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Physics-informed neural networks (PINNs) are gaining popularity as powerful tools for solving nonlinear Partial 
Differential Equations (PDEs) through Deep Learning. PINNs are trained by incorporating physical laws as soft 
constraints in the loss function. Such an approach is effective for trivial equations, but fails in solving various 
classes of more complex dynamical systems.

In this work, we put on the test bench three state-of-the-art PINN training methods for solving three popular 
Partial Differential Equations (PDEs) of increasing complexity, besides the additional application of the Fourier 
Feature Embedding (FFE), and the introduction of a novel implementation of Curriculum regularization.

Experiments evaluate the convergence of the trained PINN and its prediction error rate for different training 
sizes and training lengths (i.e., number of epochs). To provide an overview of the behaviour of each learning 
method, we introduce a new metric, named overall score.

Our experiments show that a given approach can either be the best in all situations or not converge at all. The 
same PDE can be solved with different learning methods, which in turn give the best results, depending on the 
training size or the use of FFE. From our experiments we conclude that there is no learning method to train them 
all, yet we extract useful patterns that can drive future works in this growing area of research.

All code and data of this manuscript are publicly available on GitHub.
1. Introduction

Deep learning techniques have revolutionized scientific research in 
recent years [1–3]. The availability of data and the increasing plethora 
of methods to extract information from them are changing our under-

standing of the physical world and the way we dive into it. However, 
complete data acquisition for many complex real-world phenomena 
remains untractable. Faced with these scenarios, purely data-driven ap-

proaches present difficulties when the data is scarce or insufficient for 
the complexity of the problem. Moreover, many scientific problems also 
have to satisfy certain physical principles (e.g., conservation of mass, 
momentum, etc.), which is not guaranteed in traditional machine learn-

ing techniques. On the other side, many physical or engineering systems 
can also be modelled, or at least approximated, by means of equations 
describing their behaviour. The recent paradigm of blending these two 
worlds to take advantage of both data analytics and scientific discov-

ery (by modelling equations and physical constraints) has been referred 

* Corresponding author.

to as Theory-Guided Data Science or Physics-Informed Machine Learn-

ing [4–7].

An emerging direction in this field is provided by Physics-Informed 
Neural Networks (PINNs) [8–10]. PINNs are neural networks that 
take advantage of machine learning methodologies to solve scien-

tific problems by constraining the networks to follow known physical 
laws [11–13]. This is generally done using the residuals of the under-

lying differential equations as extra loss function terms in the learning 
stage. This approach leads to the rise of a new class of function ap-

proximators, able to encode these laws or infer them from unknown 
data [14,15]. A naive application of the PINN framework is known to 
suffer from many difficulties in solving classes of problems that exhibit 
highly nonlinear, chaotic, or multiscale behaviour [5,16]. To cope with 
this issue, many works in the past few years tried to extend the origi-

nal implementation to improve robustness and generalizability [17–20]. 
Similarly, many interpretations have been proposed on why PINNs fail 
in these problems [16]. However, the currently proposed approaches 
tend to address specific issues raised in some contexts, ignoring how 
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these strategies perform in other use cases, and making this process 
hard to generalize.

The aim of this work is to investigate the ability of PINNs to learn 
in different settings with variable difficulty and evaluate the limitations 
of different state-of-the-art PINN training strategies. To the best of the 
author’s knowledge, the current literature is missing a multi-faceted 
experimental comparison on PINN’s learning strategies across different 
use cases.

The contributions of the paper can be summarised as follows.

1. We compare 3 PINN learning approaches among the most relevant 
in the state of the art, by applying them in 3 benchmark use cases 
with partial differential equations of increasing complexity.

2. We analyze the impact of different parameters, such as training 
size and the number of epochs, on the results evaluated in terms 
of convergence rate and on the final capability of the PINNs to 
model the ground truth in terms of Mean Squared prediction Error 
(MSE).

3. We introduce a new version of curriculum regularization, which is 
included in the experimental comparison and which yields better 
results than previous state-of-the-art solutions in specific condi-

tions.

4. We propose an overall score metric to evaluate the capability of a 
learning method to provide high-performance models in terms of 
convergence and prediction error rate.

5. We extract useful patterns out the variable behaviour of the differ-

ent training methods and PDEs, which can drive future works and 
suggest research directions in this growing field.

