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Abstract5

The use of tracking data in the field of sport analytics has increased in the6

last years as a starting point for in-depth tactical analyses. This work in-7

vestigates the use of Temporal Convolutional Networks (TCNs), a powerful8

architecture for sequential data analysis, to extract ball possession informa-9

tion from tracking data. This task is a crucial step for many tactical analysis10

and is nowadays carried out manually by a human operator in the stadium,11

which is costly, difficult to implement, and prone to errors. In this work, sev-12

eral classification approaches are explored to classify the game state as dead,13

ball owned by the home team, or by the away team: as a single-branch,14

ternary prediction, or as two binary predictions, first detecting whether the15

game is dead or alive and then which team owns the ball. TCNs are ex-16

ploited to create independent trajectory embeddings from tracking data of17

each object; since there is no semantic ordering among the tracked objects,18

we investigate different permutation-invariant layers to combine the embed-19

dings, namely, an element-wise sum over the embeddings, a self-attention20

module, and the use of 2D convolutions. Performance evaluation on tracking21

data from professional soccer games shows that the proposed method out-22

performs state-of-the-art rule-based methods, achieving 86.2% accuracy in23

possession estimation (+7.3% compared to the state of the art) and 89.2%24

accuracy in dead-alive classification (+33.2% compared to the state of the25

art). Extensive ablation studies were conducted to investigate how different26

input data concur to the final prediction.27

Keywords: Sport analytics, Deep learning, Tracking data, Ball possession,28
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Game state, Temporal Convolutional Networks29

1. Introduction30

In recent years, the field of sport analytics has received increasingly atten-31

tion, as it has been realized that the systematical analysis of the big amount32

of data produced by sports daily can help to develop strategies capable of33

increasing the chances of winning a match.34

In this paper, we focus on the automatic extraction of ball possession in-35

formation from a soccer game from spatio-temporal tracking data. In typical36

soccer analytics pipelines, estimating ball possession and game state is the37

first step in understanding the events that occur in a game and their rela-38

tionship. Without this information, only physical quantities, e.g., on covered39

distance and speeds, can be measured and aggregated. In turn, the avail-40

ability of a ball possession estimation component opens to a wider range of41

analyses: besides computing simple game state statistics, it becomes possible42

to analyze every single pass, to split the game in actions, to classify them43

and to study players and team behaviors in attack and defense phases, etc.44

The need to develop this component stems from considering that raw45

tracking data about players and ball positions are today commonly extracted46

by specialized companies and made available for the world’s top leagues such47

as Premier League, Bundesliga, LaLiga and Serie A, but these companies48

still rely on human interventions for the provision of game state information.49

In particular, for ball possession the soccer industry uses a definition which50

considers the amount of time that a team spends controlling the ball and, to51

extract this information, has long relied on a human operator watching the52
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game armed with a three-button timer. The buttons are used to record the53

beginning of a new game phase, which can be either the home team having54

possession, the away team having possession, or a stoppage (because the ball55

is outside the pitch, or the referee has interrupted the game, e.g., after a56

foul).57

The reliance on a human operator is motivated by the fact that there are58

a number of situations where it can be extremely difficult to define clearly59

which team owns the ball (Bialik, 2014). The need to rely on human op-60

erators watching and annotating each game, however, clearly has economic61

and logistic impacts, which are detrimental to the implementation of an au-62

tomatic data analytics pipeline. Furthermore, it has also been observed that63

these annotations are prone to errors, which negatively impact the subse-64

quent data analysis steps (Richly et al., 2017). Another important reason65

for making the extraction of ball possession automatic is that it would allow66

to add this information to tracking datasets regarding past matches where67

it was originally missing, making them accessible for further analyses that68

otherwise would be extremely time consuming.69

Scientific literature regarding the automatic estimation of game state70

is not particularly rich (especially from tracking data), mainly due to the71

scarcity of public datasets. The few approaches proposed so far generally re-72

lied on a different definition of ball possession based on the number of passes73

completed by a team (Glasser, 2014; Sarkar et al., 2019) that is not the com-74

monly adopted one, or leveraged handcrafted rules (Link and Hoernig, 2017;75

Morra et al., 2020; Khaustov and Mozgovoy, 2020) that can hardly capture76

the discrimination abilities of human operators.77
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Hence, in the present paper, we propose to:78

• use deep learning to make a computer learn how to automatically es-79

timate the state of a soccer game starting from spatio-temporal data80

about players and ball positions, without resorting to rules defined81

based on domain knowledge about soccer;82

• output this information in the same format of the standard, three-83

button timer mechanism.84

In particular, we investigate the use of Temporal Convolutional Networks85

(TCNs), which in recent years proved to be particularly effective for deal-86

ing with classification tasks on sequential data. In this work, TCNs are87

used to create independent trajectory embeddings from tracking data. We88

then experimented with three architectures that combine the embeddings89

in different ways and compared the obtained results with those achieved by90

state-of-the-art methods leveraging predefined rules.91

The remaining of the paper is organized as follows. Section 2 reviews92

relevant literature pertaining sport analytics. Section 3 introduces the pro-93

posed method, whereas Section 4 presents the protocol that has been set up94

to evaluate it. Section 5 reports on experimental results. Finally, Section 795

provides conclusions and suggests possible directions for future research in96

this field.97

2. Related work98

Over the years, sport analytics and, particularly, event detection in soccer99

games have been addressed in different ways. The existing literature can100
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be roughly classified on the basis of the type of input used, which can be101

represented by either visual or tracking data (or a combination of them).102

2.1. Visual data103

Videos indeed represent the most common source of input in the context104

of sport analytics. Unsurprisingly, in the last several years, most of the105

research explored the use of deep learning models. Deep learning has been106

proved successful for many purposes, from players tracking (Kukleva et al.,107

2019), (Xu et al., 2018), to video summarization (Rockson et al., 2019), (Gao108

et al., 2020) and the generation of high-level game statistics (Fernández et al.,109

2019), (Memmert and Rein, 2018), (Theagarajan et al., 2018).110

Among the possible applications, two tasks that are particularly relevant111

for the goal of this paper are action recognition and event recognition. For112

instance, Hong et al. (2018) focused on the possibility to use transfer learn-113

ing with state-of-the-art Convolutional Neural Network (CNN) models to114

detect events like corner, free-kick, penalty and goal plus different types of115

camera shots from soccer videos. Other authors, like Xu and Tasaka (2020),116

focused on improving the accuracy and speeding up the identification of par-117

ticular events in 4K multi-view videos of soccer games extending well-known118

CNN-based object detection and pose estimation methods (such as YOLO119

(Farhadi, 2016) and OpenPose (Cao et al., 2021)).120

The most common approach to address the above task on video data is121

known as Convolutional Recurrent Neural Network (RNN): this approach122

extends the architecture used in previously cited works since, first, features123

are extracted from each frame in the video using a CNN, then they are passed124

to a RNN which produces the output.125
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An example of this setting can be found in Sorano et al. (2020), which126

aims at producing a graph of passes that occur in a soccer game. In the127

proposed architecture, video frames are processed both by a convolutional128

object detection network (YOLO, in this case) and by a feature extraction129

network (ResNet18 (He et al., 2016)). For each frame, the feature extraction130

module produces a vector describing the whole scene; the object detector, in131

turn, is responsible for detecting the players as well as the ball, and returns132

a vector describing the position of the ball and the players closest to it.133

The two vectors are then concatenated. By processing all the frames in134

the video, it is possible to produce a sequence of feature vectors that are135

fed into the sequence classification module, which consists of a bidirectional136

