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Abstract: In recent years, the development of Advanced Driver-Assistance Systems (ADASs) is
driving the need for more reliable and precise on-vehicle sensing. Radar and lidar are crucial in this
framework, since they allow sensing of vehicle’s surroundings. In such a scenario, it is necessary
to master these sensing systems, and knowing their similarities and differences is important. Due
to ADAS’s intrinsic real-time performance requirements, it is almost mandatory to be aware of the
processing algorithms required by radar and lidar to understand what can be optimized and what
actions can be taken to approach the real-time requirement. This review aims to present state-of-
the-art radar and lidar technology, mainly focusing on modulation schemes and imaging systems,
highlighting their weaknesses and strengths. Then, an overview of the sensor data processing
algorithms is provided, with some considerations on what type of algorithms can be accelerated in
hardware, pointing to some implementations from the literature. In conclusion, the basic concepts of
sensor fusion are presented, and a comparison between radar and lidar is performed.

Keywords: automotive; DSP; ADAS; sensors; lidar; radar

1. Introduction

In recent years, Advanced Driver-Assistance Systems (ADASs) have performed many
steps forward, making autonomous driving a reality. Going toward full driving automation
(Table 1), it is necessary to study sensors and acquisition systems that guarantee proper
performance, mainly in terms of accuracy and resolution.

Table 1. ADAS levels and related automation level.

ADAS Level Automation Level

Level 0 No Automation
Level 1 Driver Assistance
Level 2 Semi-Automated
Level 3 Conditional Automation
Level 4 High Automation
Level 5 Full Automation

Nowadays, the most promising sensor systems to support the development of ADASs
are based on radar and lidar. Both permit detection and ranging but, while the former
exploits radio-frequency (RF) signals, the latter exploits optical signals. The debate on
which one will be the genuinely enabling technology for autonomous driving is still open.
In fact, many of the solutions that are available on the market adopt either radar, lidar or a
combination of them.

Automotive applications of radar are well known, and have been highlighted during
the last fifty years. An overview of the status during its first years can be found in [1]. Many
review articles have presented automotive radar focusing on the related signal processing
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algorithms [2] or the required hardware technology [3]. More recent works report and
discuss signal processing, modulation aspects and higher-level processing, such as tracking
and classification [4,5].

Lidar’s first applications were far from the automotive world, but today, this detection
technique has become essential to develop ADASs and autonomous driving features. An
overview of the principal modulation schemes and integration techniques can be found in [6],
with a particular remark on electronic-photonic integration. An overview of the imaging
systems with some technological information is available in [7]. Some recent reviews highlight
how lidar data processing is mainly based on machine learning [8–10]. Li et al. [11] give an
overview of how to use lidar as a detection system, and gives an overview of the detection and
recognition algorithms. In recent years, lidar systems are available as plug and play detection
systems, so Roriz et al. [12] give an overview of the devices available on the market. More
recently, Bilik et al. [13] give a comparative overview of the radar and lidar systems, which
focuses on differences and similarities of these two systems.

This review mainly presents an overview of state-of-the-art radar and lidar algorithms
and architectures. Then, the concept of sensor fusion is briefly outlined, and some ar-
chitectures are shown as examples of hardware acceleration of radar- and lidar-related
computation. In conclusion, a short comparative analysis is reported to highlight differ-
ences and similarities of lidar and radar.

2. Radar

At the beginning of the 20th century, radio detection and ranging (radar) systems
were proposed to detect and locate aircraft [14]. With the consolidation of technology
and its availability at a relatively low cost, many different application domains have been
found for radar systems. Nowadays, radar represents a well-established technology in the
automotive industry [1].

Applications of radar systems on vehicles are numerous and extensive, mainly related
to tasks in which the distance to a target vehicle and its relative velocity have to be
measured, e.g., the autonomous emergency braking (AEB) and adaptive cruise control
(ACC) systems [15].

2.1. Operating Principles

The basic idea behind radar is to send a radio-frequency signal in free space and collect
the echo generated by the presence of an obstacle. It is possible to determine the distance
to the reflecting object by measuring the delay between the transmitted and the received
signals. Figure 1 shows a conceptual example of how a radar system works. Equation (1)
permits us to calculate the distance d of an object by measuring τ, the delay of the received
signal, and c, the speed of light in the air [16]:

d =
1
2

cτ, (1)
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Even if the main idea remained substantially unchanged, many algorithms and sys-
tems have been developed during the last years to increase performance and resolution of
radar systems.

The following sections present and analyze the main architectures and algorithms
available nowadays for automotive radars.

2.2. Radar Technology and Modulations

The primary accepted and most widespread technology for radar systems relies on
frequency-modulated continuous wave (FMCW) signals [17].