The paper is organised as follows. Section 2 introduces the basic 
concept of the PINN algorithm in its vanilla implementation. Section 3

presents the related works with the most relevant strategies to improve 
the PINN learning. Section 4 describes the methods included in our ex-

perimental evaluation, whose design is provided in Section 5. Section 6

shows the experimental results of our analysis, measuring the impact 
of each method. Finally, Section 7 summarises the results on a broader 
view, and Section 8 draws conclusions and presents future works.

All code and data of this manuscript are publicly available at 
https://github .com /simone7monaco /PINNTrainingStrategies.

2. Physics-informed neural networks

The use of neural networks for the solution of parametrised Partial 
Differential Equations (PDEs) has a long history in the literature [21–

23]. The PINN framework [24] addresses this task in a natural way by 
taking advantage of automatic differentiation. Suppose that we want to 
solve a dynamical problem which is following a known law within its 
domain Ω, namely:

𝜕𝑢

𝜕𝑡
= [𝑢] 𝑥 ∈Ω, 𝑡 ∈ [0, 𝑇 ], (1)

where  [⋅] stays for a generic differential operator and 𝑢(𝑥, 𝑡) is the 
solution of the system, that is, the target of the neural network. To com-

pletely define the problem, we will add initial conditions and boundary 
ones (e.g. periodic, fixed, etc.) in the form:

[𝑢] = 𝑔(𝑥, 𝑡) 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇 ],

𝑢(𝑥,0) = ℎ(𝑥), 𝑥 ∈ Ω̄,
(2)

where 𝐵 can be another differential operator defined on the boundaries 
of Ω, and Ω̄ denotes the interiors of the domain in which the initial 
condition is provided.

Within this context, the PINN can be seen as the approximator 
𝐹𝑁𝑁 (𝑥𝑖, 𝑡𝑖) ∶= 𝑢̂𝑖 can be trained by enforcing together each of these 
constraints. The regular/vanilla implementation proposed by Raissi et 
al. [24] is configured as a sum of the residuals from the elements intro-
2

duced previously:
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 = 𝑖𝑛𝑖𝑡 +𝑏𝑜𝑢𝑛𝑑 +𝑓 , (3)

where

𝑖𝑛𝑖𝑡 =
1

𝑁𝑖𝑛𝑖𝑡

∑
𝑖

|ℎ(𝑥𝑖) − 𝑢̂𝑖|2,
𝑏𝑜𝑢𝑛𝑑 = 1

𝑁𝑏𝑜𝑢𝑛𝑑

∑
𝑖

|𝑔(𝑥𝑖, 𝑡𝑖) −
[
𝑢̂𝑖
]|2,

𝑓 = 1
𝑁𝑓

∑
𝑖

|𝑓 (𝑥𝑖, 𝑡𝑖)|2.
(4)

Each normalised sum in Eq. (4) spans all the sampled points from 
the respective domains. We also defined 𝑓 (𝑥, 𝑡) as the residuals of the 
network evaluating Eq. (1):

𝑓 ∶= 𝜕𝑢̂

𝜕𝑡
− [𝑢̂]. (5)

Finally, an additional data-driven term can extend this strategy to 
consider also experimental measures in various scientific problems.

As introduced in Section 1, literature shows that this framework 
fails to converge to the right solution in many cases. In Section 3, we 
collect some of the most relevant implementations that address these 
limitations.

3. Related works

Many works in the literature addressed the PINN application to solve 
different linear and nonlinear PDEs [24,8,5], although recent studies 
have also shown that PINNs can produce highly inaccurate approxima-

tions or even be unable to reach convergence when facing other classes 
of “harder” problems. One of the greatest issues leading to these re-

sults lies in the gradient descent applied to the PINN multi-objective 
loss function.

We can observe that the elements in Eq. (3) may have significantly 
different cardinalities, leading the weight update procedure of the neu-

ral network to pay more attention to some components than others. 
The general approach to overcome this problem is to set weighting 
coefficients for each loss component. When focussing their work on 
dissipative equations (i.e. not reversible), Wight et al. [25] assumed 
the initial condition term as the most important one to reach conver-

gence. Then they add a fixed hyper-parameter 𝐶0 ≫ 1 as the coefficient 
of the 𝑖𝑛𝑖𝑡 term. This choice comes from the intuition that a PINN fail-

ure at some time 𝑡 would more likely lead to errors in the predictions 
at subsequent times. To automatically obtain the optimal value for this 
coefficient, Wang et al. [18] suggested making it variable during train-

ing, and selecting it from the statistics on the loss function gradients. 
The authors then applied this strategy, which is configured as a learn-

ing rate annealing, to balance all the components of Eq. (3). Another 
contribution to this approach is provided by [26], deriving the Neural 
Tangent Kernel matrix for the neural network and using its eigenvectors 
to define the loss coefficients.