LSTM (Long Short-Term Memory), a model commonly used in this context.137

This module outputs a pass vector that indicates, for each frame of the138

original sequence, whether it is part of a pass sequence or not. Another work139

exploiting this methodology to detect a larger set of events is represented140

by Jiang et al. (2016). Here, play-break segments are first obtained. Then,141

semantic features are extracted from them using a CNN. Finally, four event142

types are classified (namely, corner, goal, goal attempt and card) using a143

RNN.144

The above approach is also adopted in Roy Tora et al. (2017). In this145

case, the focus is on ice hockey, but the task is closer to that addressed in the146

present work, as the authors’ goal is to recognize puck possession events. Like147

in the above works, the frames are processed in parallel by two CNNs which148

extract frame-related features and, based on the output of an object detector,149

individual player-related features. The features are then concatenated and150
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passed to an LSTM, which processes them sequentially and produces the151

output.152

The main drawback of the methods reviewed so far lays in the fact that153

they rely on recurrent architectures, which have been proven to be character-154

ized by a performance bottleneck due to the use of sequential computations.155

A way to cope with the above limitation when dealing with sequential data156

is represented by TCNs. These networks rely on convolutional layers, whose157

operations can be easily parallelized, thus benefiting of continuous advance-158

ment in computing technology. Bai et al. (2018) and Guirguis et al. (2021),159

who focused on comparing recurrent architectures with their convolutional160

counterparts on a variety of tasks, showed the largely higher performance of161

the latter models in terms of accuracy, as well as of training and inference162

time.163

In the context of sport analytics, TCNs have been largely applied to164

action recognition (the domain they actually stemmed from). An example is165

provided by Martin et al. (2018), where a Siamese spatio-temporal CNN is166

used to simultaneously process color images and optical flow data associated167

with table tennis games to this purpose.168

These models have also been widely used for event detection, which can169

be considered as a particular case of action recognition. Some examples in170

this field are represented, e.g., by Liu et al. (2017), Lee et al. (2018), Yu et al.171

(2019) and Khan et al. (2018b).172

The approach of Khan et al. (2018b) is particularly interesting since it173

uses C3D (Tran et al., 2015), which is basically the three-dimensional (spatio-174

temporal) counterpart of the well-known two-dimensional VGG network (Si-175
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monyan and Zisserman, 2014) and leverages many of the state-of-the-art176

characteristics for image classification (such as a high number of layers and177

small kernels); moreover, the authors showed for the first time how to use178

such an architecture not only for classifying a video, but also for creating179

effective descriptors of it, which could be used in a transfer learning pipeline180

for further analyses.181

It is worth observing that the problems addressed by the above works182

are different than that tackled by the present paper. In fact, as stated in183

Section 1, the task of estimating the game state has not been dealt with in184

depth by the research community yet.185

Besides some research done in the field of game state description (ad-186

dressed in the context of summarization), one of the few works that consid-187

ered ball possession is represented by Khan et al. (2018a). The authors do188

not use deep learning end-to-end, since they propose a framework in which189

the frames of soccer videos are first processed by a Single Shot MultiBox De-190

tector (SSD)-based object detection module (Liu et al., 2016). The output is191

then passed to a rule-based system that uses temporal and logical operators,192

which starts by detecting the so-called “simple” events and assembles them193

to recognize the “complex” events.194

2.2. Tracking data195

As shown by the last work reviewed in the previous section, an alternative196

way to deal with the problem of interest for this paper and, in general,197

with sport analytics tasks consists of exploiting tracking data. With the198

improvements in tracking technology, sport researchers are using them for199

ever more complex tasks, from event detection, to statistics generation, tactic200
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effectiveness quantification, etc.201

As for video data, the most recent works in this field rely on deep learning,202

and leverage spatio-temporal convolutions directly on raw data to create low-203

dimensional representations that summarize the motion of objects of interest204

in space over time periods. In the literature, these representations are referred205

to as trajectory embeddings.206

An important milestone in the use of trajectory embeddings in sport ana-207

lytics has been set by the work reported in Horton (2020). The author’s goal208

is to learn an internal feature representation of the movements of all players209

in a soccer game. To this purpose, a network is designed that takes as input210

raw trajectory data and learns an internal representation of the individual211

and coordinated movements of all players. The trajectory of a single player is212

represented as a sequence of time-stamped frames, and each frame is a vector213

containing the x and y coordinates for the player at that time, possibly with214

additional information such as his or her orientation and speed. The main215

contribution of this work stems from the consideration that most machine216

learning methods require a predefined structure in the input format that also217

comprehends an ordering within each input element, such as in the case of218

an image. However, in the case of tracking data, it is often impossible to219

define a predefined shape of the input due to the naturally variable duration220

of a game play, and there is no intrinsic ordering of players in a given interval221

of play that persists throughout the game or from game to game (in some222

sports number of player can even change, e.g., due to red cards). Previously,223

both the variable duration problem and player-ordering problem had been224

circumvented by introducing a preprocessing step in which raw tracking data225
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are transformed into structured feature representations designed ad hoc for226

the task at hand. The method adopted by Horton (2020) avoids the limi-227

tations typically associated with feature engineering, and addresses the first228

problem by means of 1D convolutions and adaptive pooling mechanisms; it229

then deals with the second problem by using a set-based architecture (Za-230

heer et al., 2017) that treats the input as an unordered set, devising a model231

that learns the feature representation directly from raw data. The authors232

used the proposed method to create two models for making predictions about233

passes (probability of completion, length, and reception location) and tackles234

(probability for a player to be the first to attempt it, distance covered, and235

location).236

Other ways that have been explored to achieve set-based learning in sport237

analytics consist in leveraging roles rather than identities for players (e.g.,238

when the task is to study the behavior of an entire adversarial team, like in239

Lucey et al. (2013)), or in identifying an object, like a player or a ball, that240

can be used as “anchor” and define an ordering relative to it. An example of241

this latter approach is given in Mehrasa et al. (2018). Like in Horton (2020),242

trajectory embeddings are created by 1D convolutions. Then, a permutation-243

invariant sorting scheme is defined based on the distance of a candidate object244

(a player, in this case) to the anchor, with the trajectory of the anchor being245

placed always in the first position, the closest object next to it, and the246

farthest object appended to the end. The authors applied this technique247

to two different tasks, i.e., event recognition in ice hockey (with six events248

considered, and the player carrying the puck acting as the anchor), and team249

classification in basketball (with the ball selected as the anchor). It is worth250
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observing that the devised approach based on trajectory data was found to251

outperform the C3D model that uses video as input, and to be capable of252

achieving even better performance when used in combination with video.253

A work that is particularly interesting considering the focus of the present254

paper is represented by Sanford et al. (2020). The authors address the detec-255

tion of atomic actions in a soccer game (pass, shot, and reception), and focus256

on analyzing the performance of vision-based and trajectory-based models.257

The authors considered four vision-based models. All of them rely on an258

inflated 3D CNN (I3D) (Carreira and Zisserman, 2017). In the first model,259

the 3D convolution is applied to the whole image frame. In the other cases, it260

is applied to players’ “tubelets”, i.e., sequences of bounding boxes containing261

a single player; the features extracted from the tubelets are then processed262

in three different ways: via max-aggregation, a Graph Convolutional Net-263

work (GCN), and a transformer. The best performance was achieved by264

the model that processes the whole frame, without using the tubelets. For265

trajectory-based detection, they considered three models, namely a TCN266

(named Wavenet (van den Oord et al., 2016)), a transformer, and a TCN267

followed by a transformer. In all three cases, these blocks were followed by268

a fully connected layer to predict the actual player’s activity. Experiments269

were run both using only the ball trajectory and using the ball along with270

the K-nearest players: the model containing both the TCN and the trans-271

former and using the (five) K-nearest players proved be the one providing272

the best performance on all three atomic activities. When comparing the273

two approaches, vision- and trajectory-based models were found to provide,274

on average, comparable results. The findings of the latter work are particu-275
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larly interesting since they confirm the effectiveness of the trajectory-based276

method for dealing with sports analytics tasks. They also pinpoint TCNs as277

the best candidate to address the detection of game events.278

Works reported above are all relevant to the present paper, since they279

provide concrete architectures that can be used to perform classification and280

action detection tasks on tracking data. Notwithstanding, their goal still dif-281

fers from that considered here, since they cannot be directly used for ball pos-282

session estimation (although this limitation mainly concerns the last layers of283

the network, which are described by the authors themselves as task-specific).284

Like for visual data, the amount of works that focused on ball possession285

by leveraging tracking data is still quite limited. An example is represented286

by Link and Hoernig (2017). This work uses a rule-based system to segment287

the game into possession phases, which are further subdivided into actions288

and void phases (e.g., when the ball is in the air). A possession phase begins289

when a new player starts to interact with the ball. Interactions are detected290

looking at the spikes in the ball acceleration; when a local maximum greater291

than 4ms-2 is found, the possession is assigned to the player closest to the292

ball. The idea of looking at the derivatives of the ball position comes from293

the fact that tracking data often do not include the z coordinate; therefore,294

it is necessary to prevent accidental changes in possession during phases in295

which the ball crosses intermediate players.296

A similar idea is exploited in Morra et al. (2020). Here, the temporal297

and logical operators that were originally used in Khan et al. (2018a) on the298

output of a visual data processing stage are extended and applied to spatio-299

temporal data obtained through a soccer game simulator for the detection of300
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game events, including player’s ball possession. In this case, the ball speed is301

