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A simulation framework for urban electric mobility
based on limited widespread data and spatial

information
Claudia De Vizia, Student Member, IEEE, Daniele Salvatore Schiera, Member, IEEE, Alberto
Macii, Member, IEEE, Edoardo Patti, Member, IEEE and Lorenzo Bottaccioli, Member, IEEE

Abstract—Electric Vehicles (EVs) provide an alternative to
traditional mobility and a sustainable means of transportation.
As a result, electric vehicle sales are increasing across Europe,
prompting researchers to wonder about the impact of EVs on
smart grids. The proposed framework simulates users’ activi-
ties, highly characterising individual behaviour using Time Use
Survey (TUS) data to estimate EV usage and consumption.
Then, for each trip, the routes between origin and destination
are determined, simulating in separate modules i) the driving
behaviour, ii) the motion of the EV and its discharge considering
spatial data and iii) the charge considering users’ preference.
Thanks to the spatial information openly available, it is possible
to characterise the simulation and improve EV consumption
estimation. Different scenarios are analysed to demonstrate the
versatility of the proposed framework by exploiting its modu-
larity. The individuals’ heterogeneity is considered by using an
agent-oriented approach. Furthermore, the simulation proceeds
on a time-step basis to enable the use of the simulator in
a co-simulation environment for future purposes, such as the
integration of power networks. The results indicate that achieving
a high realism with limited, i.e. containing scarce data for the
problem under study, is feasible, enabling researchers to make
informed decisions about future mobility.

Index Terms—Electric Vehicles, User activities, Spatial infor-
mation, Agent-oriented, Time Use Survey, Semi-Markov

I. INTRODUCTION

The Framework Convention on Climate Change, held in
Glasgow in 2021, recognised the need to reduce global carbon
dioxide emissions by 45% from 2010 levels by 2030 [1].
Increasing sales of Electric Vehicles (EVs) over the last decade
have put Europe on the right track. Furthermore, the European
Parliament and Council initially agreed that all new vehicles
registered in Europe have to be zero-emission by 2035 [2],
i.e. excluding the sale of internal combustion engine cars from
that date. This measure might be postponed to a later date [3].
Nevertheless, this decision will eventually boost the diffusion
of EVs across Europe. However, the presence of EVs implies
additional withdrawal from the grid for recharging or even
injections into the grid, considering the innovative Vehicle
to Grid technologies, especially in urban areas. Therefore, an
accurate estimate of EV usage and consumption is essential
for providing effective information for the energy planning and
operations of the future energy infrastructure.

Public trials with actual EVs and charging stations can help
obtain information, but they have significant costs. Moreover,
origin-destination traffic-flow data at any location are not
always available [4]. Other possible solutions to estimate EV

usage and consumption involve accurate software simulation
starting from available data - usually, surveys related to daily
activities and transportation patterns. Common approaches for
modelling EV usage and short-term interaction with charging
stations are based on the activity schedule of individuals,
which influences people’s travel behaviour [5]. These models
shift the emphasis from trips to activities since travels repre-
sent a way to connect activities among them.

Several research papers, e.g. [6], [7], attempt to replicate
mobility patterns and future EVs behaviours. However, the
detail and heterogeneity of the proposed models vary widely.
Certain authors, e.g. [8], [9] acknowledge the importance
of including socio-demographic (SD), economic and spatial
factors and diversifying users’ travel patterns. Moreover, few
or none consider variable speed, e.g. [4], heterogeneity in
the driving behaviour, realistic velocity or road features, e.g.
the road slope, which can be included thanks to a spatial
dimension, improving our understanding of future mobility.

Almost all reviewed studies, with the exception of [7], use
country-specific travel survey data, making the methodology
challenging to replicate in other countries as their data are not
standardised within a common data framework. The majority
of authors used National Travel Statistics data. However, of
29 European countries surveyed in [10], only eight countries
make data available. When more accurate data are unavailable,
a standardised methodology based on limited widespread data,
i.e. non-specific for the problem under study, would be helpful
to gain insight into future mobility in Europe.