From another perspective, many works tried to improve the vanilla 
PINN implementation by focusing on its tendency to propagate errors 
as the time step increases. This problem has been addressed by a time-

adaptive sampling strategy [25], in which the authors defined in the 
training phase a gradually increasing upper bound in time 𝑡𝑖 and sample 
points in the time range [0, 𝑡𝑖]. This procedure is repeated for 𝑁 steps, 
having 𝑡𝑁 = 𝑇 , expecting a solution learnt throughout the domain at the 
end of the training.

An analogous approach is the sequence-to-sequence learning pro-

posed in [27], in which the authors still separate the entire time domain 
into regions of size Δ𝑡 and train the network on one of them at a 
time, having the next time-step initial conditions propagated from the 
previous one. The fact that these approaches rely on a reasonable con-

vergence at one step to pass to the following makes them difficult to 
configure.

With the same motivation but with the intention of automatically 

letting the network learn which time step to consider based on its pre-

https://github.com/simone7monaco/PINNTrainingStrategies
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Fig. 1. Workflow diagram with the Vanilla training pipeline and the analysed enhanced strategies (the green hexagons).
diction, Wang et al. [16] proposed a new definition of the PINN loss 
function called the causal training strategy. In particular, they consid-

ered the 𝑓 term of Equation (3) as a composition of multiple contribu-

tions for each time step in [0, 𝑇 ] and weighted each of them based on 
how much the network has learnt in the earlier steps. This approach is 
effective in overcoming the time-dependency issue. Then, experimental 
evaluations of the authors prove that it leads to sensible results with no 
need for additional normalisation strategies on the other components 
of the loss function. We provide more details on this strategy and its 
implementation in section 4.2.

From a broader point of view, PINN failures occur because the loss 
function profile makes convergence harder than usual supervised tasks. 
In other words, the network is highly likely to get stuck at a local 
minimum as the complexity of the optimisation problem increases. A 
curriculum regularisation strategy [27] allows the system to find a good 
initialisation point by training the network to learn problems of increas-

ing difficulty in the same training phase. We will discuss this method in 
detail in Section 4.1.

Among this collection of enhanced training strategies, it is rather 
difficult to find which is the best for each use case and/or if one sin-

gle strategy can effectively apport benefits to the solution of a general 
physical system. Therefore, in the following of the paper we present the 
results of an experimental comparison among some of these strategies, 
which, to the best of our knowledge, are the most promising and the 
most reproducible thanks to the public resources made available by the 
original authors (papers, source code, datasets).

4. Learning techniques

This section will introduce the advanced training strategies we will 
evaluate further. Fig. 1 shows the Vanilla PINN training, in which the 
neural network weights are updated via optimization of the differen-

tial equation’s residual loss and boundary/initial losses. Green hexagons 
represent alternative strategies that can eventually be introduced to op-

timize the training.

4.1. Curriculum regularisation

Curriculum learning was first introduced in the context of PINNs by 
Krishnapriyan et al. [27]. The basic idea is that PINN convergence fails 
when the parametrised differential equation residuals make the opti-

misation problem hard to solve. Contextually, the same equation with 
different parameters could lead to a simpler problem. One example of 
this behaviour is the convection equation (more details in Section 6.1), 
which is parametrized by a constant 𝛽. Fig. 2 shows the exact solution 
of the equation by increasing the parameter 𝛽. The authors proved that 
3

vanilla PINNs get lower and lower performance results as this value 
increases, suggesting that the problem is actually getting more com-

plex. Within this context, one can start training the network on the 
easy-problem parameter value and make it vary during the training till 
reaching the desired value. In this way, at the end of each transition 
step, the network is ideally closer to the minima of the next step, which 
is a good initialisation point for the new (harder) problem.

One of the main limitations of this method is that it requires prior 
knowledge of the system’s behaviour on the variation of its parameter. 
This is even more critical when the parameters are more than one. Fur-

thermore, the final behaviour of a PINN is not straightforward; then the 
design of the training strategy requires some intuition about its actual 
performance.