considered, based on the consideration that while a player controls the ball,302

the latter should move relatively slowly. Furthermore, for a possession to be303

valid, the distance between the player and the ball should be low for a certain304

amount of time, and the distance between the opponents and the ball should305

be above a given threshold.306

A more recent example of a rule-based system that predicts ball possession307

from spatio-temporal data is given in Khaustov and Mozgovoy (2020). As in308

the previous cases, when a possession change occurs, the ball is assigned to309

the closest player. Possession changes are detected in three ways: through310

changes in ball speed, changes in ball direction, and prolonged proximity to311

the ball.312

In the present work, we address the problem of estimating ball possession313

from tracking data following a different approach. First, as in the works314

focusing on action detection reported at the beginning of this section, our315

aim is to remove the need to rely on handcrafted rules. The objective is316

to devise models capable to learn directly from data, without resorting to317

domain knowledge about soccer, which humans use to explain the (possi-318

ble ambiguous) concept of possession. Second, our expected outcome also319

slightly deviates from that of the latter works reviewed above. In fact, they320

actually addressed the ball possession problem in a more fine-grained way, as321

they estimate the possession on an individual level, telling which player, not322

only which team, owns the ball. Indeed, this fact is directly connected with323

the nature of rule-based systems, which follow a bottom-up approach that324

allows to extract semantic knowledge from the intermediate results. How-325
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ever, we intentionally faced the problem from the point of view of the team326

rather than of the player, since, as said, the actual mechanism to collect327

ball owner information is based on the three-button timer used by a manual328

operator. Data collected through this mechanism only describe the state of329

the game (home team controlling the ball, away team controlling the ball,330

game stopped), without providing information about the single player who331

is owning the ball. Thereby, it is convenient to start with a less fine-grained332

approach, and only afterwards add information about the single player on333

top of the data obtained for the team.334

3. Proposed method335

This section illustrates the main principles that underlie our methodol-336

ogy. First, the general formulation of the problem statement is presented in337

Section 3.1. The three architectures evaluated in this study are then intro-338

duced in Section 3.2. Finally, the loss function, TCN design, and aggregation339

functions are discussed in detail in Sections 3.3, 3.4, and 3.5, respectively.340

3.1. Problem statement341

As anticipated in Section 1, our goal is to propose a network architecture342

able to classify the game state for a given time window by leveraging tracking343

information.344

Let us define the proposed network as a function H : x ∈ Rnf×no×nc 7→345

y ∈ Y , where x is the input tensor and Y = {dead,home,away} is the346

three-class output. The classifier is trained in a supervised fashion from a347

labeled dataset D = {xi, yi}Ni=1.348
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We assume the input tensor to be of size nf × no × nc, where nf is the349

number of frames in the observed time window, no is the number of tracked350

objects (e.g., players, ball, referee, etc.) and nc is the number of feature351

channels associated to each object. For simplicity, and without loss of gen-352

erality, we assume that the feature channels include at least the position of353

the tracked objects with respect to the pitch and the team; however, as ex-354

emplified later in Section 4.1, the feature vector can be extended to include355

other features such as the player id, the object velocity, visual features, etc.356

To simplify the explanation of the learning procedure, we decompose the357

network H as a combination of three functions358

H(x) = fc
(
Λ
(
ftcn(x)

))
(1)

each implemented by one or more layers.359

The embedding function ftcn : Rnf×no×nc → Rno×ltraj maps the trajectories360

of each individual object to an embedding vector of length ltraj. As detailed361

later, this component is based on TCNs, hence the subscript.362

The aggregation function Λ combines the embeddings associated with363

different objects into a single feature vector, which is then given as input to364

the actual classifier fc (last function). The order of the players within the365

input data is based solely on the jersey number of each player within the team;366

hence, this order does not carry any semantic meaning and needs therefore367

to be abstracted. It is crucial that, given the same position of the objects on368

the pitch, the network predicts the same result if two players are swapped,369

i.e., that the output does not vary in case of a permutation in the input data:370

hence the need to define a permutation-invariant function. An alternative371

strategy, detailed in Section 3.5.3, is to order the objects according to a372

16



predefined criterion, which bypasses the need to use a permutation-invariant373

function.374

Finally, the last classification function fc is a simple feed-forward network375

(FFN) that computes the output class c. Alternatively, it is possible to376

redefine the output space as a combination of two binary labels (yDA, yPOSS),377

where yDA ∈ {dead,alive} and yPOSS ∈ {home,away}. The peculiarity378

of this formulation, as discussed in Section 3.3, is that yPOSS is not defined379

when yDA = dead.380

3.2. High-level architecture381

This section explores in detail several variants for each of these three382

components and their combinations, and introduces the three high-level ar-383

chitectures that were experimentally compared in this work.384

All architectures exploit TCNs as the embedding function. As discussed385

in Section 2, according to the recent deep learning literature, TCNs applied386

to tracking data have proven to work well in different tasks, such as event de-387

tection, team classification, etc. They also compared favorably with respect388

to recurrent architectures (reported, e.g., in Bai et al. (2018) and Guirguis389

et al. (2021)).390

In particular, the proposed architectures are based on k×1 convolutional391

filters in order to produce separate trajectory embeddings for each object on392

the field (in our case, as said, the players, the ball, and the referee).393

The first proposed architecture, denoted in the following as the single-394

branch model, frames the problem as a ternary classification. The network,395

depicted in Fig. 1a consists of three blocks that implement the functions396

introduced in Section 3.1. In this formulation, fc(·) is a FFN with three397
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output classes, which takes as input the trajectory embeddings obtained398

through spatio-temporal convolution as detailed in the problem statement.399

It is important to stress that the aggregation function Λ must be invariant400

to permutation; different architectural choices that satisfy this property are401

illustrated in Section 3.5.402

The second class of architectures requires producing two binary classifi-403

cations: one telling if the game state is active, the other one telling which404

team owns the ball in an active game phase. This leads to an architecture405

with two parallel output layers, each responsible for one classification. At406

the network level, it is possible to achieve these goals in two ways, outlined407

respectively in Fig. 1b and Fig. 1c.408

The first variant, illustrated in Fig. 1b and denoted in the following as409

the two-branch network, computes the trajectory embeddings once and uses410

them to predict both output variables. The TCN output is passed to two411

different Λ layers, which in turn pass their output to two separate FFNs,412

the Dead-Alive (DA) branch, and the Possession (POSS) branch. Each FFN413

produces a scalar output, representing respectively P (YDA = dead | X) and414

P (YPOSS = home | X, YDA = alive). Alternatively, it is also possible to415

share both the TCN and the Λ layers, splitting only the FFN network or416

part of it. The choice clearly represents a trade-off between computational417

needs and flexibility; here, we preferred to keep the Λ layers separated, since418

we expect that having distinct representations may be useful to optimize419

each classification. It is important to note that both branches are trained420

in parallel, i.e., a single backpropagation is performed, and hence the TCN421

is trained to jointly optimize both tasks. Parallel training can be achieved422
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using a combined loss function (discussed in Section 3.3) that produces a423

single scalar value resulting from both branches.424

Alternatively, it is possible to perform the classifications by two separate425

networks, a Dead-Alive (DA) network and a Possession (POSS) network, as426

shown in Fig. 1c. This variant will be denoted in the following as the two-427

networks configuration. In this case, each network computes its trajectory428

embeddings that are then passed to the Λ layers and finally to the FFNs for429

the binary classification. Computing separate embeddings allows the TCNs430

to capture those aspects of the tracking data that may be more relevant431

for the specific task, rather than producing a set of general-purpose feature432

vectors that are expected to solve both tasks at the same time. The two433

networks are trained separately end-to-end, with the possibility of adapting434

them to specific task needs, which include using different sets of hyperparam-435

eters. The drawback of this alternative is that training two networks requires436

roughly twice as much computational resources; this choice is viable only if it437

brings about a boost in performance that justifies such investment. Further-438

more, the use of separate trajectory embeddings goes against the concept439

of embedding as a general descriptor that effectively summarizes the data440

and can be used in a wide range of applications, as described in Khan et al.441

(2018b).442

3.3. Loss functions443

The single-branch, multi-class model is trained using a standard cross-444

entropy loss written as445

L(ŷ) = −
∑
i

yi · log(ŷi) (2)
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Figure 1 (previous page): Comparison of the three proposed architectures. All take as

input a multi-dimensional array of size nf × no × nc, where nf is the number of frames,

no is the number of objects (including all players, the ball and the referees), and nc

is the number of channels (i.e., features) associated with each object (including, e.g.,

the position, velocity, team, etc.). All architectures output two scalars representing the

probabilities P (YDA = dead | X) and P (YPOSS = home | X,YDA = alive). Each

architecture is composed by one or more TCN computing the embeddings (one of each

object), a permutation-invariant aggregation function Λ that combines the trajectories of

all objects, and finally one or more FFNs fc that computes the output probabilities. While

the single-branch architecture computes both output probabilities using a single TCN and

FFN (a), in the two-branch architecture two separate FFN layers are defined on top of a

single shared embedding TCN (b). In the two-networks architecture, DA state and ball

possession are estimated using separate embedding and classification functions (c).