Consequently, this work aims to provide a practical frame-
work based on limited and openly available data that char-
acterise the different individuals in depth to replicate real-
istic driving behaviour and corresponding EV consumption,
enabling the comparison of plausible scenarios.

The proposed methodology uses Time Use Survey (TUS)
data - a large sample survey on places visited, daily activities
and travels performed by the residential population - char-
acterising the synthetic population with socio-demographic
attributes. It is essential to notice that these national surveys
are available in almost all countries and broadly comparable
across countries [11]. The data are used to generate daily
residential synthetic sequences of activities thanks to the pro-
posed model based on state-of-the-art methodologies, e.g. [12],
[13]. A spatial layer that is openly available is considered to
simulate plausible and variable road speeds. The model uses
road features and driving behaviours to simulate realistic car
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trips. Then, the power consumption of the EV is determined
by considering vehicle features, too.

To consider the heterogeneous behaviour of people and
enable future improvements of the framework, we adopt
an agent-oriented approach, thanks to the Python library
AIOMAS [14]. AIOMAS is a library for remote procedure
calls, request-reply channels, and an agent layer. In AIOMAS,
agents can be spawned to parallelise the application and
increase the number of agents present in the simulation.
Following a modular approach, the user agent implements each
user’s behaviour, intelligence, and characteristics, while the
EV agent is considered a separate agent. Breaking down the
framework into smaller modules improves code re-usability,
allowing us to update a single module without changing the
others and making the framework versatile.

The simulation proceeds on a time-step basis so it can be
synchronised and used in a co-simulation environment for
future purposes, e.g., performing an in-depth evaluation of the
impact of EVs on a given distribution grid.

The remainder of this work is divided into four sections.
Section II compares the proposed methodology with the ex-
isting literature. Section III presents all modules of the frame-
work. Section IV progressively validates the different modules
and then analyses the results for various scenarios considering
user behaviours. Finally, Section V draws conclusions and
suggests future work.

II. STATE OF THE ART

In this section, the methodologies presented by several
authors to simulate future mobility patterns and consumption
are summarised in Table I and compared with the proposed
solution.

The authors of [7] used UK 2000 TUS survey for generating
driving patterns thanks to a nonhomogeneous Markov Chain
Monte Carlo simulation. The EV status was classified into
driving, parked at home, in commercial areas, and at work.
To the best of our knowledge, only [7] used TUS data (see
column ”Input data” of Table I). However, it did not include a
spatial layer. The use of widely available datasets enables the
reproducibility of the methodology in several countries.

In [9], the EV usage in a year and the total number of trips
based on driver occupation and household type were sampled
from the ”Mobility in Germany” study, specifically focused
on German everyday mobility. They used a nonhomogeneous
Markov chain to determine a sequence of destinations for
each trip. The locations were abstract, e.g. inside the city,
outside the city. They used a second variable to differentiate
and characterise trips, e.g. shopping. The distance travelled
was sampled from a distribution that considered travel purpose
and employment of the driver. Finally, they sampled each day’s
driving and parking times and the vehicle speed. Starting from
the same data, [13] proposed a simplified stochastic model
based on a nonhomogenous semi-Markov process considering
three states: i) parked at home, ii) parked at work and iii)
parked elsewhere. As opposed to [7], the driving action was
not modelled as a separate state. Thus, the driving time became
part of the sojourn time of the other states. The stochastic

process was then extended to consider charging and driving
processes. A consumption of 20 kWh/100 km was considered.
Also, Shepero et al. [15] used a specific consumption, i.e. 0.25
kWh/km, assuming that the size of the battery is irrelevant.
They employed GIS data to extract the location of parking
spaces and clustered them by use type, e.g. ”home”. Then, they
used a nonhomogeneous Markov chain to locate the EVs at
each step and calculated the charging load at each parking lot.
They used the Swedish travel survey, eliminating the driving
state. Thus, EVs switched between parking states instantly.