In our implementation, once a target value hard is defined for a sys-

tem parameter, we define a fixed number of steps to achieve it, starting 
from an easy initial value. The baseline implementation of this strategy 
assigns a fixed number of epochs at each of these steps. In this way, the 
network is trained on the actual problem only in the last step, assum-

ing that the preliminary training drives the network sufficiently close 
to the final minimum.

From a slightly different perspective, we can instead think of cur-

riculum regularisation just as an initialization procedure to put the net-

work on the right way to the desired solution. Then, the length of the 
steps before the last one should be minimal to prepare the learning for 
the subsequent task. Calculating the best point at which to stop each 
step is not straightforward, but to give a measure of the effect of this 
change, we designed a novel strategy, depicted in Fig. 3 as Curriculum 
v2. Here we want to give “more time” to the network to focus on the 
target problem. To this aim, we simply split the total training time into 
one more curriculum step, letting the network train for more epochs on 
the final values of the parameters. This is arguably just one of the many 
alternatives to modify the curriculum strategy by emphasizing mostly 
one perspective or another. In Section 5, the two curriculum learning 
strategies, named v1 (the original) and v2 (our newly proposed one) are 
experimentally compared.

4.2. Causal training

The causal training strategy [16] considers the problem of PINNs de-

grading their prediction performance over time as if they did not respect 
physical causality within the dynamical system. The authors prove this 
behaviour by rewriting the residual component of Equation (4) to em-

phasise that the elements of the summations related to time 𝑡𝑖 are based 
on the predictions at time 𝑡𝑖−1, which are possibly incorrect. Therefore, 
they propose to pay less attention to the next time steps as long as the 
network makes significant errors in all the previous time steps. To this 
aim, they rewrite the residual term as a weighted sum of the residual 

losses evaluated at a fixed time step, namely:
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Fig. 2. Convection equation exact solutions at different values of 𝛽.
Fig. 3. Example for curriculum regularization strategy in version 1 and 2.

𝑓 = 1
𝑁𝑡

∑
𝑖

𝑤𝑖𝑓 (𝑡𝑖)

𝑤𝑖 = exp

(
−𝜖

𝑖−1∑
𝑘=0

𝑓 (𝑡𝑘)

)
,

(6)

where 𝜖 is a temperature-like parameter to define the slope of the tem-

poral weights and 𝑁𝑡 is the number of time steps in the domain grid.

In this paper implementation, we used fixed parameters 𝜖 for each 
system. The basic implementation from the original paper only applies 
to PINNs trained on a complete mesh grid. In the following, we will 
discuss whether the extension to a limited random sampling over these 
points can be effective as well.

4.3. Fourier feature embeddings

An additional strategy included in our experimental comparison is a 
way to enforce exact periodic boundary conditions in the network out-

put as hard constraints on the architecture [28]. The idea of the method 
is to rewrite the input space coordinates as Fourier components enforc-

ing the desired periodicity of the final solution. Namely, fixing 𝜔 = 2𝜋
𝐿

and a non-negative integer 𝑀 , it can be proven that the transformation

𝑣(𝑥) = (1, 𝑐𝑜𝑠(𝜔𝑥), 𝑠𝑖𝑛(𝜔𝑥), 𝑐𝑜𝑠(2𝜔𝑥), ..., 𝑐𝑜𝑠(𝑀𝜔𝑥), 𝑠𝑖𝑛(𝑀𝜔𝑥)) (7)

used as input to a function produces a result respecting periodicity on 
L by design. Then, any PINN prediction obtained on top of this em-

bedding strategy, i.e., any output of 𝑢̂([𝑣(𝑥), 𝑡]), will exactly respect the 
desired periodicity. It can be shown that such a strategy can simplify 
PINN training and reduce convergence time [16] in some benchmark 
problems. In this paper we name this strategy as Fourier Feature Em-

bedding (FFE). We evaluate its benefits when applied to the previously 
introduced training strategies.