Using a one-hot encoding, yi is zero for all classes but the correct one; hence,446

the cross-entropy loss turns out to be −log(ŷK), whereby K is the true class.447

For the two-networks model, the DA network does not differ substan-448

tially from the previous one, except that it performs a binary classification:449

however, this can be considered as a special case of multiclass classification,450

which allows to use a slightly different cross-entropy function that accounts451

for the fact that the network outputs a scalar value instead of a vector. Since452

the network predicts the conditional probability of YDA = dead, the true453

label y(DA) should be a scalar with value 1 if the game state is DEAD and454

0 otherwise. With these modifications, the binary loss function of the DA455

network can be expressed as:456

LDA(ŷ(DA)) = −(y(DA) · log(ŷ(DA)) + (1 − y(DA)) · log(1 − ŷ(DA))) (3)
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The issue is more complex when considering the POSS network. The classifi-457

cation here does not only depend on the input data X, but also on the value458

of YDA: YPOSS is meaningful only as long as the game is active, otherwise it459

is useless to estimate which team owns the ball. During training, this means460

that the network should not update its parameters if it is faced with a sample461

where the true label is DEAD. To obtain this result, it is possible to define462

the loss function as follows:463

LPOSS(ŷ(POSS)) =

BCE(ŷ(POSS)), y(DA) = 0

0, otherwise

(4)

where BCE is the binary cross entropy:464

BCE(ŷ(POSS)) = −(y(POSS) · log(ŷ(POSS))+

+(1 − y(POSS)) · log(1 − ŷ(POSS)))
(5)

Finally, the two-branch model is trained using a multi-tasking loss func-465

tion defined as466

L(ŷ(DA), ŷ(POSS)) = α · LDA(ŷ(DA)) + (1 − α) · LPOSS(ŷ(POSS)) (6)

i.e., as an average of the two loss functions described above with an addi-467

tional weight parameter α. During backpropagation, the derivative of L with468

respect to an arbitrary parameter x is given by the formula469

∇xL = α · ∇xLDA + (1 − α) · ∇xLPOSS (7)

For the parameters located in the branches, this means that the update470

process is the same as in the two-networks model: parameters lying in one471
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branch do not impact the loss function of the other branch; thus, one of472

the two members of the derivative above will be zero. With respect to the473

parameters in the TCN, the update will depend on both losses, according to474

the weight factor α. In particular, it can be noticed that if a sample belongs475

to a segment of inactive game, the function LPOSS and its derivatives will be476

zero, which means that the parameters in the TCN are updated based only477

on the output of the DA branch.478

3.4. TCN design479

In the proposed architectures, the TCN is responsible for producing tra-480

jectory embeddings, i.e., fixed-size representations of the movements on the481

pitch of every relevant object. This is achieved by stacking several layers of482

temporal convolutions, which gradually incorporate information from differ-483

ent points in time into a single vector. The structure of the layers defines484

a priori the size of the receptive field, i.e., the number of elements in the485

sequence that concur to the final prediction. As a result, the receptive field486

determines how many frames are needed to form an input sample, a param-487

eter that has already been introduced as nf . In this choice, there should488

be a trade-off (which has to be made at design time) between two factors:489

on the one hand, larger sequences allow to consider a larger portion of the490

game when producing an output; on the other hand, they require a deeper491

network, which in turn needs more time and more data to be trained.492

It is important to note that the target frame, i.e., the frame for which493

we want to predict the game state, can be located anywhere within the494

sample: in case the input sequence only includes past frames, the convolution495

is said to be causal, otherwise it is called acausal. The choice between these496
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alternatives depends on how fast the ball possession prediction has to be497

made; however, it is important to consider that seeing how the action goes498

on after the target frame can help to enhance the model performance. For499

example, using only the tracking data, it is difficult to recognize immediately500

whether a foul was called: in this case, it can be helpful to consider also501

some frames afterwards, based on the consideration that if a foul is called,502

the players will probably stop running or move towards the referee. For this503

reason, unless the system has strict time constraints, it seems appropriate to504

opt for acausal convolutions.505

With respect to these two concepts, it can be useful to point out two as-506

pects pertaining TCNs. First, it is clear that the input slices in two adjacent507

forward passes have almost the same elements; yet, since they are in different508

positions, it is not possible to reuse the results of the convolutions from one509

pass to the other. Second, as shown in Fig. 2, the temporal convolutions are510

computed on all elements in the sequence, applying dilations and padding511

when necessary. However, only a small part of the computations (which are512

shown in the figure with continuous lines) effectively contribute to the out-513

put results (the orange circle in the top right). The other computations are514

needless, since their results are gradually discarded by the following layers.515

In order to design the internal structure of the TCN, it is important to516

recall from the problem statement that it should apply a function ftcn to the517

input data, such that518

ftcn : Rnf×no×nc → Rno×ltraj (8)

However, since the trajectory embeddings should be computed separately519

for each object, ftcn is equivalent to applying on no inputs a function f
′
tcn,520
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Figure 2: Scheme of dilated convolution (van den Oord et al., 2016): black lines show the

convolutions that actually contribute to the result.

such that521

f
′

tcn : Rnf×nc → Rltraj (9)

A function with these characteristics can be achieved using 1D convolutions,522

i.e., convolutions with a filter of size k and not k1 × k2, as in the more523

common 2D convolutions. At implementation time, it should be considered524

that filters always have one additional dimension, since they are applied over525

many channels at the same time; however, this aspect is usually disregarded526

in the definitions, which explains why they are referred to as 1D convolutions527

even though the input is two-dimensional. In order to apply f
′
tcn in parallel on528

all objects, the most straightforward way is to arrange the operation as a 2D529

convolution with a k×1 filter on the whole input, which has size nf ×no×nc.530

This technique, proposed by Horton (2020), allows at each step the filter to531

be convolved with a portion of the input tensor, containing k frames related532

to only one object. The result of the 2D convolutional layer is a matrix of533

size no× ltraj, whose columns correspond to the output of the 1D convolution534

applied to the respective object. In other words, by means of a k× 1 filter it535

is possible to compute the function ftcn on the whole input tensor in a single536
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pass.537

The final structure of the TCN is given in Table 1. The first layer is a 1×1538

convolution, in order to adapt the third dimension of the input to the size539

of the final embeddings, which is ltraj. Next, a batch normalization layer is540

applied, as proposed in Ioffe and Szegedy (2015). After that, the architecture541

features a block containing three layers: the first one is a convolutional layer542

with a k × 1 filter, which constitutes the most relevant part of the function543

ftcn. Then, there is a dropout layer and another 1×1 convolution. The block544

is repeated multiple times (the exact number n blocks is a hyperparameter545

of the network) with an exponentially growing dilation rate: as said at the546

beginning of this section, the number of blocks in the network determines the547

receptive field of the TCN and, hence, the length of the subsequence consid-548

ered at each forward pass. Finally, after having applied dropout and batch549

normalization once again, the last sequence element is selected since, as said,550

this element captures the whole receptive field, thus offering a summarized551

representation of the whole temporal sequence.552

3.5. Permutation invariance553

In the architectures presented in Section 3.2, a major role is played by the554

aggregation layer Λ, which transforms the individual trajectory embeddings555

into a global representation of the game sequence, which in turn can then556

be classified by an FFN. It has already been pointed out that Λ should be557

permutation-invariant, i.e., the result should be independent of the players’558

order in the input tensor. In this section, three possible ways to achieve this559

goal are analyzed, with different characteristics and complexities.560
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Layer type Output size Parameters

input nf × no × nc -

conv nf × no × ltraj filter 1 × 1

batch norm '' -

conv

dropout

conv

× n blocks

'' filter k × 1

'' -

'' filter 1 × 1

dropout '' -

batch norm '' -

slice no × ltraj -

Table 1: Architecture of the TCN module.