The authors of [6] categorised the travel patterns of drivers
into different categories using data from the Finnish national
traffic survey. Each travel activity’s arrival and departure
times were defined through a probability distribution. They
calculated the distance and departure time. In [8], the initial
time of the first travel was sampled from the corresponding
distribution. The destination of a trip was sampled from
the spatial transition probability, i.e. home, work and other,
considering the time and the place. The trip length and the
distance were sampled, and the parking duration was defined.
The proposed method was validated using the US National
Household Travel Survey data. The same data were used by
Xiang et al. [4], who used Monte Carlo sampling method to
generate daily destinations starting from the home. A 2-trip or
3-trip chain was established. The parking, charging and driving
were examined using the proposed spatial-temporal method.

Torres et al. [17] randomly selected activity patterns from
probability tables at the beginning of the day. The authors
used Anylogic to model the EV agent. Here, there was no
distinction between the user and the vehicle. This distinction
would have allowed the behaviour and intelligence of a user
and the physical behaviour of a vehicle to be characterised sep-
arately, thus having major flexibility. The EV agent’s home and
workplace were fixed, whereas other activities were computed
at runtime. Also in [16], the EV agent combined the EV and
the driver behaviour in one entity. The activities of the agents
were sequences of 3-5 activities randomly sampled whose
duration followed a normal distribution. The location of the
activities is selected randomly. Starting from an actual dataset
on charging patterns, Wolbertus et al. [18] presented an agent-
based model to analyse the consequences of charging choices
and charging station deployment. They assumed that charging
demand was not directly correlated with travel patterns but
rather the result of an interplay between parking and charging
needs. The analysis was very interesting; however, it required
a considerable amount of data that was not usually available.

Zhang et al. [8] stressed the importance of including
demographic and social characteristics in the analysis - an
observation also made by the authors of [9], who presented
a model capable of generating stochastic, socioeconomically
differentiated electric load profiles for EVs. Despite their
importance, SD factors were only considered by a few authors,
as shown in column ”SD” of Table I.

The column ”Charging strategies” summarises the different
charging strategies tested. The majority of the strategies were
related to the parking lot, e.g. ”Home” or to the State Of
Charge (SOC) of the EV. The aware and unaware users in [16]
reflected the SOC level at which an EV agent recharged,
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TABLE I: Comparison of the proposed work with the existing literature

Paper Input
data

Road
network

SD
factors

Charging
strategies

Charging
power [kW]

Battery
capacity [kWh]

Speed
trajectory

Aerodynamic
vehicle model

Wang
et al. [7] UK TUS survey ✗ ✗

When parked at
home / work

Fast and
normal 18.8 Constant

(30 mph) ✗

Rolink
et al. [13]

Mobility in
Germany study ✗ ✗ At home and work 3.7 - ✗ ✗

Shepero
et al. [15] Swedish Travel Survey ✗ ✗

At home OR
everywhere

3.7, 6.9,
22 - ✗ ✗

Marmaras
et al. [16]

UK Energy
Research Centre ✓ ✗

Aware OR
unaware user 7.4, 22 53 Constant

along a road ✓

Torres
et al. [17]

Probability table
with real data ✓ ✗

Always when
parked OR if

SOC below 20%
22, 50 16.9-60 ✗ ✗

Xiang
et al. [4]

US National Household
Travel Survey ✓ ✗

After driving OR
when the demand

cannot be met
7, 30 20 Speed-flow

model ✗

Fischer
et al. [9]

Mobility in
Germany study ✗ ✓

Logistic function
to model charging
prob. upon SOC

3.7, 11,
120 Several Sampled

for each trip ✗

Zhang et
al. [8]

US National Household
Travel Survey ✗ ✓

When not enough
energy for next
trip OR always

4, 8 40 - 50 ✗ ✗

Iqbal et
al. [6]