The key idea is to send a sequence of analog chirps; then, the transmitted signal is
mixed with the received one, and the resulting beat frequency will be proportional to the
target distance.

Figure 2 reports the basic scheme of an FMCW radar. In particular, on the transmitter
side (TX in Figure 2), the saw-tooth waveform generator produces a wave that then feeds
a voltage-controlled oscillator producing a chirp signal with a linear frequency sweep.
On the receiver side (RX in Figure 2), a mixer demodulates the received signal, and the
resulting beat frequency fi f contains information related to both the range and the velocity
of the target [18]. Both the delay τ introduced by the reflection and the frequency shift
introduced by the Doppler effect [19], will change the demodulated frequency, as stated by
Equation (2):

fi f = fR − fD = − fsw

Tchirp

2
c

R +
2
λ

vr, (2)

where fR is the frequency shift introduced by the presence of a target at a distance R, while
fD is the shift introduced by a target moving at velocity vr due to the Doppler effect. The
other terms in the equation are fsw, which is the sweep bandwidth of the chirp signal, Tchirp
is its duration, and λ is the carrier wavelength [18].

Figure 2. Basic scheme of an FMCW radar.

Equation (2) shows how it is not possible to use a single chirp to estimate the range
and radial velocity of a target directly. Indeed, R and vr are two dependent unknowns and
cannot be determined by measuring fi f . So, many different solutions have been proposed
for automotive applications over the years, such as using up and down chirps to decouple
range and velocity information [20].

As explained by Winkler in [20], detection can be performed by sampling the base-
band signal of an FMCW radar and applying the Fast Fourier Transform (FFT) on the
sampled signal. The idea is to perform the FTT on L chirps and stack the obtained spectra
in the columns of a matrix, then an FFT of every row of the matrix is performed. This
leads to a map of target distance and velocity. Figure 3 shows an example of the resulting
velocity/range map.
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Figure 3. Range Doppler matrix with a target at distance dt and velocity vt.

As reported in [20], this processing technique can introduce some ambiguities in the
obtained map, leading to the detection of a false positive target. This can be mitigated by
applying further processing steps, like Constant False Alarm Rate (CFAR) algorithms [21],
or modifying the modulation type [20].

An alternative to FMCW radar is based on digital modulation, such as Phase Modu-
lated Continuous Wave (PMCW) [22] and Orthogonal Frequency Division Multiplexing
(OFDM) [23]. This technique consists of generating arbitrary digital waveforms and apply-
ing matched filter processing at the receiver.

PMCW radar transmits bi-phase modulated waveforms with duration τ. The trans-
mitted signal phase is encoded in a binary sequence denoted as ϕ:[0, τ]→ {0, π}, which
is repeated every τ. The resulting waveform is reported in Equation (3), where fc is the
frequency of the modulated carrier and ϕ(t) is the aforementioned binary sequence [24]:

x(t) = e2πi fct+iϕ(t)π t ∈ [0, τ). (3)

Figure 4 describes the principle scheme of a simplified, single input single output,
PMCW radar. On the transmitter side, a bit stream, which represents the modulation code,
is fed to the modulator. This generates the transmitted signal with constant envelope and
phase changing between 0 and π (Equation (3)). While at the receiver side, the signal
represented by Equation (4) is received:

y(t) = x(t− td)ei2π fDt, (4)

where x(t− td) is the transmitted signal delayed of td by the target reflection and fD is
the Doppler effect frequency [24]. The target range is estimated by calculating the discrete
cyclic correlation of the received signal with the transmitted one. This can be performed by
digital matched filtering the received signal [25]. At the same time, the target velocity can
be extracted from the signal phase by means of an FFT-based Doppler processing.

Different modulation codes (i.e., ϕ(t) in Equation (3)) have been proposed during
years [26,27]; they can guarantee different properties of autocorrelation and suppress the
effect of possible range ambiguities.
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Figure 4. PMCW radar block diagram.

An alternative to PMCW digital radar is the OFDM radar. Its waveform is composed
of a set of orthogonal complex exponentials, whose complex amplitude is modulated by
radar modulation symbols [28]. Therefore, the inverse-FFT (IFFT) of the modulation symbol
can be used to generate the OFDM waveforms. Having orthogonal symbols guarantees an
efficient digital demodulation of the received signal, enabling digital and flexible processing.
At the transmitter side, it is sufficient to calculate the IFFT of the modulation symbols to
generate the waveform and then to modulate it via quadrature modulation. In a specular
way, to reconstruct the transmitted symbol at the receiver side, a quadrature demodulator
and the computation of the FFT are required. Then, to obtain the range-Doppler matrix
(Figure 3), the modulation symbols are removed from the demodulated signal and the usual
two-dimensional FFT is calculated [29]. Interference problems can be prevented by adding
a cyclic prefix to the OFDM symbol, which has to be removed at the receiver side [30].