5. Experimental design

This section describes the methods included in the experimental 
analysis. All the methods have been applied to a standard MultiLayer 
Perceptron (MLP) with 4 hidden layers of 50 units each and an Adam 
4

optimizer with a fixed learning rate of 5 ⋅ 10−4. For each use case, we 
define a mesh  ⊂Ω × [0, 𝑇 ] in the space and time domains. Initial and 
boundary conditions components of the loss function are evaluated on 
all the related points of the mesh. The PDE residuals are calculated on 
a random sample, which is a subset of fixed dimension 𝑁𝑓 , 𝑓 ⊂ , 
of the inner domain (i.e., excluding initial and boundary points). These 
samples are passed to the network as a single batch at each epoch. We 
define a fixed number of training epochs for each use case, at which 
all the methods yield no significant further improvements. As an addi-

tional hyper-parameter, we then added the number of hidden random 
samples 𝑁𝑓 in the inner mesh. We tested the performance of all the 
methods by also varying this parameter.

We experimentally observed that the error rate of the neural net-

works for the baseline solution tends to reach a plateau, either close to 
zero or significantly far from it, reaching a local non-optimal minimum. 
Within the number of epochs we fixed, we observed that the models’ 
results could have (i) reached convergence with a reasonably low error 
rate, (ii) converged to a wrong solution, or (iii) approximated the right 
solution, but still far from it, i.e., with a large error. On the basis of this 
intuition, from empirical evidence, we fixed a convergence threshold at 
0.01, considered as the “reasonably low” error rate. Such threshold al-

lows us to binary evaluate the converge, i.e., to determine whether a 
model reached convergence or not. We empirically noticed that most 
of the runs tend to be significantly higher or lower than the threshold 
value, making our results quite stable with respect to this choice.

We evaluate each learning method according to the following met-

rics.

Convergence rate. This is the ratio of experiments that reach conver-

gence (i.e., error rate below the threshold) with the same configuration 
for different random initialisations. This metric can be thought of as the 
robustness of the method with respect to the initial conditions. We re-

fer to it as 𝜎conv in the following.

Prediction error. This is computed as the MSE of each model, for all 
the points of the mesh , as

𝜖pred = 𝔼
[|𝑢̂−𝑈𝑏𝑎𝑠𝑒|2] (8)

where 𝔼[⋅] denotes the average over the space , and 𝑈𝑏𝑎𝑠𝑒 is the base-

line solution.

The above-mentioned methods are applied to 3 use cases repre-

sented by a different PDE each. The PDEs have been chosen among the 
most popular in the PINN literature, and with increasing complexity. 
They are the convection equation (Section 6.1), the reaction-diffusion 
equation (Section 6.2), and the Allen-Cahn equation (Section 6.3).

6. Experimental results

6.1. Convection equation

The first benchmark use case we consider is the convection equation. 
This system is generally used to model heat transfer or transport phe-

nomena. Having 𝛽 as the convection coefficient, we defined the problem 

with periodic boundary conditions as:
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Fig. 4. Metrics evaluation for the convection system.
𝜕𝑢

𝜕𝑡
+ 𝛽

𝜕𝑢

𝜕𝑥
= 0, 𝑥 ∈ [0,2𝜋], 𝑡 ∈ [0,1]

𝑢(𝑥,0) = sin(𝑥)
(9)

The parameter 𝛽 is set to 30 to get a complex setting (as discussed in 
Section 4.1).

Since our experiments reported that the encoding input strategy 
(Fourier Feature Embedding FFE) was completely ineffective, i.e., none 
of the experiments reached convergence, we discarded experimental re-

sults with FFE for the rest of the discussion on this use case.

We trained each model for 27,500 epochs, with curriculum learning 
performed in 10 steps. This training duration has been fixed on the basis 
of the performance reached by the Vanilla method with 𝑁𝑓 = 1000.

Fig. 4a reports the convergence rate for each learning strategy 
and for different numbers of training samples 𝑁𝑓 . Vanilla shows to 
be quite unstable for different values of 𝑁𝑓 . Half of the experiments 
with Vanilla PINN reached convergence with 𝑁𝑓 = 1000. This result de-

creases abruptly (-80%) when the training size is reduced only by 50% 
(𝑁𝑓 = 500). Instead, all the runs reached convergence by increasing 𝑁𝑓

by one order of magnitude (𝑁𝑓 = 10000).

Curriculum learning (in both versions v1 and v2) is, instead, signif-

icantly more stable in response to variations in training size, achieving 
scores between 70% and 90%. Causal training is comparable to Vanilla 
PINN, providing no improvements in this use case.