Finnish National
Traffic Survey ✗ ✓

At anytime OR
from 20:00 onward n.s. 8.8-24 Sampled

for each trip ✗

Wolbertus
et al. [18]

Dataset on charging
patterns (Amsterdam) - - - 50, 175,

350
between

4 and 100 - -

Proposed
solution IT TUS survey ✓ ✓

At home OR
SOC below 50% 11 40 Variable ✓

e.g. when necessary or frequently. Columns ”Charging power
[kW]” and ”Battery capacity” list the values usually used.

From the column ”Speed trajectory” of Table I, it is pos-
sible to notice that [4] used a speed-flow model, modelling
different speeds on different road segments. Instead, other
authors, e.g. [6], sampled the value of the vehicle’s average
speed for each trip. Thus, an average speed is assigned to
each trip, and different trips during the day have different
average speeds. However, there is no variability in speed in a
single trip. Instead, ”variable” indicates a variation in speed
in each road segment and inside the same stretch of road.
The majority of the other researchers considered the speed
of the vehicles equal to the average speed, i.e. constant -
a data usually available - or do not consider speed, but an
average consumption, e.g. [17]. However, this simplification
has a substantial impact on the consumption of the EV. A
spatial dimension can be introduced to overcome this problem
and introduce variability. Nevertheless, most works have not
considered a road network, as noticeable from column ”Road
network” in Table I. Torres et al. [17] included a spatial dimen-
sion preprocessing geographic data using ArcMap, which can
include actual traffic flows. However, they then used a very
simplified road network. The authors of [4] considered a road
network which consists of vertex and connected edges. For
the test case, the map included 52 roads. Anyhow, they then
used this information to determine the driving time, assuming
a constant EV consumption. Marmara et al. [16] modelled
interactions in both road transport and electric power systems.
A road transport network with ten nodes was considered. They
also modelled traffic following a macroscopic approach.

Adding an aerodynamic vehicle model that receives as
inputs driving patterns simulated thanks to the information

received from the spatial layer makes it possible to improve the
simulation. Only [16] included an aerodynamic vehicle model
(column ”Aerodynamic vehicle model” of Table I). However,
the authors considered a constant speed along an avenue. Thus,
they omit acceleration.

To the best of our knowledge, regardless of the dataset
used, it does not emerge that other authors considered i)
a detailed spatial layer containing real data and ii) realistic
driving behaviour, which translates into variable speeds on
the road, factors that strongly influence EV consumption.
Using real information contained in the spatial layer offers
many advantages. First, it provides information on speed,
which varies greatly in the urban context. In addition, it is
possible to determine the slope of the roads, another factor
that substantially impacts vehicle consumption that no other
author in Table I considers.

Thus, the overall novel contribution of this work can be
summarised in:
• a methodology based on widespread data, i.e. TUS survey

and openly available spatial data, thus replicable and suitable
for different cities and countries. Column ”Input data” in
Table I highlighted the used dataset. The non-private European
datasets (German, Finnish and Swedish surveys) belong to
the 8 European countries that make country-specific data
available [10]. Since TUS are not travel-specific surveys,
the spatial information, e.g. speed on each road and slope,
helps improve the simulation with the features of the city
under study. The spatial dimension helps generate accurate
driving patterns exploitable by the aerodynamic vehicle to
enhance the estimation of EV consumption. The heterogeneous
characteristics and driving behaviours have been considered
thanks to adopting an agent-oriented approach.
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• the implementation of a modular framework that allows
us to use only a subset of the models and easily add new
components to accommodate more complex scenarios, such as
the grid. Moreover, the ability to generate the data and proceed
on a time-step basis enables us to couple the proposed frame-
work with other simulators in a co-simulation environment,
e.g., integrating the power network simulation. Therefore, it
is possible to synchronise data with other simulators, use all
the necessary data at that time step, and save only the data of
interest for the simulation under study.