Another advantage of the digital radar is the possibility of encoding information in the
generated waveform, embedding vehicle to vehicle/infrastructure communication inside
the sensing task [30]. It is possible to use a communication symbol as a modulation symbol
of the radar, as in the OFDM case. Using only one waveform for the two applications,
i.e., communication and sensing, permits not only occupying of the available spectrum
very efficiently, but also guarantees the continuous operation of both the functionalities of
communication and sensing.

In conclusion, it is possible to state that analogue radars (e.g., FMCW) and digital one
(e.g., OFDM) can achieve comparable performances in terms of accuracy and resolution.
Digital radar guarantees a sufficiently high level of flexibility, but at a higher hardware cost,
which is mainly due to the need for high-performance ADCs. On the other hand, analogue
radar represents a relatively low-cost solution [4]. However, unlike digital radar, it does
not permit performing of communication tasks [31].

The target direction of arrival, both in elevation and azimuth, can be estimated by
applying electronic beam forming on the receiver side of the radar system [32]. In recent
years, multiple-input, multiple-output (MIMO) radars have been addressed as a valid
solution to increase the angular resolution. The main idea is that when using an array
of Mt transmitting antennas and an array of Mr receiving antennas, using orthogonal
waveforms, by exploiting time [33], frequency [34] and Doppler [35] division multiplexing,
it is possible to obtain a synthetic array of Mr Mt antennas [36]. For example, Doppler
division multiplexing requires to add a different phase shift to the waveform transmitted
by every antenna. This is performed by multiplying it by a complex constant, which can be
selected to tune the parameters of the MIMO system.

In conclusion, an extension of the 2D range–velocity matrix can be defined adding the
direction of arrival of a target and its elevation. Thus, it is possible to define a point-cloud
in a four-dimensional space defined by the range, velocity, direction of arrival and elevation
of a target [13]. If the sensitivity of the measuring system is high enough, it is possible to
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obtain an image of the surroundings of the vehicle with a quite high resolution, which can
be used to extrapolate targets characteristics, and not only its presence [37]. This is one of
the main trends in automotive radars [38].

2.3. Signal Processing and Algorithms for Radars

The radar data acquisition permits to obtain the range/Doppler matrix (Figure 3)
or, if the information on azimuth and elevation is available, a 4D point-cloud, but to
effectively detect a target, it is necessary to test and find the points of the matrix in which
the normalized power is high enough to signal the presence of a target. To do so, a threshold
can be defined.

Considering the example reported in Figure 5, where a power spectrum obtained by a
range/Doppler matrix is reported, two of the four highlighted bins represent actual targets:
the green one and the yellow one. If the detection threshold is set to t1, the yellow target
will not be detected, causing a target miss. On the other hand, if the threshold is set to t3,
the two red spikes in the power spectrum will also be declared as detected targets (despite
the fact that they are not), causing a false alarm. Indeed, threshold t2 is the one that permits
to detect both the green and yellow targets, ignoring the red ones.

Figure 5. Illustration of the power spectrum along a column of the range/Doppler matrix.

From the presented simple example, it is evident that, to effectively detect and con-
firm the presence of a target, it is necessary to estimate the noise power introduced by
reflections on non-relevant targets, like parked vehicles, and adapt the threshold level
accordingly [21]. This permits us to reduce the probability of false alarms or to avoid
ignoring relevant targets.

Many solutions to this problem have been proposed; in particular, three will be
briefly discussed here: cell-averaging CFAR (CA-CFAR) [21], ordered-statistic CFAR
(OS-CFAR) [39] and deep-learning-based CFAR (DL-CFAR) [40]. Figures 6 and 7 report a
visual comparison of the presented algorithms. As can be clearly seen, the main and only
difference is in the way the threshold is estimated.

CA-CFAR estimates the detection threshold upon the range/Doppler matrix cells’
average value surrounding the target cell: if its power is higher than the average power of
the surrounding cells, the target is declared [21]. This algorithm is quite simple, but in the
case of two near targets, it is possible to lose the presence of one of the two.
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Figure 6. Cell-averaging CFAR.

OS-CFAR estimates the threshold by ordering the surrounding cells and selecting
the value of the k-th ordered cell as the threshold. This overcomes the problem of the
multiple target detection introduced by CA-CFAR algorithm, but requires us to perform the
sorting of the reference cells, which is a computationally intensive task. Different sorting
techniques can be used to reduce the overall computational complexity of this algorithm,
as the one proposed in [41].