Fig. 4b shows the prediction error for each learning strategy and for 
different 𝑁𝑓 values, by considering only models that reached conver-

gence at the end of the training. Vanilla and Causal methods confirm 
to be comparable over all the training sizes 𝑁𝑓 . Hence, in this use 
case, causal learning provides no significant improvements. Even if Cur-

riculum learning achieved higher convergence rates for low 𝑁𝑓 (see 
Fig. 4a), it performs worse than both Vanilla and Causal in terms of 
prediction error, for all values of 𝑁𝑓 , with the newly introduced ver-

sion v2 being generally better than the state-of-the-art version v1.

In summary, curriculum regularisation experiments (mainly v1) 
reach good stability across different values of training size, but pay 
in terms of prediction error. Our newly introduced Curriculum version 
v2 presents a sort of intermediate behaviour between Vanilla and Cur-

riculum version v1 learning, showing how such a small change in the 
learning can have a significant impact on the final PINN performance.

The fact that Curriculum strategies present a convergence rate that 
does not increase with greater 𝑁𝑓 values, together with an over-

all worse prediction error, suggests that the defined training dura-

tion might be insufficient to reach convergence with the evaluated 
training samples. One possible explanation is that increasing the num-

ber of training data points could make the convergence more epoch-

demanding. Then, any curriculum step would conclude slightly further 
from the optimal minimum, resulting in significant performance degra-

dation at the end of the training. To investigate this intuition, we report 
the worst-case prediction (in terms of final MSE) in Fig. 5. Vanilla and 
Causal reached a plateau, hence extending the training to more epochs 
5

would not lead to improvements. On the contrary, both Curriculum ver-
sions present no plateau, hence further training with more epochs might 
help them in reaching better results, i.e., a lower prediction error rate.

6.1.1. Longer learning

Our experimental design sets the number of epochs to a fixed value 
for all strategies. As reported in Fig. 5, for Curriculum learning ap-

proaches, this choice might limit their performance. In this section we 
investigate whether Curriculum approaches could be improved with a 
longer training phase. Fig. 6 shows the resulting prediction error when 
training each model for 40,000 epochs, with both versions of Curricu-

lum regularisation. The grey curve shows the baseline, i.e., the average 
result of the Vanilla and Causal models. All the experiments reached 
convergence with all the training sizes, but without getting significant 
improvements with respect to the previous best solutions. Curriculum 
version v2 is again better than version v1, however we exclude that 
the Curriculum regularization learning can benefit from longer train-

ing, contrary to our initial intuition.

6.2. Reaction-diffusion equation

The reaction-diffusion equation is another system in which vanilla 
PINNs generally fail [27]. Such an equation can be designed to map the 
behaviour of density variations of chemical systems, population growth, 
etc. Our formulation is reported in Equation (10), where  (𝜋, 𝜋∕4) is a 
gaussian with mean 𝜋 and standard deviation 𝜋∕4 and the parameters 
have been set to 𝜈 = 5, 𝜌 = 5.

𝜕𝑢

𝜕𝑡
− 𝜈

𝜕2𝑢

𝜕𝑥2
− 𝜌𝑢(1 − 𝑢) = 0, 𝑥 ∈ [0,2𝜋], 𝑡 ∈ [0,1]

𝑢(𝑥,0) = (𝜋,𝜋∕4)
. (10)

The two parameters 𝜈 and 𝜌 are associated, respectively, with the diffu-

sion and reaction components of the equation, in the sense that setting 
𝜈 to zero would lead to fully reactive dynamics, while 𝜌 = 0 would im-

ply a fully diffusive one. The presence of two parameters makes the 
curriculum learning strategy not directly applicable, but the semantic 
separability of the two behaviours suggested to keep fixed one of the 
two parameters while letting the other approach zero, and contextually 
measuring the vanilla PINN performance. We found out that the regu-

lar model was more effective when addressing a problem with a lower 
reactive contribution with respect to the contrary (i.e., lower diffusive 
contribution). Then we set 𝜌 as the curriculum variable parameter, let-

ting it increase to the desired value with the running epochs.

For this use case, we fixed the training epochs to 50,000, which 
we experimentally found as a good point in which most of the models 
reached a plateau.

Fig. 7a shows that all Curriculum and Causal learning experiments 
were able to reach convergence, while none of the Vanilla models were 
below our convergence threshold, with the only exception of an exper-
iment trained at 𝑁𝑓 = 105. Regarding FFE, we can see that it yields to 
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Fig. 5. Worst case prediction for each method. The upper row shows the output of the trained network, the lower row reports the total loss and the mean squared 
error over the training epochs.