III. METHODOLOGY

This paper presents a novel framework that simulates daily
human behaviour to recreate travel activities and evaluate the
impact of EVs with non-specific but widespread data. The
framework in Figure 1 can be divided into five main modules:
i) the Activity Pattern, ii) the Path Generator iii) the Driving
Behaviour, iv) the Charging Strategy and v) the EV model.
The proposed framework implements two types of agents: the
User Agent and the EV Agent. The Activity Pattern, the Driving
Behaviour, and Charging Strategy are the core engine of the
User Agent. The Path Generator focuses on the interactions
of the user agent with the spatial environment, while the EV
model is the core engine of the EV Agent.

Fig. 1: Schema of the proposed framework

A. Activity Pattern

Based on the daily 10-minute resolution of the TUS diary,
the non-travel activities of those who made at least one trip
by car during the surveyed day can be identified considering
the location where the activity occurred.

As opposed to travel surveys, in TUS, an individual’s
transition from one activity to another does not always involve
a car trip, i.e., the car is still parked at the same location.
Therefore, it is necessary to make some assumptions to be
able to use TUS data. In particular, it has been assumed that a
sequence of non-travel activities in the TUS diary comes down
to what is considered the most significant activity, i.e. the main
motivation for that trip. For example, a person may go to work
by car, walk to a restaurant close to their workplace, and then
return to work. In this case, the main motivation for the trip
by car would be ”Work.” The same applies if, for example,

the user goes to the pharmacy before entering the workplace
—and no car trip is registered in between.

The resulting ”priority” associated with the activities is
summarised in Table II. The ”priority” determines which
activity is the main motivation for the trip.

TABLE II: Priority associated to the non-travel activities

Priority Activity

1 Home
2 Work
3 Study
4 Social life and sport
5 Supermarkets and healthcare
6 Other

While most authors consider ”Home”, ”Work”, and ”Other”,
in the proposed methodology the activities that are commonly
classified as ”Other” are better characterised. Indeed, the
”Study” activity has been distinguished from the ”Other”
activities since it is strictly related to a subset of the population.
Moreover, in [19], it emerges that the average kilometres
travelled for going to the grocery are much less than those
travelled to leisure activities. Therefore, ”Supermarkets and
healthcare” have been distinguished from ”Social life and
sport”.

The type of activity carried out is closely related to the time
of day; instead, travels are a way to connect activities. Indeed,
the approximate length of the travel in kilometres does not
depend on the time of day but on space, that is, the geographic
location of the next activity. Similarly to [13], travels are not
modelled as separate states. Thus, the time considered for the
travel activities is incorporated with the significant activity
following the travel, resulting in an increment in the duration
of the non-travel activity.

The socio-demographic characteristics of the users inter-
viewed selected in this analysis are the gender and the
employment status, i.e. full-time worker, part-time worker,
student, fulfilling domestic tasks, i.e. housewife/househusband,
and unemployed/pensioner. As it is possible to notice from the
TUS (SD) block in Figure 1), this distinction is considered in
the Activity Pattern block, i.e. for the creation of the transition
matrices as explained in the following, and the commuting
distance, which is sampled based on the user gender and
profession.

Based on the simulation’s set-up, a certain number of
user agents characterised by the SD parameters considered
in the input data can be created. Moreover, each user agent is
assigned the house coordinates. Depending on the scenario, the
selection of house coordinates can reflect the building density
of residential areas or be random. The workplace is selected
considering the distance declared in the TUS between home
and work.

People’s daily behaviour can be seen as a sequence of
activities that can be modelled through stochastic methods.
As can be observed by the review of existing literature in
Section II, nonhomogenous Markov chain [20] can be used to
generate the activity pattern since the probability of performing
certain activities, e.g. ”Work”, varies throughout the day.
However, other authors chose a nonhomogenous semi-Markov
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chain, e.g. [12] [13]. Indeed, the semi-Markov process is
a generalisation of the Markov process since, as underlined
by [13], semi-Markov processes allow for an arbitrarily dis-
tributed sojourn time, overcoming the limitation of the Markov
process where the sojourn time is exponentially distributed.

