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Abstract—Accurate State of Health (SoH) estimation is indis-
pensable for ensuring battery system safety, reliability, and run-
time monitoring. However, as instantaneous runtime measurement
of SoH remains impractical when not unfeasible, appropriate
models are required for its estimation. Recently, various data-
driven models have been proposed, which solve various weaknesses
of traditional models. However, the accuracy of data-driven models
heavily depends on the quality of the training datasets, which
usually contain data that are easy to measure but that are only
partially or weakly related to the physical/chemical mechanisms
that determine battery aging.

In this study, we propose a novel feature engineering approach,
which involves augmenting the original dataset with purpose-
designed features that better represent the aging phenomena. Our
contribution does not consist of a new machine-learning model but
rather in the addition of selected features to an existing model.
This methodology consistently demonstrates enhanced accuracy
across various machine-learning models and battery chemistries,
yielding an approximate 25% SoH estimation accuracy improve-
ment. Our work bridges a critical gap in battery research, offering
a promising strategy to significantly enhance SoH estimation by
optimizing feature selection.

Index Terms—Battery modeling, feature engineering, data aug-
mentation, data-driven, automotive

I. INTRODUCTION

The accuracy of State of Health (SoH) estimation in Battery
Management Systems (BMS) is essential for ensuring the
reliability of battery systems of a battery-powered device, and
in particular, for Electric Vehicles (EVs) [1]. However, the
estimation is valuable if it can be done in real-time or at least
with a frequency in the timescale of seconds. As there is no
practical physical way to instantaneously measure the SoH,
such tracking inevitably requires a model.

The literature about SoH models is extremely vast, provid-
ing several models of different nature, e.g., electro-chemical,
equivalent circuits, semi-empirical, analytical, and statistical
[2]. More recently, a new category of data-driven models has
emerged, in which a set of instantaneously measurable battery
parameters (typically, voltage, current, and temperature) relative
to a charge or discharge session of a battery is eventually
labeled with a value of SoH calculated at the end of the
session [3]. Such measures are then used as a dataset to train
appropriate ML models [4], [5].

Data-driven models essentially solve two main drawbacks
of traditional models. First, the variability of model parame-
ters, which are generally not constant. Second, their lack of
generality concerning battery chemistry: data-driven models
require a new dataset for the specific battery type, and are

thus applicable to any battery chemistry without any further
arrangement. Existing data-driven models, however, take the
“data-driven” paradigm too rigidly: the training datasets are
usually used as-is, i.e., the values in the datasets are by default
considered as the only features of the model.

In fact, it can be observed that these datasets contain data
that are weakly related to the physics of the battery aging
phenomena. This aspect is not a “defect” of datasets per se, but
rather a consequence of how they are derived: they are in fact
obtained by logging physically (easily) measurable quantities,
namely voltage, current, and temperature.

Based on a cross-analysis of the physical quantities affecting
aging and of the typical datasets, we propose a novel data-
driven model of battery SoH based on a feature engineering ap-
proach: the original dataset is augmented with “model-driven”
features that better describe the physical phenomena associated
to battery aging. This feature engineering is mostly based on a
pre-processing step that extracts basic yet relevant cumulative
and statistical quantities from the original data, to generate new
aging-relevant features. The proposed model provides better
accuracy and is directly applicable to any charge/discharge
pattern (e.g., a drive cycle for an EV, or a typical daily discharge
pattern of a mobile device).

To investigate the validity of the proposed solution, we
applied it to a publicly available dataset built by the Sandia
National Labs [6]. Experimental results will show that extend-
ing the initial dataset with the aging-relevant features improves
by up to 25% the accuracy of SoH prediction both locally (at
any time step) and cumulatively over a given time window.

The paper is organized as follows. Section II provides the
necessary background. Section III motivates this work and
describes the proposed feature engineering approach. Section
IV shows how data-driven models can be trained on the new
dataset. Section V provides the experimental validation over
the Sandia dataset. Finally, Section VI draws our conclusions.

II. BACKGROUND AND RELATED WORK

A. Battery Aging

Battery aging consists of two components [7]. Calendar
aging (Lcal) reflects the battery intrinsic degradation when
in rest conditions (i.e., no current flowing) for a given time.
It is mainly affected by temperature, State of Charge (SoC)
and elapsed time. Cycle aging (Lcyc) represents capacity loss
occurring during each charge/discharge cycle (hence its name).
Aging in a given cycle depends on quantities measured over that



cycle, namely, average current (I), SoC, and cell temperature
(T ), plus overall Depth of Discharge (DoD), i.e., the difference
between final and initial SoC [8], [9].

