix satisfying the energy constraint
(first in (4c)), Cτ−Loc satisfying the second constraint in
(4c) and in (4b), and Cr−Rak satisfying (6b) and the second
constraint in (4b).

With this, the R-CSd problem in (6) translates into

min
Ca

tr (CaCν)

s.t. Ca ∈ CPSD ∩CEn ∩Cτ−Loc ∩Cr−Rak

(7)

that, observing that the gradient ∇Catr (CaCν) = Cν is
a constant matrix, is a classical case of a bounded-gradient
objective function subject to convex constraint. Such a problem
can be effectively tackled by a projected-gradient-descent
approach [16]. In order to apply this method, let ΠC be the
projection operator on a set of matrices C, i.e., the operator
that takes any n × n matrix X and maps it into the matrix
Y = ΠC(X) such that Y ∈ C and ‖X − Y ‖ is minimum.

Then, starting from an initial matrix Ca(0) that satisfies the
constraints in (7), one can compute iteratively

Ca(t+1) = ΠCPSD∩CEn∩Cτ−Loc∩Cr−Rak

(
Ca(t) + δ(t)C

ν
)

(8)

for a suitably non-increasing sequence δ(0) ≥ δ(1) ≥ . . . .
It can be proved that the sequence of Ca(t) converges to the
optimal solution as t→∞. A good choice for Ca(0) is the Ca

from (5b), i.e., the solution of the R-CS problem.
The iteration in (8) needs to compute the projection on a

convex set that is the intersection of a number of elementary
convex sets. Such a projection operator can be computed
by means of the alternating projection method [17], [18].
To explain how it works, let us pretend that we have only
two convex sets C0 and C1 and that we want to compute
ΠC0∩C1

(C) for some matrix C. The projection is computed
iteratively producing a sequence of matrices P(j) and using
two auxiliary sequences of offset matrices ∆P0,(j) and ∆P1,(j).
Initialization sets P(0) = C and ∆P0,(0) = ∆P1,(0) = 0. Then,
the s-th step of the procedure computes

P(2s+1) = ΠC0

(
P(2s) −∆P(2s)

)

∆P0,(s+1) = P(2s+1) − P(2s) −∆P0,(s)

P(2s+2) = ΠC1

(
P(2s+1) −∆P1,(s)

)

∆P1,(s+1) = P(2s+2) − P(2s+1) −∆P1,(s)

As s → ∞ one has P(2s+1) → P(2s) → ΠC0∩C1
(C).

The scheme straightforwardly generalizes to more than two
elementary convex sets in the intersection, and reveals that
the overall projection in (8) can be computed starting from
the individual projection operators on CPSD, CEn, Cτ−Loc
and Cr−Rak.

Assuming that C can be spectrally decomposed as C =
EΛE>, where E is the matrix of orthonormal eigenvectors
and Λ is the diagonal matrix of the corresponding eigenvalues,
then

TABLE I
COMPUTATIONAL TIME RATIO, CPUratio , BETWEEN GENERAL PURPOSE

SOLVER AND THE PROJECTED-GRADIENT-DESCENT ALGORITHM

n 32 64 96 128

CPUratio 3.3 5.9 5.8 15.9

ΠCPSD(C) = Emax{Λ, 0}E>

The energy constraint (4c) and the minimum rakeness con-
straint (6b) define two linear subspaces and the corresponding
projection operators are simple affine transformations follow-
ing the direction of the gradient of the constraint

ΠCEn(C) = C +
1− tr(C)

n
In

ΠCr−Rak
(C) = C +

{
rρ∗−tr(CCx)

tr(Cx2)
Cx if tr(CCx) < rρ∗

0 otherwise

Assuming tr(C) = 1, the limit on localization (second
constraint in (4c)) is a homogeneous quadratic constraint and
projection can be obtained by scaling

ΠCτ−Loc
(C) = C

{√
τLx+1/n
tr(C2) if tr(C2) > τLx + 1/n

1 otherwise

To assess the computational resources needed by this ap-
proach, Table I reports the CPU time ratio between the
general purpose CVX solver and the proposed method for
n values ranging from 32 to 128. As expected, the tailored
approach amply outperforms a general purpose solver, where
for n = 128 the CPU time of the proposed approach is 5.31
seconds2. In addition to this, for values of n larger than 128
the CVX solver is not able to solve the problem.