Thus, on a complete probability space, the two following
random variables are defined:

i) Xn: Ω → E, which represents the state at the nth transition
ii) Tn: Ω → N, which is the chronological time of the nth

transition.
Let E = {Home, Work, Study, Social life and sport, Su-

permarkets and healthcare, Other}, i.e. the activities in Table
II, be the state space. The associated non-homogeneous semi-
Markov kernel Q is

Q = [Qi,j(s, t)]

= [P (Xn+1 = j, Tn+1 ≤ t|Xn = i, Tn = s)]
(1)

i,j ∈ E, t,s ∈ N.
The transition probabilities and sojourn distributions must

be computed to generate a new activity sequence. Thus, from
TUS data, 144 6x6 transition matrices are created, i.e. one
every 10 minutes, for each user type - gender and profession
- and both weekdays and weekends. Each element pij(s) of a
matrix, i.e. the probability of going from state I to state j (i,j
∈ E), is computed as

pij(s) =
aij(s)∑6
k=1aik(s)

(2)

where aij is the number of transitions observed in TUS data
from state i at time s to state j. Moreover, the sojourn
time unconditional and conditional cumulative distributions
are defined respectively as:

Fi(s, t) = [P (Tn+1 ≤ t|Xn = i, Tn = s] (3)

Fij(s, t) = [P (Tn+1 ≤ t|Xn = i, Jn+1 = j, Tn = s] (4)

Again, the sojourn time can be computed from the raw data as
described in [21]. After computing the transition probabilities
and sojourn distributions, it is possible to generate the activity
patterns with Monte Carlo algorithm, obtaining the sequence
of visited states, i.e. non-travel activities, and jump times as
done in [22] and in [12].

B. Path Generator

The generated sequence of activities does not explicitly
include travels. The proposed methodology considers a spatial
layer to determine them by introducing the Path Generator,
as depicted in Figure 1.

To create the spatial layer, road network data can be
downloaded from OpenStreetMap (OSM) [23]. The road net-
work also contains other important information, such as the
speed limit. The map can be viewed as a graph where the
intersections of the roads, i.e. the edges, are the vertices or
nodes. Thus, the graph containing all the information can then
be accessed to find the shortest path between two nodes, i.e.
the travel performed by the agent.

Moreover, thanks to the Digital Terrain Model (DTM) -
i.e. a representation of the earth’s surface elevation excluding

Fig. 2: Centroids for a grid of approximately 1km square

the vegetation and the anthropic elements - it is possible to
retrieve the earth’s surface heights in each location. Therefore,
for each map segment, i.e. road length and altitude difference,
it is possible to know the road slope. If this information is
unavailable, the slope can be set to zero without affecting the
rest of the framework.

While activities are determined using a stochastic model to
determine the travel activity, the behaviour and movement of
the users are also considered. Indeed, the objective is to obtain
coherent car trips without limiting the length of the activity
chain to 3, as [4] did.

As seen in Figure 1, the kilometres travelled have to be
defined after the Activity Pattern module. Three situations must
be distinguished based on the trip’s origin and destination. For
trips which link home and work (km H-W), the approximate
kilometres travelled, i.e. less than 1 km, 1-5 km and 5-10 km,
is known from the TUS (SD).

For all the other travels, except returning home, the Travel
duration extracted from TUS data conditioned on the duration
of the activity are sampled. Also, in this case, the travel
activity was identified thanks to the place where the activity
was carried out, i.e., the car. From another dataset publicly
available provided by [24], i.e. Speed in Figure 1, the average
speed at each hour for 225 European cities (plus other cities
in all the continents) can be obtained. Thanks to it, the hourly
average speeds are used to compute the approximate number
of kilometres (km in Algorithm 1) covered every 10 minutes,
considering as a first approximation a uniform motion.