Overall capacity loss is therefore the sum of global calendar
aging, plus the sum of the degradation in each cycle [10]:

LC(t, SOC,DoD, I, T ) =

Lcal(t, SOC, T ) +

N∑
i=1

Lcyc(Ii, SOCi, DoDi, Ti) (1)

Notice that SoC and T in Lcal are average over the duration of
interval t, whereas for Lcyc they refer to the quantity in each
individual cycle (hence the subscript i).

State-of-the-art models for Lcal and Lcyc leverage either
the similarities of fatigue process of materials subjected to
cyclic loading [8] or include some electro-chemical property
of the charge/discharge process [10]. The relative importance
of calendar vs. cycle aging is clearly dependent on how the
battery is used. As our goal is not to investigate the aging
mechanisms, but rather to infer the relevant parameters to be
considered to model aging, we refer the reader to [11] for an
exhaustive discussion on these topics.

B. Related Work on Data-driven SOH Modeling

The relative simplicity of data-driven SOH estimation has
spurred a vast literature on the subject [4]. The approaches
essentially differ in two aspects: (i) how the SoH is measured,
i.e., in terms of loss capacity or increase of internal resistance;
and (ii) the ML model used for the estimation. For the second
aspect, the spectrum of options is definitely much wider:
models range from various types of Neural Networks (NNs)
to simpler models like random forests, SVMs, or Bayesian
networks. Many of these works claim to estimate capacity or
resistance with less than 1% or less error, thus resulting in
promising candidates for SoH estimation.

As also stated by the authors of [4], however, it is quite
difficult to compare different approaches and identify a few
that can serve as a reference. One reason for this is the quality
of the datasets. First, many of the used datasets are too limited
in size; this is particularly relevant for methods that rely on
NNs, which are known to require extensive datasets to provide
reliable results. Secondly, data are often too tailored for a
specific battery instance, which affects the generality of the
results: when data are obtained by measuring battery parameters
from a specific cell, we are actually profiling a single instance
of a battery and ignoring variability. Consequently, these very
low errors are valid for the specific context in which the models
were built, but the generality of the results is questionable. For
these reasons, resorting to standardized, public datasets, such
as [6], and agreeing on a well-defined data split rule should be
enforced to enable reliable benchmarking.

III. MODEL-DRIVEN FEATURE ENGINEERING

A. Dataset Design Issues

According to Equation 1, the degradation rate of a battery
depends on five main quantities: temperature (T ), charge/dis-
charge current (Ic and Id, respectively), DoD, average SoC

(SoCavg), and the total number of cycles (i.e., total elapsed
time of battery operations). Out of these quantities, only
current, temperature, and elapsed time are directly measurable
and are therefore typically logged in datasets, thus leaving out
quantities that are extremely relevant in the mechanisms that
determine battery aging.

Our claim is thus that it is necessary to extend the dataset so
that it includes all aforementioned quantities, in order to capture
all aging effects. This also requires logging instantaneous SoC
(via extra HW connected to the BMS, or through Coulomb
counting); the other SoC-dependent quantities, e.g., DoD and
SoCavg , can be easily derived.

However, simply adding such quantities to the dataset would
not be sufficient. On the one hand, a dataset including in-
stantaneous SoC, cycle DoD, and average SoC would include
redundant information. Secondly, mixing instantaneous quanti-
ties (e.g., I , T ) and aggregate ones (e.g., DoD) would lead
to a sort of misalignment of the semantics of the features.
Finally, the value of SoH is updated only at the beginning of
a new discharge cycle: the dataset would thus contain a lot of
entries where varying values of instantaneous quantities would
correspond to the same value of SoH. These are indications that
instantaneous quantities are not the most appropriate features
to be considered.

Based on the considerations above, we decided actually to
redesign the original dataset as follows:

• Remove all instantaneous quantities (I , V , T , SoC) and
keep only the timestamp;

• Preserve only data points corresponding to a transition
charge→discharge and vice-versa, as these are the points
when the SoH changes; rest cycles are ignored, as their
impact on the observed parameters is relatively insignifi-
cant;

• Replace the instantaneous quantities with average values
of current, temperature, and SoC over the current charge
or discharge phase;

• Add the DoD.

B. Description of the Original Dataset

In order to elaborate the details of the above steps, in the
following we will refer to a specific dataset, the Sandia National
Labs dataset, comprising a total of 86 individual 18650 battery
cells with different chemistries and designed to simulate real-
world usage [6].