Fig. 6. Prediction error for curriculum alternatives trained for 40000 epochs.

Fig. 7. Metrics evaluation for the reaction-diffusion system.
lower values of convergence rate for most of the training sizes with re-

spect to models without FFE.

Fig. 7b reports the prediction error rates. All methods improve their 
performance for 𝑁𝑓 = 5000 with respect to lower 𝑁𝑓 values, largely 
for FFE methods, and slightly for non-FFE methods. FFE yields to much 
poorer performance for 𝑁𝑓 = 1000 and below, with respect to non-FFE 
methods. On the contrary, for higher 𝑁𝑓 values, from 104 and above, 
the FFE methods yield better performance, with lower prediction error 
rates than non-FFE ones.

Both Curriculum strategies (v1 and v2), and Causal learning present 
comparable trends. Hence, in this use case, the learning approach is not 
6

a crucial choice. The most relevant choice is instead the usage of FFE, 
which is detrimental for low 𝑁𝑓 values (1000 and below), and benefi-

cial for high 𝑁𝑓 values (5000 and above). Hence, the best solutions to 
the reaction-diffusion equation are those without FFE for small training 
sizes, but those exploiting FFE for large training sizes, with the latter 
yielding the absolute best performance.

To integrate the quantitative experiments, we report in Fig. 8 a sam-

ple qualitative error map for each configuration.

6.3. Allen-Cahn equation

One popular use case for PINN benchmarking is the Allen-Cahn 

equation. This PDE is another form of reaction-diffusion equation, and 
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Fig. 8. Prediction error maps for each experiment.

Fig. 9. Metrics evaluation for the Allen-Cahn system.
describes the phase separation in multi-component alloy systems, as re-

ported in the following.

𝜕𝑢

𝜕𝑡
+ 𝜌𝑢(𝑢2 − 1) − 𝜈

𝜕2𝑢

𝜕𝑥2
= 0, 𝑥 ∈ [−1,1], 𝑡 ∈ [0,1]

𝑢(𝑥,0) = 𝑥2 cos(𝜋𝑥).
(11)

We solve this equation for 𝜈 = 0.0001 and 𝜌 = 5. This equation use 
case proves to be harder to address by PINNs than the previous ones. 
The first difference from the reaction-diffusion use case is that the 
Vanilla PINN cannot solve the Allen-Cahn equation even with a low 
value of 𝜈. Furthermore, we could not find a valuable starting point for 
Curriculum learning with any combination of parameters obtained by 
fixing 𝜈 and varying 𝜌 or vice versa. Nevertheless, for the sake of com-

parison, we follow a curriculum regularization on the parameter 𝜌 as in 
the reaction-diffusion use case.

We performed the experiments for 150,000 training epochs, which 
is much larger than all previous use cases. The number of epochs is 
based on the convergence point of the Causal training models. Due to 
the complexity of the problem, we perform our analyses at higher values 
of 𝑁𝑓 with respect to the previous use cases.

Fig. 9a reports the results in terms of convergence rate, for all the 
methods, also including the FFE option. Causal training always reaches 
convergence, for any 𝑁𝑓 value, both with and without FFE. Instead, 
only for the largest value of 𝑁𝑓 = 105 the Vanilla PINN reached a con-

vergence rate higher than zero. Vanilla also benefits from FFE, which 
more than doubles its convergence rate, but its performance is still 
much worser than Causal training models: 40% of Vanilla vs 100% of 
Causal (𝑁𝑓 = 105). Curriculum learning, in both versions, is not able to 
address this problem, and indeed its convergence rate values are almost 
invisible in the plot, being zero in all cases.

The benefits of applying FFE to this system are also reflected in 
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Fig. 9b, which shows a large increase in performance with much lower 
prediction error rates, starting from 𝑁𝑓 > 103, with respect to non-FFE 
models. In terms of prediction error rates, plain causal learning models 
yield the same performance independently from the training set size, 
whereas exploiting FFE improves their performance by more than two 
orders of magnitude for 𝑁𝑓 = 5000 and higher.

To provide an insight into these behaviours, Fig. 10 shows an ex-

ample in which both Vanilla and Causal learning models reach conver-

gence. Vanilla PINN’s solution presents broader error regions, starting 
at early time steps, whereas the Causal learning model clearly provides 
better predictions, that are very similar to the ground truth.