IV. SETTINGS AND NUMERICAL RESULTS

To assess the effectiveness of the proposed method we
consider time windows composed by n = 512 successive
Nyquist samples, i.e., a case for which the CVX solver fails.

Spectral profiles for input signals and disturbances are the
same used in the previous case while power spectra for both
R-CS and R-CSd are reported in Figure 3-(a). Remarkably, the
comparison of SRCS

a (f) and SRCSd
a (f) for n = 64 (Figure 2)

with the ones in Figure 3-(a), where n = 512, shows how
an increase in the signal dimensionality allows more effective
spectral profiles.

As before, we use band pass input signals while distur-
bances spectral profile is composed by a bandpass contribu-
tion, concentrated in a region with a partial overlap with the
input signal PSD, along with a narrowband disturbance. This
means that both, signals and disturbances posses localization.
In particular, each x is also κ-sparse with respect to the Fourier
basis with κ = 51, while each ν ia an instance of a zero-
mean Gaussian random vector. The mentioned spectral profiles
determine the correlation matrices Cx and Cν . These matrices

2All CPU times were evaluated on a standard PC with a Intel i7-6820HQ
processor and 16 GB RAM
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Fig. 3. Plot (a) reports the Normalized PSDs of x, ν and ones for sensing matrices rows according to R-CS and R-CSd with r = 0.95, while plots (b) and
(c) depict ARSNR and PCR as functions of the number of measurement m, for the three considered CS approaches and with ISDR = 15dB.

are used in (5b) and in the algorithm we propose here for the
solution of (6).

Signals are reconstructed by solving (2) via the SPGL1
toolbox [19] where the reconstruction error for each trial is
assessed by the Reconstructed Signal to Noise Ratio (RSNR)

RSNR =
‖x‖2
‖x− x̂‖2

For the overall system performance two different figures of
merit were considered. The Average Reconstructed Signal
to Noise Ratio (ARSNR), evaluated as empirical mean of
the observed values of RSNR, along with the Probability of
Correct Reconstruction (PCR), i.e., the probability that the
observed RSNR exceeds a proper threshold RSNRmin. Both are
estimated over 3000 Montecarlo trials using different signal
and disturbances instances and where sensing matrices were
generated in accordances with R-CS and R-CSd with r = 0.95.
S-CS was also included and uses sensing matrices generated
as instances of independent zero-mean unit-variance Gaussian
random variables. Considered m values range from few units
to more than 400.

Note that the effect of ν in the measurements computation
in (1) is counted by the intrinsic signal-to-disturbance ratio
(ISDR) defined as

ISDR =

(‖x‖2
‖ν‖2

)

dB

where we set ISDR = 15 dB while RSNRmin = 17 dB.
Figure 3 shows system performance in terms of ARSNR

(b) and PCR (c). For both figures of merit R-CSd clearly
outperforms both R-CS and S-CS. These results confirm the
ability of the R-CSd to partially reject disturbance affecting the
input signal without any additional filtering stage. Remarkably,
the signal dimensionality in this example is such that a
traditional general purpose solver is not able to solve the
optimization problem (6), while the algorithm discussed in
Section III converge to a solution in a reasonable amount of
time.

V. CONCLUSION

A Project-Gradient-Descent and alternating projections
method to solve the rakeness minimizzation problem for
disturbance rejection is presented. As expected, it drastically
outperforms a general purpose solver in terms of CPU time
and, more important, it is able to converge to the minimum
point also for reasonably large values of n.
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