Figure 7. Ordered statistics CFAR.

A different approach to CFAR problem is to use deep learning based techniques. The
solution proposed by [40] is to train a neural network to recognize and remove targets
from the range/Doppler map in order to estimate the noise level more precisely, without
the target’s influence in the map. As reported by [40], this approach guarantees the best
detection rates with respect to other CFAR algorithms, maintaining a computational cost
comparable to that of the OS-CFAR.

The CFAR algorithm is used to perform the detection task. Once a target is detected,
it is essential to estimate its possible trajectory. For example, to perform adaptive cruise
control (ACC), it is necessary to track the velocity and position of a target vehicle and set it
as a target for the host vehicle.

One of the most widespread tracking techniques relies on applying Kalman filtering [42].
This type of filter is represented by a recursive set of equations that efficiently estimates
the state of a process by minimizing the mean of the squared error between the prediction
and the actual measurement [43]. It is possible to directly apply this concept to tasks like
Adaptive Cruise Control (ACC), where the state to be estimated is the target vehicle velocity
and position [44].

The current trend in radar data processing is to adopt a deep-learning-based approach
to perform object detection, recognition and tracking. Comprehensive reviews on deep
learning applications to radar processing can be found in [45,46]; here, some noticeable
examples are reported.

Cheng et al. [37] proposed the Radar Points Detector network (RPDnet) as a deep
learning solution to the detection problem, showing promising results and a better accuracy
when compared to a classical CFAR approach. As presented by Kim et al. [47], combining
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a Support Vector Machine (SVM) and a You Only Look Once (YOLO) model, it is possible
to efficiently recognize and classify targets in radar points; in particular, they propose to
identify the boundaries of the targets with the YOLO model and then use the SVM to
classify them, obtaining an accuracy of 90%. Zheng et al. [48] propose Spectranet as a
possible deep-learning-based approach to moving object detection and classification with
an accuracy of 81.9%.

3. Lidar

Light-based measuring was initially proposed as a technique to measure the cloud-
base height. This was performed by counting the time taken by a light pulse to travel
to a cloud and back to the ground [49]. Middleton et al. proposed light detection and
ranging (lidar) [50] as a range measuring technique. However, as with the invention of the
laser [51], the lidar technique and principle became the one known nowadays: measuring
the round-trip time of a laser pulse traveling to the target and back.

During recent years, lidar has become an essential component of ADAS systems;
indeed, lidar systems have the possibility to guarantee automotive safety requirements [52].

3.1. Operating Principles

Lidar’s working principle is very similar to that of the radar. Despite the idea behind
them actually being the same, the main difference is that in the transmitted signal, lidar uses
a laser signal instead. The simplest possible lidar is composed of a laser and a photodiode.
The delay measured between the transmitted and the received light is directly proportional
to the target range; the basic ruling equation of this is the same as Equation (1). It is possible
to construct a 3D point-cloud representing the vehicle surroundings by measuring the
time of flight (ToF), i.e., the delay τ of Equation (1), in different directions [12], defining
a point-cloud whether in spherical or Cartesian coordinates depending on the type of
processing and acquisition system. The 3D point-cloud can also be mixed with the GPS
data to perform Simultaneous Localization and Mapping (SLAM) [53].

While the main idea remained almost unchanged, many techniques to determine the
ToF and the point-cloud have been proposed, mainly working on light modulation and the
way to change the laser direction to determine the 3D point-cloud.

3.2. Lidar Technology and Modulations

Currently, lidar is mainly operated with three different modulation schemes [7]:

• Pulsed ToF [54];
• Frequency Modulated Continuous Wave (FMCW) [55];
• Amplitude Modulated Continuous Wave (AMCW) [12].

Pulsed lidar relies on the direct measurement of the round-trip delay between the
transmitted and the reflected signals. This is performed by means of high-resolution timers
or time-to-digital converters (TDC) [56]. In particular, the transmitted pulse fires the start
of a counter, while the sensing of the reflected signal stops it.

Figure 8 reports a pulsed ToF lidar scheme. First, the laser source produces a
light pulse, which is detected by the start receiver that starts the count in the time
to digital converter. Then, the target reflects the light pulse, which is sensed back by
the stop receiver which stops the time counting. At the end, the round trip delay is
measured, so Equation (1) can be applied directly to calculate the range. This technique
is widely diffused, being a simple and low-cost solution [12]. Moreover, adopting the
high-performance TDC presented in [56], it is possible to achieve a spatial resolution in
the order of a few centimeters with a range of almost two kilometers.
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Figure 8. ToF lidar scheme.