3.5.1. Reduce by sum561

Considering an input matrix A, a simple invariant operation with respect562

to column permutation is the multiplication A · 1, where 1 is a vector of all563

ones. This operation is equivalent to computing a vector whose i-th value564

is the sum of all the values in the i-the row of A. It is evident that if two565

columns in the input matrix are swapped, the sum of the values across each566

row remains unchanged; therefore, the function567

freduce sum : Rm×n → Rm, A 7→ A · 1 (10)

is permutation-invariant. In the current case, the TCN outputs a tensor Atcn568

of size no× ltraj. Since the position of the ball and the referee is already fixed569

by the fact that their tracking data are placed in the first two columns of the570

dataset, in order to make the Λ layer permutation invariant, it is sufficient to571

27



consider the two submatrices A
(home)
tcn and A

(away)
tcn containing the embeddings572

of the home and away players. The submatrices have size (11 + 6) × ltraj,573

since each soccer team has 11 starting players and up to six substitutions 1,574

and can be passed to freduce sum obtaining two vectors vhome and vaway of size575

ltraj that act as trajectory embeddings of one team each.576

It is therefore possible to construct a permutation-invariant Λ layer through577

the linear transformation578

fΛ : Rno×ltraj → R4×ltraj , Atcn 7→


| | | |

vball vref vhome vaway

| | | |

 (11)

where vball and vref are the trajectory embeddings of the ball and the referee.579

It is possible to use this result as input to a FFN by flattening the matrix580

into a one-dimensional vector of size no · ltraj, as is commonly done in CNNs581

designed for image classification.582

3.5.2. Self-attention583

A second possibility in the construction of Λ is to take advantage of recent584

advances in the field of attention models. In particular, the self-attention585

module introduced by Vaswani et al. (2017) allows to create embeddings of586

the original elements that not only take into consideration other elements in587

the tensor, but are linear combinations of those elements (or more precisely,588

of their values). Notably, in the original self-attention model, the tensor589

consists of different elements of a sequence, but at this point there are no590

1One additional player is encoded as an extra substitution to account for possible

tracking errors
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sequential data to work with since the temporal information is flattened591

by the TCN into the trajectory embeddings. Thus, in this case, the self-592

attention model is not used to process different elements within a temporal593

sequence, but rather elements that are part of an unordered set, such as the594

submatrices A
(home)
tcn and A

(away)
tcn introduced above.595

Since the biggest part of the possession estimation is related to one single596

object, namely the ball, it seems reasonable to think that if the self-attention597

module is able to grasp all the interactions where the ball is involved, it is598

possible to make a reliable prediction without considering the interactions599

among the other objects. At the same time, since self-attention is specifically600

designed to output a weighted representation of the interactions between the601

input columns, extracting such a representation of the ball trajectory should602

provide enough information for a successful classification. Based on these603

considerations, if the ball trajectory has to be enriched by all the other604

objects, it is evident that the self-attention layer should receive the whole605

tensor produced by the TCN: it will be then the self-attention task to rec-606

ognize which objects have a role in determining the possession and which607

objects are irrelevant, such as bench players. In this sense, it is relevant to608

note that the value of a given column in the output of a self-attention layer609

is independent of the ordering of the other columns. This means that the610

computation of the column related to the ball is permutation-invariant with611

respect to the columns related to the players.612

If we denote by S ∈ Rno×natt the matrix produced by the self-attention613

layer and by si its column vectors, the operation of the Λ layer can be de-614
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scribed by the function615

fΛ : Rno×ltraj → Rnatt , Atcn 7→ s1 (12)

where natt indicates the size of the query, key and value vectors as defined in616

Vaswani et al. (2017).617

3.5.3. 2D Convolutions618

A way that is often used to achieve permutation invariance is to impose an619

ordering based on an anchor object. In this case, the game state is estimated620

based predominantly on the ball: it is possible therefore to order the players621

according to their distance to this object, so that the network can operate on622

the data independently of how the players are arranged in the input tensor.623

Although this idea can also be applied to the options presented above, e.g.,624

by limiting the reduce or the self-attention operations to the players close to625

the ball, its most powerful consequence is that it allows one to structure the626

input tensor in a way that avoids the need to create isolated embeddings for627

the objects.628

The input data can be arranged across two dimensions, which should be629

flattened in order to obtain a single prediction of the game state. The two630

dimensions are the temporal axis and the different objects, and their sizes631

are nf and no, respectively. Structuring the input data allows to operate632

on them as commonly done for video streams, where the temporal and the633

spatial dimensions are processed in parallel. In other terms, the input data634

can be interpreted as two-dimensional, rather than one-dimensional.635

Taking this fact into account, it is possible to apply a temporal convo-636

lution to the input by using a 2D convolutional layer. However, while in637
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Section 3.4 2D convolution was performed by means of a k × 1 filter to sep-638

arate each object, here k1 × k2 filters are used in order to fuse together the639

information along both axes. This third proposal to obtain a permutation-640

invariant representation of the global features therefore does not foresee any641

Λ layer: instead, permutation invariance is a by-product of the TCN design,642

after introducing the additional constraint that players in the input data are643

pre-ordered according to their distance from the ball.644

4. Experiments645

4.1. Dataset646

The dataset at our disposal consists of tracking data taken from 35 games647

during the 2019-20 season of a top professional European league. The data648

are collected at an average rate of 16 frames per second (fps) and for each649

frame the following information is provided:650

• a frame number, an incremental id of the frame starting from 1;651

• a game state label, as described in the problem statement: this is the652

target variable of the system;653

• a timestamp, indicating at which moment the data was collected;654

• a half flag, indicating whether the frame was collected in the first or655

in the second half of the game;656

• the x and y coordinates of the ball;657

• the x and y coordinates of the referee;658
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• for each player, the x and y coordinates, and a flag to distinguish659

goalkeepers.660

Ball and players coordinates are provided from a third part company661

specialized in real time tracking technologies for the sport sector, through a662

system of ad-hoc cameras installed directly in each venue. The coordinates663

spaces is a rectangle corresponding to the football pitch and the coordinates664

system is centered in the center of the pitch (kickoff point) with x-positive665

axis pointing to the right and y-positive axis pointing up. Considering the666

standard dimensions of a football pitch (105 × 68 meters), the range is [–667

52.5, 52.5] for x–axis and [–34,34] for y–axis both for ball and players. If the668

tracking system could not locate an object or if the object was not on the669

pitch (e.g., in the case of a player sitting on the bench or being expelled),670

the corresponding x and y fields are empty.671

Target labels dead, home and away were manually assigned in real672

time by a human operator as part of a series of services provided by a third673

company to the league organization. The target labels in the dataset are674

distributed as follows: about 40% of the samples belong to the class dead,675

the rest of the samples are quite evenly distributed between the classes home676

(29.6%) and away (30.3%).677

Since the model takes as input a tensor of size nf × no × nc, the whole678

game is split in sequences of length nf . Clearly, it is also possible for samples679

to overlap with each other, as the game sequence is transformed into samples680

following a sliding window approach with a stride of 1 (i.e., adjacent samples681

differ only by one frame).682

Datasets acquired during real games often have highly variable quality. A683
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simple yet effective metric to assess data quality is the percentage of samples684

in which the ball coordinates are missing. A slightly more informative version685

of this metric can be obtained by considering only the samples in which the686

game is active, i.e., the game state is not dead. The eight games with687

the lowest percentage of missing ball coordinates, measured according to688

the latter metric, were included in this study. These games were then split689

in three subsets of respectively four, two, and two games. From the first690

subset, 100K samples were randomly chosen to create the training set; from691

the second subset, 5K samples were randomly chosen to create the validation692

set; from the third subset 5K samples were randomly chosen to create the test693

set. By using different games in each subset, we aimed to have statistically694

independent data across the phases. Furthermore, the data in the three695

subsets were acquired in different stadiums and with different teams involved696

to ensure that the model generalizes well in other contexts.697

4.2. Implementation698

Each of the alternatives presented in Section 3 is defined by two inde-699

pendent factors, namely, the high-level architecture (i.e., single-branch, two-700