The original dataset consists of in-cycle measurements in-
cluding date-time, current, voltage, temperature, and energy
(Wh), along with per-cycle measurements of charged/dis-
charged capacity with sequential numbering of cycles, plus an
indication of cycle state denoting whether the cycle phase is
charge (C), discharge (D), or rest (R).

Each cell goes through two different kinds of cycles, as
depicted in Figure 1. The activity of each cell is characterized
by a certain number of Predefined Cycles (PCs) entailing vary-
ing conditions to reflect a wide range of operating scenarios:
discharge currents of 0.5C, 1C, 2C, and 3C; temperatures of
15°C, 25°C, and 35°C; DoD ranges of 0–100%, 20–80%, and



Figure 1: Structure of the original dataset as a sequence of PCs
followed by the capacity check (i.e., three RCs, that allow the
estimation of the new value of SoH).

40–60%. After a certain number of PCs (i.e., 500 or 1000
cycles), a capacity check is performed. This check consists of
three full reference charge and discharge cycles, referred to as a
Reference Cycle (RC) with a fixed current of 0.5C. These RCs
serve as synchronization points that enable the measurement
of the battery’s SoH; the latter is extrapolated from the time
required for charging the cell, which is used as a proxy of the
degradation-induced decrease in capacity.

C. Data Preprocessing

Despite the quite regular structure of the dataset, we observed
a few anomalies in the data that needed some tuning.

The first type of anomaly concerns bogus SoH values, in
particular non-decreasing trends or anomalous drastic jumps.
These segments were obviously discarded from the dataset.

The second type of anomaly involved missing values, par-
ticularly in temperature readings. To address this issue, we
imputed missing values by filling them with the mean of the
non-null temperature values.

D. The Modified Dataset

As shown in Figure 1, the original dataset is organized into
segments, i.e., sequences of PCs followed by the corresponding
RCs, that are the points where the new value of SoH can be
computed (left of Figure 2). In brief, the modified dataset is
obtained by compacting one segment into only one row; the
SoH value of a segment identifies the label associated with the
aggregate features relative to that segment, as shown on the
right-hand side of Figure 2. In order to obtain this format, we
need two main design decisions, in the following order:

1) How to manage the transition between consecutive seg-
ments, i.e., how to consider the RCs and the SoH values;

2) Which features to extract for a given segment from the
features of the original datasets.
a) Estimation of SoH corresponding to one segment:

When compacting one segment into one row, it is important
to decide which value of SoH should be associated with that
segment. Figure 2 shows a snapshot of the scenario: the left side
shows the original dataset, and the right side is the modified
dataset. Time increases from top to bottom. On the left, the
blue rows represent PC cycles. No SoH is associated with
these rows, as SoH estimation can not be applied on random

charge or discharge profiles. The PCs are followed by the three
RCs (yellow rows), each containing a full charge and a full
discharge. Given that values during discharge tend to exhibit
greater consistency and reliability compared to those observed
during the charging phases, the SoH value associated with each
RC is the one estimated in the discharge phase (hence the
subscript D in Figure 2).

Out of the three values of SoH of the RC phases, we chose
the one after the last RC discharge phase (RC3, darker), as it
is supposed to be the most stable [12]. Notice however that in
most cases the three values of SoH in the three RC phases do
not differ significantly. In the sporadic cases in which one or
two SoH values are missing or anomalous, the remaining one
is selected as reference SoH value. Three RC missing or bogus
values will obviously be labeled as an incorrect segment and
discarded.

b) Choosing the new features: The selection of features
in our methodology stems from a deep understanding of battery
behavior and the imperative to capture nuanced aspects of
degradation patterns. These features have been thoughtfully
chosen to provide a comprehensive view of the different
dynamics within a battery cell and its response to varying
operational conditions. Table I lists the model features with
a brief description of the rationale behind their selection.

Most of these features were not present in the original
dataset. The core idea behind our approach is to enhance the
interpretability and predictive power of battery health forecast-
ing models. By meticulously aggregating data within segments
and crafting these new features, we aimed to provide a more
comprehensive understanding of battery degradation patterns,
thereby enabling more accurate predictions.

IV. TRAINING OF DATA-DRIVEN SOH MODELS

A. Machine Learning Modeling

Among the many ML models studied for SoH estimation,
Light Gradient Boosting Machine (LightGBM) and Long Short-
Term Memory (LSTM) stand out as excellent options [13].
When applied to battery health prediction, LightGBM demon-
strates significant promise [14] [15], thanks to its ability to
iteratively refine subsequent models, to capture intricate degra-
dation patterns and to efficiently process large-scale datasets.
LSTM [16] emerges as a potent ML model ideally suited for
analyzing battery degradation data, as it excels in capturing
intricate degradation patterns and temporal dependencies within
sequential data [17].