In frequency-modulated continuous-wave lidars, the emitted light field is frequency
modulated and an interferometric technique is applied [6] to estimate the frequency differ-
ence between the transmitted and the received signals. From the frequency difference, it is
possible to estimate the distance to the target; indeed, they are proportional, as reported in
Equation (5) [7]:

R = fr
cT
2B

, (5)

where c is the speed of light, fr is the measured frequency difference, T is the duration of
the modulation and B is its bandwidth.

Using a coherent detector to estimate the frequency shift introduced by the target, it is
possible to obtain a system resilient to the external light sources’ interference, like the sun
or lamps. Moreover, FMCW lidar introduces many other advantages, such as the possibility
of estimating the target velocity by means of the Doppler shift introduced by a moving
target and, operating in a continuous wave, it avoids high peak power emissions and the
relative eye safety issues.

The main problem related to the use of this modulation is that it requires the use
of high-performance laser and optical systems, making the whole system expensive and
complex [12]. In fact, the laser has to be able to perform a wide frequency span and, at the
same time, it has to maintain coherency on a wide bandwidth.

In the amplitude-modulated continuous-wave lidar, intensity modulation of a contin-
uous light source is exploited; in particular, the round trip to the target and back introduces
a phase shift proportional to the distance from the target, as reported in [7]:

R =
c
2

∆Φ
2π fM

, (6)

where R is the target range, c is the speed of light, fM is the amplitude modulation frequency
and ∆Φ is the phase shift introduced by the target. Figure 9 reports a scheme of principle
of such a system.

The modulation frequency heavily affects both the range resolution and the maximum
detectable range, but it is not possible to increase the resolution without reducing the
maximum range [7]. Indeed, this type of system is mainly used in near-range, high-
resolution, applications.

In conclusion, the pulsed lidar seems to be the more feasible and widespread solution [12],
representing a good compromise in terms of accuracy, if supported by a performing TDC, and
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cost, being a relatively cheap system. On the other hand, the coherent detection, both FMCW-
and AMCW-based, permits it to mitigate the effects of sensing light from external sources [11].

Figure 9. Scheme of the principle of an AMCW lidar system.

The presented measuring methods can be used to implement different lidar imaging
systems, which can be categorized into:

• Rotor-based mechanical lidar;
• Scanning solid-state lidar;
• Full solid-state lidar.

Rotor-based mechanical lidar is the most mature imaging technique used in au-
tomotive applications [12]. This can provide a 360◦ horizontal field of view (FoV) by
mechanically rotating the scanning system, i.e., the laser source and the receiver, while
imaging along the vertical dimension is obtained by tilting the entire acquisition system
or its parts, like mirrors or lenses [11].

This solution is widely used and chosen by many manufacturers, since it represents a
simple but effective solution [13], even if the rotating system can be bulky and it adds some
inertia to the vehicle.

An alternative to rotor-based mechanical lidar is the scanning solid-state lidar. While
the former relies on rotating mechanical elements, the latter does not present any spinning
mechanical parts. This permits a cheaper system with a reduced FoV. An optical phased
array (OPA) [57] can be used to steer the laser beam and illuminate a specific spot at a time.
On the receiver side, a similar technique [58] permits it to collect only the light arriving
from the illuminated spot.

OPA-based imaging is collecting growing interest; indeed, not only it can be fully
integrated on a chip, obtaining a smaller system, but the lack of inertia also permits it to
increase the scanning frequency.

The full solid-state lidar is a system in which the laser source flashes and illuminates [59]
all the surroundings of the vehicle. Then, an array of photodetectors collects the reflected
light, and their number and density defines the spatial resolution of the imaging system.
This type of system can be very expensive, due to the large number of receivers. Moreover,
having to illuminate the entire FoV, the laser source requires more power than other scanning
systems. Due to these limitations, solid-state lidar is applied mainly in short-range scenarios
like blind-spot detection of big targets [52].
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The current trend is to move in the direction of solid-state lidar [60]; this is mainly
due to its lower dimension compared to the mechanically rotating lidar and the absence of
inertial components.

3.3. Signal Processing and Algorithms for Lidar

Lidar produces a huge amount of data to represent the 3D point-cloud, but this cannot
be used as-is. Some processing has to be performed to effectively detect and recognize
objects. Figure 10 reports the typical flow of a lidar-based perception system [11].

Figure 10. Typical lidar perception flow.

Object detection aims to extract objects in the point-cloud and to estimate their physical
characteristics, such as position and shape. Lidar points can be processed in spherical
coordinates. In the case of a mechanically rotating lidar, the angular information can be
obtained directly by the tilt and rotation angle of the apparatus, so the range points can be
clustered as they are.