For trips which link activities different from ”Work” to
”Home”, the proposed solution considered the distance be-
tween the current position and home (km back H in Figure 1).
However, since the travel for going back home is simply
the distance between the current position and home, some
behavioural rules of the agent need to be defined to model
plausible journeys of the user. To this end, we introduce a
spatial algorithm (Algorithm 1) to model the users’ spatial
behaviour and determine the place of activities that do not
have a fixed location. In order to speed up the simulation of
car trips on the map, a regular grid of approximately a 1 km
square is created (the Grid block in Figure 1). The centroids
of the map, i.e. the red dots in Figure 2, are used to find
a plausible destination computing the Manhattan distance L1
[25] among the centroid where the user is Cuser(xuser, yuser)
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and all the others Cn(xn, yn) as

L1(Cuser, Cn) = |xuser − xn|+ |yuser − yn| (5)

As depicted in Algorithm 1, the distance is in between the
km computed ± a configurable tolerance (tol), we might have a
plausible destination in that area (lines 1-7, 11-12). Otherwise,
when the selected distance would bring the user outside the
map, the maximum possible length of the travel is computed
(lines 13-16 and 19-23). In this case, the remaining kilometres
(i.e. the difference among km and the maximum distance) will
be modelled as a search for the parking. In this case, the car
will go back and forth between the last two nodes of the path.

If a plausible path inside the map can be found (line 25)
and the trip’s origin is not ”Home”, the algorithm determines
how far the user is from home. Over a certain distance from
home defined in the configurable distance attract, the next
destination will have a higher probability between the previous
location and home.

Algorithm 1 User spatial behaviour
1: procedure INSIDEMAP(x)
2: for c in centroids do
3: d uc = Manhattan distance user centroid to other centroid
4: if km− tol < d uc <= km+ tol then plausible centroids← c
5: end if
6: end for
7: end procedure
8: origin, km, tol, attract← inputs
9: GRID, MAP ← input from interaction with environment

10: plausible centroids, d ub, d ch← [], [], []
11: if km < (map centre− boundary) then ▷ Inside the map
12: plausible centroids = InsideMap(centroids)
13: else if km > size(MAP ) then
14: flag = 1
15: d ub←Manhattan distances user to boundaries (centroids)
16: furthest = centroid with max(d ub)
17: else
18: plausible centroids = InsideMap(centroids)
19: if plausible centroids == 0 then
20: flag = 1
21: d ub←Manhattan distances user to boundaries (centroids)
22: furthest = centroid with max(d ub)
23: end if
24: end if
25: if flag != 1 then
26: p← []
27: if origin ! = ”Home” then
28: d uh←Manhattan distance user to home centroid
29: if d uh > attract then
30: distances = []
31: for c in plausible centroids do
32: d ch←Manhattan distance centroid to home centroid
33: end for
34: for d in distances do ▷ Centroids closer to home are more

plausible
35: scaled distances[c] = ((max(distances) − d) +

min(distances)))
36: end for
37: for c in plausible centroids do
38: p[c]← scaled distances[c] / sum(scaled distances)
39: end for
40: else: ▷ Completely random
41: for c in plausible centroids do
42: p[c]← 1 / number of plausible centroids
43: end for
44: end if
45: else
46: for c in plausible centroids do
47: p[c]← 1 / number of plausible centroids
48: end for
49: end if
50: end if

Fig. 3: Visual example of the selection of the next destination
exploiting the generated Grid and the computed probability.

Figure 3 visualises the probability for the described case.
The red square represents the area where the user was, while
the light-blue square shows the area where the house of the
user agent is located. Thus, the next destination will be picked
according to the probability computed in lines 37-39. In the
other cases, all the destinations are equally probable.