branch or two-networks configuration) and the permutation-invariant layers701

(i.e., reduce by sum, self-attention or 2D convolution). Both factors can be702

varied as desired even within the same architecture, e.g., it is possible to de-703

fine a two-networks model in which one network uses self-attention and the704

other one uses 2D convolution. The only constraint in this sense is that in705

a two-branch model, it is not possible to combine a 2D convolution with an-706

other permutation-invariant function: in fact, when using 2D convolutions,707

the TCN outputs a single vector that is passed to both branches. Therefore,708
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while it is possible in a two-branch network to use a sum layer in one branch709

and a self-attention layer in the other one, in the case of 2D convolution the710

choice affects necessarily both branches since the TCN is shared by both.711

As said, each data sample is structured in a three-dimensional tensor712

of size nf × no × nc. In this work, we set nf = 64, based on experimental713

evidence and domain knowledge. The target frame is the 48th element within714

the sequence, which means that the model is acausal.715

The total number of objects no is equal to 1 ball+1 referee+22 starting play716

ers + 12 substitutions = 36. Padding columns with empty values are added717

when the teams did not exploit all possible substitutions. Finally, the nc = 11718

channels are defined for each object with the following information:719

• the x and y coordinates;720

• the velocity in the x and y directions, computed by subtracting the721

coordinate vector in two adjacent time points and dividing it by the722

frame period;723

• three channels encoding the role of the object, i.e., whether it is a ball,724

a referee or a goalkeeper;725

• two channels encoding whether the object belongs to the home team726

or to the away team;727

• a flag telling whether the object is located outside of the pitch;728

• a flag telling whether the object is missing.729

Before training, the data are preprocessed to ensure training convergence730

and reduce the effect of noise. The ball coordinates are first interpolated731
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using the Akima spline (Akima, 1970). Then, each x and y coordinates are732

separately rescaled using min-max scaling so that they fall into the interval733

[ − 1, 1]. Missing data are assigned the value −2, and values far outside of734

the game field are truncated before scaling in order to provide more stability735

to normalization.736

The network architecture has been described in detail in Section 3. The737

FFN consists of two fully connected layers, with 64 and 32 units, respec-738

tively. The TCN and the self-attention module are initialized according to739

the Xavier normalized algorithm, while the FFN initialization follows the740

Xavier uniform algorithm (Glorot and Bengio, 2010). All layers have the741

ReLU activation function, except for the FFN layers which use an ELU ac-742

tivation. All networks were implemented in Python based on Keras v2.4.3 e743

Tensorflow v2.3.1. For training, the Adam (Kingma and Ba, 2014) optimizer744

was used, with an initial learning rate of 10−5 and a decay rate of 0.7 after745

each epoch.746

4.3. Performance assessment747

The models were evaluated on the basis of three accuracy metrics. First,748

global accuracy is considered, i.e., the percentage of correct predictions among749

all predictions made within the ternary classification setting presented in the750

problem statement. Global accuracy can be thus expressed as751

accglobal =
#correct predictions

#all predictions
(13)

Especially for multi-branch and multi-network models, it is also interest-752

ing to consider two additional metrics, namely dead-alive accuracy, accDA,753

and possession accuracy, accPOSS. These measures represent the ability of754
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a model to solve one of the two sub-tasks into which the problem can be755

decomposed. In particular, the dead-alive accuracy represents the percent-756

age of samples for which the model correctly identifies whether the game is757

active or not and is computed as758

accDA =
#tpDA + #tnDA

#tpDA + #tnDA + #fpDA + #fnDA

(14)

where tpDA are the samples for which both the true and predicted labels are759

not dead, tnDA are the samples for which both the true and predicted labels760

are dead, fpDA are the samples for which the true label is dead while their761

predicted label is not dead, and fnDA is the opposite case. On the contrary,762

the possession accuracy represents the percentage of samples for which the763

game is active, and the model correctly identifies which team owns the ball.764

It is computed as765

accPOSS =
#tpPOSS + #tnPOSS

#tpPOSS + #tnPOSS + #fpPOSS + #fnPOSS

(15)

where tpPOSS are the samples for which both the true and the predicted label766

are home, tnPOSS are the samples for which both the true and the predicted767

label are away, fpPOSS are the samples for which the true label is away768

while their predicted label is home, and fnPOSS is the opposite case. It is769

thus important to note that accPOSS only considers those samples for which770

true label is not dead, i.e., those frames where the game is active.771

For the selected architectures, the inference time (mean and standard772

deviation) needed to process one batch was calculated. Execution time773

was measured on a PC equipped with an NVIDIA 1080Ti GPU with 11Gb774

VRAM, 32G RAM and Intel i7-7700 CPU @ 3.60GHz.775
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5. Results776

The goal of this section is to provide an evaluation of the presented meth-777

ods. Thus, in Section 5.1, different design alternatives are compared in order778

to identify the best model to solve the problem statement. This model is779

then compared in Section 5.2 with other methods taken from the existing780

literature on related topics. Finally, in Section 5.3, some ablation studies are781

conducted in order to identify which parts of the model contribute most to782

the final outcome.783

5.1. Comparison of design alternatives784

The results obtained by comparing different design alternatives are shown785

in Table 2, where each row represents a different combination of architecture786

and aggregation function. Overall, most of the results are within a small787

range: the mean accuracy (± standard deviation) for all models is 82.93%788

± 1.71%. On average, the accuracy achieved with single-branch (83.11% ±789

1.39%) and two-branch architectures (83.79% ± 1.85%) is higher than the790

two-networks solution (82.40% ± 1.82%).791

We also measured inference time for the best performing network, i.e.,792

the two-branch network with self-attention aggregation layers. The average793

time (± standard deviation) needed to process one batch is equal to 37.18794

ms ± 4.66 ms for a batch size of 1, 57.47 ms ± 5.94 ms for a batch size795

of 16, and 52.39 ms ± 1.26 ms for a batch size of 32. Given that the data796

is sampled at 16 frames/s, processing times are comparable with real-time797

inference even on relatively low-performance, consumer-grade GPU.798
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Architecture Aggregation function accglobal

Single-branch
sum 83.42 %

self-att. 84.32 %

2D-conv. 81.6 %

Two-branch
sum + sum 82.74 %

self-att. + sum 84.55 %

sum + self-att. 83.78 %

self-att. + self-att. 86.39 %

2D-conv. 81.49 %

Two-networks
sum + sum 82.78 %

self-att. + sum 84.44 %

2D-conv. + sum 82.38 %

sum + self-att. 82.86 %

self-att. + self-att. 84.32 %

2D-conv + self-att. 79.42 %

sum + 2D-conv. 79.62 %

self-att. + 2D-conv. 82.16 %

2D-conv + 2D-conv. 83.64 %

Table 2: Performance (global accuracy) of different design alternatives. The first column

refers to the high-level architectures, whereas the second column reports the permutation-

invariant aggregation function Λ. For multi-branch/multi-network architectures, the first

aggregation function refers to the DA branch/network, whereas the second one refers to

its POSS counterpart.
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5.2. Comparison with the state of the art799