Bogoslavskyi proposed an efficient clustering algorithm [61], which avoids explicitly
generating the 3D point-cloud as a set of points in space, but exploits the range image
generated by a scanning rotating lidar, i.e., an image in which every pixel contains the
distance to the target and corresponds to a particular elevation and azimuth angle. The
idea behind this clustering algorithm is to consider two neighboring points in different
clusters if their depth difference is substantially larger than their displacement in the range
image [61]. Some ground-filtering or weather noise removal algorithms [62] can be applied
in order to remove noise from the point-cloud and perform better clustering of the points.

Following the flow in Figure 10, semantic information is added to the objects by a first
feature extraction step with a subsequent classification step based on them. Many features
can be used as descriptors of the detected objects [63], such as the object volume computed
on its bounding box, the mean object intensity [64] or features based on the statics of the
point-cloud [65,66]. Then, the extracted features are used to train and evaluate machine-
learning based classifiers, like support vector machines or evidential neural networks
(ENN) [67]. In particular, ENN permits it to label the objects whose features were not in the
training set as unknown, reducing the labeling error rate [67].

After that, the object tracking task is performed. This can be performed by correlating
the current object position with the previous one. Lee proposed a Geometric Model-Free
Approach with a Particle Filter (GMFA-PF) [68] that is able to be performed during the
sensing period on a single CPU and is agnostic to the shape of the tracked object; an
alternative to this is the use of Kalman Filtering [11].

In conclusion, intention prediction is performed. Indeed, in an autonomous driving
context, it is fundamental to predict the behavior of the detected object in order to take the
correct decisions depending on the possible future behavior of the other road users. The
prediction is performed mainly by the means of machine-learning methods that estimate
the maneuvers of the detected object from its current state. Many driving models have been
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developed to predict surrounding vehicles’ behavior [69], such as theory-based, physics-
based and data-driven. The behavior modeling will not be presented here. since it is
beyond the interests of this review. What it is important to understand is that the lidar data
can be used in such a context to provide real-time inputs to these models and support the
decision-making process of autonomous driving vehicles.

The current trend is to adopt deep learning methods to extrapolate information from
the lidar point-cloud [10]. Zhou et al. [70] propose VoxelNet as a deep neural network
(DNN) for 3D point-cloud target detection and classification. Other examples of DNN
application to lidar point-clouds are HVNet [71] and SECOND [72].

4. Sensor Fusion

In a real-life traffic urban context, it is fundamental to accurately locate and recognize
other road users. To do this, the actual trend is to mix data from different sensors [73] so
that the object list stored on the vehicle, i.e., the list containing all the detected road users
will contain data from different sensors. For example, a vehicle velocity can be detected by
radar, while its position and shape can be detected by lidar.

Sensor fusion can be performed at different levels [74]; in particular, low-level sensor
data can be passed unprocessed to a fusing algorithm [75], mid-level features extracted by
every sensor can be fused to define a global object list with fused features, or the high-level
object lists of every sensor can be fused together in a global one.

The overall effect of sensor fusion algorithms is to obtain an object list containing
objects whose features and presence has been detected by different sensors. To do so, many
algorithms have been proposed in the literature [76,77].

Radar and camera data can be mixed at mid-level [78]. For example, it is possible to
use the radar to detect the presence of a target in a particular area and then the visual data
from the camera can be used to recognize the object in the surrounding of the detected
target, avoiding the exploration of the entire image. The lidar point-cloud can be mixed
with camera images [79] to add depth information to images.

5. Digital Hardware Architectures for On-Vehicle Sensing Tasks

Many sensor-related computational tasks can be accelerated in hardware. During last
years, many solutions have been proposed to address different problems and algorithms,
both with FPGA and ASIC implementations. Here, some examples are reported.

Subburaj et al. [80] proposed a single-chip solution for radar processing in which
an FFT accelerator for the sensing task, a high performance DSP core for digital filtering
and an MCU for the detection task are present. The mixed software/hardware approach
guarantees a higher level of flexibility but, on the other hand, power consumption and
computational efficiency are limited. The main advantage of the single-chip solution
relies in the fact that, with the same system, it is possible to both drive and sample the
analogue front-end, perform the detection tasks and communicate with the rest of the
vehicle all with the same platform. Other noticeable implementations of single-chip radar
processing systems that include hardware acceleration of computationally intensive tasks
are presented in [81–83].