B. Data Splitting

To develop accurate models that can generalize well across
different cell types and operational conditions, a meticulous
data splitting strategy is devised. The method involves creating
a separate model for each cell type and dividing their datasets
into training and validation sets. The training set, constituting
60% to 75% of each cell type’s dataset, includes cells at
0.5C, 2C, and 3C Discharge Rates across various temperatures.
The validation set comprises cells at a 1C Discharge Rate
with all possible temperatures. This approach tests the models



Figure 2: Dataset Modification: one segment of the original dataset, made of a number of PCs followed by three RCs (left), is
aggregated in only one row of the modified dataset (right). The original features are extended with more ageing-aware ones, and
the SoH estimated by the discharge cycle of the last RC is used as value of SoH of the row in the modified dataset.

Table I: Features of the modified dataset

FEATURE / LABEL DESCRIPTION
INITIAL SoH Serves as a pivotal starting point for assessing degradation. It encapsulates the baseline capacity of the battery,

essential for quantifying subsequent changes.
DELTA TIME COMPUTATION Time is a critical factor in ageing. By quantifying the time interval between consecutive segments, we can discern

how degradation reveals over extended usage, unveiling temporal patterns that may otherwise go unnoticed.
CURRENT CHARACTERISTICS Charging and discharging currents directly influence battery health. Metrics such as maximum, minimum, average,

and standard deviation of current provide a holistic view of how the battery responds to varying load conditions,
revealing stress-induced effects on capacity loss.

SoC INSIGHTS SoC fluctuations significantly impact battery performance. Analyzing SoC’s mean and variability during charging
and discharging offers insights into how charge transfer processes affect degradation rates.

SoC DEVIATION METRICS Deviations in SoC during charging and discharging signify irregularities in capacity utilization. Quantifying these
deviations accentuates the impact of non-uniform charge/discharge cycles on battery life.

DoD VARIATIONS DoD variations within a cycle can accelerate degradation. By capturing different formulations of DoD, we gain
a comprehensive understanding of how depth influences capacity fade over time.

TEMPERATURE FEATURES Averaging cell and environmental temperatures for each es allows us to correlate temperature fluctuations with
degradation, thereby highlighting the role of thermal effects in capacity loss.

∆ SoH LABEL Monitoring changes in SoH between consecutive windows provides a precise depiction of degradation progression.
This feature identifies abrupt changes or gradual capacity fade, shedding light on distinct degradation mechanisms.

under different temperatures and discharge rates, particularly
rapid discharge scenarios, to assess their predictive abilities and
capacity to generalize to new conditions.

C. Metrics

Three key metrics were computed to provide a quantitative
assessment of model performance. Mean Absolute Error (MAE)
is the average absolute difference between predicted and actual
∆SoH values. Mean Squared Error (MSE) is the average
squared difference between predicted and actual ∆SoH values.
R2 Score is the proportion of the variance in the target variable
that is predictable from the independent variables; a higher R2
score indicates better predictive capability.

V. VALIDATION ON THE SANDIA DATASET

A. Setup

This section evaluates the effectiveness of our method, in
comparison with conventional feature extraction techniques. To
show the independence of our results from the specific battery
chemistry, we repeated all experiments considering both lithium
iron phosphate (LFP) cells and nickel manganese cobalt (NMC)
cells contained in the Sandia dataset.

The target variable for the analysis is the ∆SoH, calculated
as the difference in SoH values between successive segments,
as detailed in Table I. Predicting ∆SoH rather than the absolute
SoH acts as a sort of output normalization, making the target
value range similar for all segments, rather than strongly depen-
dent on the initial SoH. To ascertain the optimal performance
of our predictive models, we conducted hyperparameter tuning
for each model and cell chemistry combination. The Optuna
framework [18] was employed for this purpose.

To facilitate a comprehensive evaluation, two sets of features
were considered:

1) Conventional Aggregation (CA): standard statistical fea-
tures extracted directly from the available dataset;

2) Novel Aggregation (NA): the proposed feature set, as
described in Sec. III.

A meticulous examination of the dataset revealed that certain
features, e.g., maximum voltage and maximum SoC in a
segment, remained constant due to the presence of RCs within
the segment. Accordingly, these features have been removed
prior to applying the ML models from both CA and NA.