In order to fully assess the contribution of this work, it is important to800

provide a quantitative analysis with respect to the state of the art. Since there801

are no works that address the overall problem of estimating the game state,802

the comparison will be made separately with respect to the two subtasks of803

estimating the densities P (YDA | X) and P (YPOSS | X, YDA = alive).804

First of all, the classification between active and inactive game phases is805

considered, comparing the model presented in this work with the one from806

Wei et al. (2013), which uses a decision tree trained with the ball coordi-807

nates only. Each model is tested on 20K samples randomly selected from808

two games, chosen among those that were not used to train the neural net-809

work. As shown in Table 3 (upper part), the network greatly outperforms810

the baseline model, which in turn performs only 6% better than a random811

classifier (since it is a binary classification and the classes are relatively bal-812

anced, a random classifier has a 50% chance of guessing the correct label).813

In Section 5.3 it will be also shown that, even if the network is provided only814

with the ball coordinates (thus holding out the players and the referee), it is815

still able to achieve 83% accuracy in the dead-alive problem, which is 27%816

better than the decision tree.817

Regarding possession, the current work is compared with three methods,818

taken respectively from Link and Hoernig (2017), Morra et al. (2020) and819

Khaustov and Mozgovoy (2020). These works propose rule-based systems,820

in which possession is estimated starting from considerations drawn from821

domain knowledge, regarding, e.g., the closest player to the ball, the speed822

and acceleration of the ball, etc. Again, each model is tested on 20K sam-823
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ples randomly selected from two games; the test set is also pruned of those824

samples where the game is inactive, since the baseline models are designed825

for estimating ball possession only.826

All competing models were reimplemented based on the available infor-827

mation from the original papers. Specifically, in Link and Hoernig (2017),828

the ball acceleration was computed as a finite difference starting from the829

ball coordinates. The threshold on the ball acceleration was set to 4ms-2, as830

proposed by the authors. The minimum distance TP between the player and831

the ball, used to discriminate if the player is interacting with the ball, is not832

provided in the work and was set through validation to 1.5m. In Morra et al.833

(2020), ball possession is estimated based on the distance from the closest834

player, the movement of the player and the ball speed, each controlled by a835

separate threshold. Hyperparameters were taken from the code released by836

the authors and set to 1.09m, 1.19m, and 8.6ms-1, respectively. As concerns837

Khaustov and Mozgovoy (2020), the algorithm as well as its hyperparameters838

are thoroughly listed in the paper and were kept unchanged.839

The obtained results are listed in the lower part of Table 3, and show840

that the best performance is achieved by the neural network, with a margin841

of 7% in accuracy with respect to the best rule-based model, which is the842

one from Morra et al. (2020).843

5.3. Ablation studies844

The goal of this section is to analyze which parts of the input data concur845

to the final result, in order to understand what aspects are deemed as more846

important by the network to produce the output, and what is ignored. In847

particular, ablation studies are performed on two axes: on the one hand,848
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Solution accDA accPOSS

Ours 89.2% 86.2%

(Wei et al., 2013) 56.0% -

(Link and Hoernig, 2017) - 64.5%

(Morra et al., 2020) - 79.1%

(Khaustov and Mozgovoy, 2020) - 75.4%

Table 3: Comparison of our best model (two-branch network with self-attention aggrega-

tion layers) with the state of the art on the task of dead-alive classification (accDA) and

possession classification (accPOSS).

we evaluate what happens when we remove objects, in particular players;849

on the other hand, we investigate the role of individual channels, i.e., of the850

information related to each object. The two directions are followed separately851

in an orthogonal way, i.e., when objects are removed, all the channels are852

considered, and vice versa.853

Ablation studies report all three different metrics introduced in Sec-854

tion 4.3. In fact, some objects – or some channels – may be important855

to determine only one of the two aspects, i.e., only if the game is active or856

which team owns the ball. The ultimate goal of this analysis is therefore to857

understand which parts of the input are important to produce which parts of858

the output. This is particularly relevant since, as it has been shown above,859

it is possible to build a model using two separate branches or even two sepa-860

rate networks, each of which performs a binary classification. Knowing which861

parts of the input data are more important for each prediction enables us to862

finetune separately the training of each branch/network.863
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Ablation studies are performed on an extended test set which includes864

20 games, encompassing a larger variety, in terms of acquisition settings and865

data quality, with respect to the games included in the training set. The two-866

branch model with self-attention, which achieves the highest global accuracy867

as reported in Table 2, is selected as baseline.868

5.3.1. Ablation of objects869

The object ablation study progressively removes some of the objects from870

the input data. The input data consist of a tensor of size nf ×no×nc, where871

no amounts to 36, since it includes the ball, the referee and 17 players from872

each team (11 starting players and 6 possible incoming players). Performing873

an ablation study on the objects thus means to cut away a slice of the input874

on the second axis, passing to the network a tensor of size nf ×n′
o×nc, where875

n′
o is the number of objects that are kept.876

The ablation is performed in two steps. First, the players far from the877

ball are removed. The distance can be computed in different ways: here, the878

Euclidean distance is considered at the frame in which the game state should879

be estimated. This approach, based on the idea of the K-nearest neighbors880

(KNN) algorithm, is rather common and can be found in several works from881

the literature (Sanford et al., 2020) (Mehrasa et al., 2018). In the second882

step, a more aggressive ablation is performed, and only the ball is retained:883

the intuition behind this choice is that the ball trajectory, by itself, carries a884

considerable part of the information.885

The results in terms of global accuracy are shown in Fig. 3. The blue886

dots in the figure represent the baseline, which achieves a mean accuracy of887

81.59% on the test set, as shown in Table 4. The yellow dots refer to the888
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Ablation accglobal accDA accPOSS

baseline 81.59 % 88.25 % 84.95 %

5NN 79.41 % 85.8 % 84.98 %

ball only 58.35 % 83.62 % 50.54 %

(x, y) + roles 67.25 % 74.89 % 82.09 %

(x, y) only 56.16 % 75.81 % 51.89 %

Table 4: Mean accuracies of different ablation models.

model trained using the ball and its five nearest players (5NN) and performs889

about 2% worse than the baseline. Finally, the red dots show the performance890

when the model is trained using only the tracking data of the ball: this leads891

to a considerable drop in the accuracy, since only 58% of the samples are892

classified correctly on average.893

Table 4 compares models also with respect to the additional metrics accDA894

and accPOSS. The latter presents a similar trend as the global accuracy: the895

5NN model performs on par with the baseline, while the ball-only model896

performs significantly worse. On the contrary, in order to estimate if the game897

is active, it is useful to include all players, since there is a 2.5% difference898

in accDA between the 5NN model and the baseline (which ultimately causes899

the difference in global accuracy). Most interestingly, it can be noticed that900

the ball trajectory alone is able to achieve a good 83.62% mean accDA.901

5.3.2. Ablation of channels902

Channel ablation studies aims to explain which part of the information903

about each object are important to produce the output result. In the original904

43



Figure 3: Results of the object ablation study. Each dot represents the global accuracy of

the baseline (blue), ball + 5NN (yellow) and ball only (red) models, calculated separately

on each game in the extended test set.

input data, 11 channels are passed to the network, including some hand-905

crafted features, such as velocity, pre-computed in the data pre-processing906

phase. The goal of this section is therefore to identify which information907

can be considered as redundant, and whether the designed architecture is908

capable of automatically encoding or compute features from the raw spatial909

coordinates, if they are indeed relevant for the classification. Since one of the910

most relevant characteristics of neural networks is their ability to recognize911

hidden patterns, which avoids the need to hand engineer the input features as912

it was typical of the earlier machine learning techniques, we aim to measure913

up to which point the network is able to fulfill this expectation, and conversely914

when it is better to provide some explicit information in order to improve915

the performance.916
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Figure 4: Results of the feature ablation study. Each dot represents the global accuracy

of the baseline (blue), (x, y) coordinates + roles (yellow) and (x, y) coordinates only (red)

models, calculated separately on each game in the extended test set.

As in the previous section, the ablation is done in two steps: in the first917

step, information about the coordinates, the roles and the team is kept (in918

total seven channels), whereas in the second step only the two coordinates919

are used. The detailed results in terms of global accuracy are shown in Fig. 4,920

whereas the mean accuracy across the 20 games in the test set are reported921

in Table 4. The results show a clear difference between the three models: the922

baselines achieves 81.59% mean accuracy, the model using only the roles has923

67.25%, whereas the model that uses only the spatial coordinates has 56.16%.924

This means that, from a general point of view, all groups of channels make925

a significant contribution to the output.926

When considering separately the accuracy on the two binary classification927

settings, however, it is possible to note some differences. In fact, in terms928
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of the dead-alive accuracy, the role model (i.e., the first ablation model) has929

nearly the same performance as the coordinate model (the second ablation930

model), which indeed performs a slight 1% better. On the contrary, with931

respect to the possession accuracy, the role model has a performance less932

than 3% worse than the baseline, whereas the coordinate model achieves as933

little as 51.9% accuracy.934

6. Discussion935

In this paper, we have investigated different TCN architectures to esti-936

mate the state of a soccer game starting from spatio-temporal data about937

players and ball positions. All proposed architectures are based on common938

principles: first, TCNs are employed to map trajectories into an embedding939

space, and second, the architecture is designed to be permutation-invariant940

with respect to the orders of the players. However, they differ with respect941

to other design choices, such as the number of branches, the choice of the942

permutation-invariant aggregation function, and the loss, which were exper-943

imentally compared in this paper.944

With respect to the global architecture, the two-networks architecture,945

in which dead-alive classification and possession estimation are predicted by946

two separate networks, performs on average worse than those based on a947

single network. A possible interpretation is that in order to build effective948

trajectory embeddings, training simultaneously on samples from both active949

and inactive game phases is more beneficial than having a more flexible net-950

work with a higher number of parameters. When training on related tasks,951

multi-task learning can improve performance by promoting implicit regular-952
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ization and more robust feature representation (Ruder, 2017), (Vandenhende953