Many aspects of radar signal processing can be accelerated in hardware [84]. One of
the heaviest computational tasks is the CFAR algorithm, since this needs to perform many
operations on big matrices. Zhang et al. [85] report an FPGA implementation of the CA-
CFAR algorithm obtaining real-time performances, while [86] reports an implementation
of the ML-CFAR, i.e., a CFAR technique based on the estimation of the signal mean level.
A more flexible and adaptive approach to the CFAR problem is presented by [87]. A
highly parametrizable and configurable implementation is reported in [88], which features
7 different CFAR algorithms and guarantees real time performances. Other noticeable
hardware implementations of the CFAR algorithm are discussed in [89–91].

The literature provides other examples of hardware accelerators for radar data processing.
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Damnjanović et al. [92] present a CHISEL model to generate 2D-FFT accelerators,
both for basic range-Doppler processing and specialized for range-angle processing; they
also present a custom memory controller to deal with radar data. Saponara [84] proposes
a set of hardware macrocells to perform detection starting from the base-band signal. In
particular, range, Doppler and azimuth processing is performed with a set of hardware
FFT, while a hardware implementation of CA-CFAR is adopted to perform peak detection.

A speed up in the overall processing can be introduced by performing the interference
mitigation task on the range-Doppler matrix in hardware; for example, Hirschmugl et al. [93]
propose a quantized Convolutional Neural Network (CNN) implementation to perform
this task directly in the frequency domain before the object detection task, and the hardware
implementation is 7.7 times faster than the presented firmware implementation.

Another hardware-compliant task is the early detection and recognition of obstacles;
indeed, this is a priority task, since it is necessary to rapidly stop the vehicle if an obstacle
is present and different alarm signals can be produced depending on the type of target.
A system that can perform this task in real time is presented in [94]. In [95], it is possible
to find an early detection hardware system that guarantees a valid detection in 41.72 µs,
giving optimal performances to the emergency breaking system. A deep learning approach
that is based on quantized YOLO CNNs can be found in [96].

The problem of direction of arrival estimation is addressed in [97]; the authors present
a hardware architecture to perform maximum-likelihood direction of arrival estimation
that is 7 times faster than the proposed software version.

Tables 2–4 report a brief overview of the presented hardware accelerators, mainly
focusing on the implemented tasks and main reported features. Operating frequency ( fop)
and implementation information are also reported.

Table 2. Examples of full radar detection system.

Implemented Tasks Main Features Implementation fop [MHz] Processing
Time

[80]
Waveform generation, FFT com-
putation, data compression, tar-
get detection (OS-CFAR)

Single-chip solution with RF
front-end, DSP, MCU and HW
accelerators

45 nm CMOS 360

[81]
Analog-to-digital converter,
RISC-V general purpose core,
FIR filter, polyphase filter, FFT

Single-chip solution for radar
processing based on a RISC-V
system

16 nm FinFET 410

[82] FIR filtering, FFT, OS-CFAR Complete radar processing flow (Virtex7 485T FPGA)

[83] Complete object detection Hardware acceleration of 2D-FFT,
detection and angle estimation

Integrate SoC available by
Texas Instrument (AM273x
SoC)

200

[84] Full target detection processing:
3D-FFT, CA-CFAR

Range, Doppler and azimuth
processing, integrated with
peak detection

Around 36,000 (XA7A100T
FPGA) 200 51.2 ms

Table 3. Examples of radar hardware accelerators for CFAR.

Implemented Tasks Main Features Implementation fop [MHz] Processing
Time

[85] 2D CA-CFAR
Special purpose hardware, computa-
tion and hardware complexity reduc-
tion avoiding repeated calculations

2816 LUTs (xc7a100tcsg324-1
FPGA) 114.19

[86] 2D ML-CFAR
Many configurable parameters,
such as reference window size and
protection window size

8000 LUTs (xc6vlx240t FPGA) 220

[87] custom-CFAR Proposal of a new CFAR algorithm,
efficient sorting architecture 8260 LUTs (Altera Stratix II) 118.39 0.6 µs
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Table 3. Cont.

Implemented Tasks Main Features Implementation fop [MHz] Processing
Time

[89] B-ACOSD CFAR
Efficient HW/SW partition of the
CFAR algorithm on an Altera-
based system

4723 LUTs (Altera Stratix IV) 250 0.45 µs

[90] ACOSD-CFAR
Efficient HW/SW partition of the
CFAR algorithm on an Xilinx-
based system

10,441 LUTs (Zedboard Zynq
7000) 148 0.24 µs

[88] Peak detector generator Seven types of different CFAR al-
gorithms available

From 630 to 7453 LUTs depend-
ing on the selected parameters
(Xilinx Spartan-7)

100

Table 4. Examples of radar hardware accelerators.