Figure 3: Models’ ability of Tracking SoH for the CA (green) and the proposed NA (orange) features set w.r.t. the ground-truth
(dashed blue) for three cells and both LightGBM (top) and LSTM (bottom) ML models.

Table II: Model Estimation Error

Cell Model Features Metrics
MSE MAE R2

LFP LightGBM NA 5.249e-05 4.764e-03 0.505

CA 7.322e-05 6.620e-03 0.310

LSTM NA 6.457e-05 5.818e-03 0.391

CA 7.985e-05 6.853e-03 0.248

NM
C LightGBM NA 7.817e-05 6.320e-03 0.561

CA 1.310e-04 8.611e-03 0.230

LSTM NA 1.361e-04 8.468e-03 0.236

CA 2.491e-04 1.003e-02 -0.397

B. Model Performance Evaluation

Table II shows the result of applying the two considered ML
models (LightGBM and LSTM) feeding them with the two
feature sets, CA and NA. Error values refer to the average over
all segments in the validation set.

For both ML models and for both battery chemistries,
the performance obtained with our proposed NA features is
consistently superior with respect to CA, regardless of the
considered metric (MAE, MSE or R2). Specifically, for LFP
cells, NA outperforms CA by a substantial 19.44%. In the case
of NMC cells, this difference increases to 27.9%, emphasizing
the superior performance of the NA approach.

While both LightGBM and LSTM yield accurate estimations
of the cell’s ∆SoH, the former outperforms the latter for
all cell types. This can be justified by the fact that, given

relevant features, a simpler predictor (LightGBM) overfits less
the training set with respect to a more complex one (LSTM),
especially for relatively small datasets such as the target one.

C. SOH Tracking Examples

To assess the real-world applicability in SoH tracking, we
focused on the estimate of SOH over time, obtained accumu-
lating the predicted ∆SoH over multiple consecutive cycles.
The goal is to provide an insight into how well the model
predictions align with the actual cell degradation.

Figure 3 illustrates the results for three representative cells:
one LFP cell (working at 1C and 15◦) and two NMC cells
(working at 1C and 25◦ and 35◦, respectively). It clearly
depicts the ground-truth SOH throughout the lifespan of the
cells (shown in dashed blue, as per the original dataset). It
also illustrates the accuracy of our tracking using the newly
proposed NA features (highlighted in orange) and the CA
features (depicted in green), applied to two machine learning
models, LightGBM (top graph) and LSTM (bottom graph).

As shown, the tracking achieved with NA features tends to
reduce the error in the accumulated SoH estimate compared
with CA, and to follow well the ground-truth. The improvement
applies to both models and to all cells, with a more evident
effect on the first cell and the third one. Even when the CA-
based models locally have a lower error (e.g., beginning of
the life time of the first cell), the NA-based ones overall reflect
better the actual cell SoH. This allows to conclude that, overall,
the NA features set proves to estimate well the overall evolution
of SoH in all scenarios.



Figure 4: Feature importance estimated by LightGBM.

D. Feature Importance Analysis

To support our claim on the relevance of NA features,
Figure 4 shows the feature importance for LFP and NMC cells,
as determined by LightGBM. As expected, the most relevant
features lie in both features sets: e.g., Delta Time, as it accounts
for calendar aging and for a more prolonged battery usage,
and the initial SOH, which informs on cell degradation at the
beginning of each cycle. Nonetheless, all DoD-related features,
as well as SoCs deviations features, which are only present
in NA, are also among the highest scoring ones, achieving
higher importance with respect to some features included in
CA such as the minimum/maximum current. This clearly shows
the helpfulness of the proposed extended feature set.

VI. CONCLUSIONS

In the field of battery management and SoH estimation, this
research addresses a critical challenge - the accurate and real-
time assessment of battery health, a crucial factor in ensuring
the safety and reliability of battery systems, particularly in
applications such as Electric Vehicle (EV)s.

One key observation highlighted in this work is that data-
driven models can benefit significantly from enhanced feature
engineering, which goes beyond conventional data usage. By
incorporating cumulative and statistical quantities extracted
from the original dataset, this research presents a novel ap-
proach that better describes the physical mechanisms governing
battery aging, increasing the prediction accuracy by 38.3% for
NMC and 10% for LFP.

The proposed model can be readily applicable to a wide
range of charge/discharge patterns, such as EV drive cycles
or typical daily usage scenarios. This innovation holds the
promise of significantly improving SoH estimation and, in turn,
enhancing the performance and longevity of battery-powered
systems.
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