et al., 2020). In addition, models consisting of two separate networks may954

need significantly more resources for both training and inference.955

Taking into account the trade-off between training time and performance,956

as well as between memory and performance, the single-branch models achieve957

results that are often similar or even better than more complex variants.958

For example, when using 2D convolution, a single classification branch does959

not perform worse than its two-branch counterpart. From a computational960

perspective, the processing time of the dual-branch architecture with self-961

attention is low and even compatible with real-time use. However, it must962

be stressed that the processing time to extract players and ball tracking data963

from sensors and/or videos was not considered in the present work. At the964

same time, many sports analytics pipeline do not require real-time processing965

capabilities, but rather high accuracy.966

The choice of the aggregation function Λ has a moderate impact on the967

overall performance. Most of the information can be captured by simple968

functions, such as summing over all trajectory embeddings. Yet, the best969

overall performance (86.39% global accuracy) is achieved by the two-branch970

model using self-attention in both branches: self-attention is the most elab-971

orated of the three aggregation functions, and allows to capture task-specific972

features that cannot be recognized otherwise.973

Another important aspect to consider is how different input features affect974

the overall performance. In this case, the input is composed by multiple975

objects (i.e., the players and the ball), each further characterized by several976

features (or channels), including the (x, y) coordinates, additional features977
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related to the position (the velocity in the x and y directions, whether the978

object is located inside or outside the pitch, and whether it is missing), the979

role played by each object, and the team. Both aspects were studied through980

extensive ablation studies. In order to globally classify the game state, it is981

not possible to consider only the position of the ball, as the accuracy drops982

slightly above chance level (accglobal=58.35%). However, our ablation studies983

show that, on average, it is sufficient to consider the five players closest to the984

ball at the beginning of the sequence (accglobal=79.41%). It should be noticed985

that, because the distance is computed only at one point in the sequence,986

samples in which the ball is kicked at the beginning of the sequence could be987

misclassified (e.g., in the case of a long pass to an empty area of the pitch,988

in which the possession does not change even if the passing player is very far989

from the ball at the moment of the evaluation).990

However, the input information required for each specific task is different.991

To determine whether the game state is active or not, the trajectory of the992

ball alone achieves a strong performance (accDA = 83.62%), quite close to993

the baseline (accDA = 88.25%): hence, ball tracking information accounts994

for 94% of the information captured by the network that allows to determine995

whether the game state is active or not. Removing information about all but996

the closest players also reduces the performance by 2.5% (accDA = 85.8%).997

On the contrary, in order to estimate ball possession, it is sufficient to include998

the five nearest players (accPOSS = 84.98%) to achieve comparable results999

to the baseline (accPOSS = 84.95%), whereas ball tracking information alone1000

cannot reach accuracy above chance level.1001

Similar considerations apply for the features (channels) associated with1002
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each object. In terms of dead-alive classification, removing velocities and1003

position with respect to the external line has a large impact on accuracy.1004

In fact, accuracy when using only (x, y) coordinates drops significantly1005

(accDA = 75.81%), and adding role information even slightly degrades perfor-1006

mance (accDA = 74.89%). On the other hand, with respect to possession ac-1007

curacy, role information is crucial, whereas velocities and other features play1008

a minor role: in fact, a model that takes as input only position and role of1009

each object achieves accuracy comparable to the baseline (accPOSS = 82.09%1010

vs. accPOSS = 84.89%). Both these insights are in line with intuition: in1011

order to tell if the game is active, it is important to know the velocity of the1012

objects (e.g., to know if the ball is moving) and if they are inside the pitch,1013

whereas to assign the ball possession it is essential to correctly assign each1014

object to the proper team.1015

The results of the ablation studies are consistent with those of the com-1016

parison of different architectures. In fact, a two-branch model that uses1017

self-attention in both branches would be able to automatically select the1018

most relevant features for each task. On the other hand, if a two-networks1019

architecture is selected, it would be advisable to tailor the input data passed1020

to each network in order to maximize the performance of the system. Like-1021

wise, in a two-branch model, since the trajectories are computed separately1022

for each object, it is possible to pass only a subset of the embeddings to each1023

branch, based on which objects are most important for the classification. For1024

example, if only the nearest players are needed to determine YPOSS, it would1025

be reasonable to prune the input of the POSS branch in Fig. 1b, selecting1026

only the trajectory embeddings related to the objects needed.1027
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Finally, the proposed model outperforms previously published solutions on1028

both possession accuracy (+7%) (Link and Hoernig, 2017; Morra et al., 2020;1029

Khaustov and Mozgovoy, 2020) and game state classification (+27%) (Wei1030

et al., 2013). The most recent competing methods (Morra et al., 2020; Khaus-1031

tov and Mozgovoy, 2020) are based on rules or temporal logic techniques;1032

these methods do not require training, but may include provisions to tune1033

rule-specific hyper-parameters (Morra et al., 2020). It is worth noticing that1034

all previous techniques were reimplemented and tested on the same dataset to1035

ensure a fair comparison; however, hyper-parameters were kept to the original1036

values proposed by the authors, and were thus tuned on different datasets,1037

at least in one case leveraging synthetic datasets (Morra et al., 2020). The1038

comparison offers an interesting insight about the trade-offs present in rule-1039

based and deep learning models. On the one hand, handcrafted rules allow1040

to build hierarchical models, which can be expanded more easily (e.g., to1041

perform event detection) and often have nice by-products, such as the fact1042

that the possession estimation is already done at individual level. However,1043

this may come at a price in terms of performance, since neural networks1044

often present a greater flexibility that allows them to learn more difficult1045

mappings. In this case, it is particularly reasonable to opt for a deep learn-1046

ing system because the dataset is quite big, which allows to train larger and1047

more powerful networks with little impact on generalization.1048

7. Conclusions and future work1049

This study aimed to devise a deep learning system capable of estimating1050

the state of a soccer game on a frame-by-frame basis given a set of spatio-1051
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temporal tracking data. The best performing architecture is a two-branch ar-1052

chitecture which exploits a TCN backbone to extract trajectory embeddings1053

for each object/player, and self-attention modules to aggregate embeddings1054

in a permutation-invariant way. Extensive experimental analysis on track-1055

ing data from a professional soccer league show that the proposed method1056

outperforms, by a large amount, state-of-the-art rule-based systems in both1057

dead-alive classification and ball possession classification.1058

The present study can be considered as a stepping stone towards automat-1059

ing a task that presently requires constant human input and supervision. At1060

the same time, it represents an important contribution to the state of the1061

art, which currently lacks methods to simultaneously and reliably estimate1062

ball possession and game state. From a technical point of view, this study1063

proved that techniques and network architectures that have been success-1064

fully developed in similar fields, such as event detection, can be applied in1065

the context of ball possession as well. This work also systematically com-1066

pares different techniques for achieving permutation invariance on set-based1067

data, which may be of interest for other applications based on the analysis1068

of tracking data.1069

Ample directions for future research emerge from the results of the present1070

study. For instance, the dataset used in this work is based on cameras pro-1071

viding only x and y coordinates: improvements in the accuracy of the model1072

could be achieved by leveraging more advanced systems that provides a very1073

accurate tracking of the ball, including the z coordinate. Regarding the1074

methodology, an interesting alternative to the approach adopted here could1075

be to estimate the game state from a set of events by subtraction, i.e., by1076
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detecting all the events that determine a change in the game state, and seg-1077

menting the game accordingly. In this way, it would be possible to exploit1078

the large body of existing literature in the field of event detection, as well1079

as to take one more leap in the direction of an end-to-end deep learning1080

system capable of analyzing spatio-temporal data. Clearly, this would also1081

require the availability of a more fine-grained annotated dataset, including1082

information on the individual players as well as the team in the classification.1083
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