Implemented Tasks Main Features Implementation fop [MHz] Processing
Time

[92]

Range-Doppler processing,
specialized range-angle pro-
cessing, SDRAM controller
for radar data processing

Parametrized hardware genera-
tors for 2D-FFT, range-Doppler
and range-angle

From around 1000 to 60,000
LUTs, depending on the se-
lected parameters

real time pro-
cessing

[93] Interference mitigation Quantized CNN model working
with range-Doppler matrix

30% of available LUTs (Xil-
inx Zynq 7000) 100 32.8–44.4 ms

[97] Direction of arrival

CORDIC based maximum-
likelihood direction of arrival
estimation, many configuration
parameters available

From 900 to 14,500 LUTs de-
pending on the selected pa-
rameters (XC7VX485T Xilinx
Virtex-7)

200

[94] Early obstacle detection and
recognition

Early warning and collision
avoidance system 10,688 LUTs (Xilinx Virtex 6) 15.86 ms

[95] Early obstacle detection Configurable early detection
system

27,808 LUTs (Nexys Video
Artix 7) 200 41.72 µs

[96] Obstacle detection and tracking Deep-learning-based detection
and tracking

Around 38,000 LUTs (Xil-
inx Zynq 7000) 230 10.9 ms per

frame

A commercial lidar (for example the Velodyne VLS-128) can produce a point-cloud at
a rate of 9.6 Mpoints/s [98]. This can be quite a high data rate to be handled in real-time, so
a hardware-accelerated data compression strategy, such as the one presented in [98], can be
adopted to deal with real-time performances.

In the context of lidar sensing, many tasks can be accelerated in hardware; they are
mainly related to the point-cloud data processing, which is performed by adopting machine
learning techniques. Therefore, the acceleration of neural networks is required. Some
implementation of this type of accelerators specialized for lidar processing are present in
the literature [99,100]. Another computationally heavy task is the weather denoising of the
point-cloud; this can also be accelerated in hardware, as proposed in [101]. Real-time lidar
localization can also be accelerated; in particular, Bernardi et al. [102] present a hardware
accelerator for particle filter on an FPGA platform to perform this task in real time.

A completely different approach to accelerate on-vehicle sensor processing is the
use of GPU [103]; indeed, many lidar point-cloud related processing algorithms can be
parallelized and efficiently executed on GPUs.

Table 5 summarizes the implemented tasks and main features of the presented acceler-
ators for lidar-related computational tasks; the number of LUTs used in the reported FPGA
implementation is also reported.
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Table 5. Examples of lidar hardware accelerators.

Implemented Tasks Main Features Implementation

[100] Point-cloud segmentation
and classification

Implements the PointNet network
on an FPGA platform

19,530 LUTs (Xilinx
Zynq UltraScale+)

[99]
Convolutions, rectified lin-
ear unit (ReLU), padding
and max pooling

General purpose CNN accelerator 10,832 LUTs (Zybo
Z7:Zynq 7000)

[102] Real-time localization Hardware acceleration of ray
marching for particle filter

186,430 LUTs (Ultra96
XCU102)

6. Comparison and Conclusions

In conclusion, the idea behind radar and lidar is very similar, and many common
aspects have been highlighted. However, some differences have to be considered. Table 6
presents a qualitative comparison between radar an lidar. First of all, the transmitted signal
is different; indeed, radar uses RF signal, while lidar uses laser. Lidar produces a temporal
consistent 3D point-cloud, while it is almost impossible to guarantee time consistency in
radar detection array. Moreover, the DSP/data processing flow is quite different [13]. From
the performance point of view, lidar is more feasible when short-range and high-resolution
capabilities are required, for example in a city-like scenario, while radar is more feasible
when it is necessary to detect far fast-moving targets, like in a highway scenario [74].

Table 6. Table with differences between radar and lidar.

Radar Lidar

Transmitted signal RF signal laser signal
Signal source mm-wave antenna laser
Signal receiver mm-wave antenna photodiode
Output 4D array (Range Doppler DoA Elevation) 3D point-cloud
Range long short
Range resolution low high
Angular resolution low high
Radial velocity resolution high low

One of the main challenges for radar development is the low angular resolution. In
fact, to achieve the sub-degree resolution of lidar, a large radar aperture, or a high number
of antennas, is required making the actual on-vehicle integration unfeasible. On the other
hand, lidar is a very expensive system, and its operational range remains quite limited due
to eye-safety restrictions [13]. Both sensing systems present many open challenges, and the
research is still active both from academic and industrial point of view.

This review’s aim was to summarize the main aspects and the state-of-the-art of these
two important technologies and to highlight their differences and open points relative to
these two sensing systems.
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