7. Discussion

In Section 6, we observed that no single model can provide the best 
results in all the use cases. In some use cases, a specific approach might 
be the best in all settings. As an example, we mention the Allen-Cahn 
equation, for which the Causal learning is always the best performer, 
and the FFE is (almost) always beneficial, often by a large factor. Indeed 
the Causal learning is also the only method to reach convergence for the 
Allen-Cahn equation.

However, in most use cases, different learning methods provide the 
best results depending on the training size, or the usage of FFE, even 
within the same use case.

To provide an overview of the best learning strategies for each 
experimental setting, we define an overall score by considering both con-

vergence rate and average prediction error. Our overall score is given by 
the product of the former and the negated logarithm of the latter, as 
reported in Equation (12).

𝑆𝐶𝑂𝑅𝐸 = −log(𝜖pred) ⋅ 𝜎conv. (12)

Table 1 summarizes all the overall scores for each experiment and 

training size, grouped into small (𝑁𝑓 < 103), medium, and large (𝑁𝑓 >
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Fig. 10. Prediction error maps for each experiment (without applying FFE) for the Allen-Cahn system.

Table 1

Overall score results for all use cases, learning strategies, and training sizes. Training sizes have been grouped 
into small (𝑁𝑓 < 103), medium, and large (𝑁𝑓 > 105).

System Convection Reaction-diffusion Allen-Cahn

Training size Small Medium Large Small Medium Large Small Medium Large

Vanilla 0.25 2.02 2.66 - - 0.65 - - 0.17

Curr (v1) 1.34 1.08 1.17 4.51 5.05 4.93 - - -

Curr (v2) 1.39 1.42 1.54 3.94 4.97 5.31 - - -

Causal 0.27 1.89 2.88 4.05 5.07 5.27 1.70 2.20 2.22

Vanilla+FFE - - - - - - - - 0.98

Curr (v1)+FFE - - - 1.62 3.16 5.75 - - -

Curr (v2)+FFE - - - 1.48 1.78 3.54 - - -

Causal+FFE - - - 1.19 2.38 5.94 1.80 3.98 4.83
Table 2

Best learning strategy for each use case and training size based on the overall 
score.

Small (𝑁𝑓 < 103) Medium Large (𝑁𝑓 > 104)

Convection Curr (v2) Vanilla Causal

Reaction-diffusion Curr (v1) Curr/Causal Causal + FFE

Allen-Cahn Causal+FFE Causal+FFE Causal+FFE

105). For each use case (in the columns), we highlight in bold the 
best results. In case of minor differences, all strategies with the high-

est scores are highlighted.

While reporting the best learning strategies for each configuration 
in Table 2, we notice that the outcome is significantly variegated:

• FFE tends yields very large improvements for complex problems 
(Allen-Cahn equation), but it completely fails for the convection 
equation, and its benefits are very limited for the reaction-diffusion 
one.

• Causal learning reaches a high score in most cases, but not for small 
training sizes, and only for large training sizes in the convection 
equation.

• The Causal learning strategy seems to become more and more suit-

able as the complexity of the equation increases, such as in the 
reaction-diffusion and in the Allen-Chan use cases.

• Curriculum regularisations are promising, but in some use cases 
they did not reach convergence at all (e.g., Allen-Cahn).

• Curriculum regularizations seem to be more suitable for low-

complexity problems, such as the convection equation, and small 
8

training sizes.
At the current state of the art, training PINNs requires many intu-

itions to be effectively applied to each use case, and the application of

a specific learning strategy is not straightforward. All in all, there is no 
clear winner, no learning to rule them all.

8. Conclusions

This paper shows how PINNs generally face many difficulties in find-

ing the correct solution for different tasks. Even the best state-of-the-

art strategies, such as Curriculum regularisation and Causal training, 
present pitfalls and can yield from best to worst results by simply chang-

ing the equation under analysis or by adding the usage of FFE. At the 
moment, no learning strategy can be safely applied to all use cases. The 
results of our experiments underscored the need for a broader approach 
to address these limitations.

Moreover, we introduced a new design of the Curriculum learning 
algorithm, revealing how a small variation in its formulation can signifi-

cantly change the performance depending on the task. This emphasizes 
how any possible variation on the baseline could in principle apport 
benefits on different tasks.

As future work, we plan to design and develop an automatic ap-

proach to determine which Curriculum steps are needed and their 
length, and possibly join this strategy with Causal learning to take ad-

vantage of both.
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