After determining the next destination, the algorithm com-
putes the shortest path between the origin and the destination.
For each segment of the chosen path, the length of the street
and the maximum speed limit, i.e. the speed at which the user
is supposed to travel, are known.
Thanks to the Dummy traffic module in Figure 1, the supposed
user speed can be also decreased. As a first approximation, the
difference between the maximum average speed and the aver-
age speed at that time read from the data of [24] is subtracted
from the segment speed. Thus, the Dummy traffic module
might not accurately capture real-time traffic fluctuations and
congestion. However, it is considered to be precise enough for
the purpose of the simulation.

The car movement could be simulated at a resolution lower
than 10 minutes, knowing each street’s maximum speed limit
and length. The algorithm computes the average speed every
10 minutes to compare the obtained speed with the input data
of [24]. Moreover, the user stops for a certain time at the stop
sign and the traffic lights are considered. The amount of time is
again configurable. Thus, the outputs from the Path generator
in Figure 1 are i) the Path of the user, ii) the Slope and ii)
the maximum Speed limit on each road. If the path includes
very small segments - i.e. roads 15-30 metres long - these are
aggregated with the following segment for simplicity.

C. Driving behaviour of the User Agent

The Path Generator simulates the approximate behaviour
of the user. Theoretically, the speed limit read from OSM
on each road segment could be used directly. However, to
better simulate the driver’s behaviour, the acceleration and
deceleration to obtain the desired speed for each segment, i.e.,
each road on the map, should be considered. To this end, the
Driving behaviour module of the User Agent in Figure 1 is
introduced.

As a first approximation, the travel on a segment has been
considered composed of three periods: i) the acceleration
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period, where the driver increases its speed with constant
acceleration, i.e. uniformly accelerated motion; ii) the constant
velocity period, i.e. uniform motion and iii) the deceleration
period, i.e. uniformly decelerated motion. Notice that in the
acceleration period, in the absence of traffic, the target speed
equals the maximum allowed speed. Meanwhile, in the pres-
ence of traffic or when the segment is too short to reach the
desired speed, it is lower than the maximum allowed speed.

However, no driver exhibits similar behaviour. Therefore, a
random Gaussian noise with µ equal to zero and configurable
σ has been added to the uniform motion to account for the
minor variations that occur on the straightaways due to the
presence of other vehicles and lane changes.

It is important to emphasise that slightly different driving
styles can be accounted for by playing with the Gaussian noise
and increasing the target speed on certain roads for a subset
of drivers, i.e. those who do not obey speed limits. Thus, the
Driving behaviour model (see Section III-C) might also be
seen as a synthetic driving patterns generator that might be
used for different purposes.

The resulting curve can be filtered with a Savitzky-Golay
filter [26], improving a signal trend’s smoothness.

D. EV charging strategy

The EV charging strategy module of Figure 1 implements
the charging behaviour of the User Agent. Two main simple
charging behaviours have been considered for modelling the
decision to charge the EV: i) at home, i.e. the EV is always
charged when the user is at home, and ii) when the SOC is
below a particular configurable value. Therefore, one strategy
is related to the parking place, and the other is related to the
state of charge of the EV battery. Nevertheless, the framework
can easily implement any other strategy. Indeed, more complex
behaviours, e.g. behaviour under time-of-use tariffs or dynamic
pricing scheme [27], could be tested thanks to the framework’s
modularity.

E. EV model

The energy consumption of the EV is computed considering
the specifics of the EV model and the modelled velocity for
each road segment. The EV motion has been discretised over
time in intervals of magnitude ∆t equal to 0.1 seconds. Thus,
at each time interval k, the acceleration a is computed as

ak =
∆v

∆t
(6)

where v is the velocity. As in [28], the tractive force is then

Ftk = mgsin(θ) +mgcos(θ)crr +
ρAcw
2

v2k +mak (7)

where θ is the road slope, m is the mass, g is the gravity,
crr is the rolling resistance, A is the frontal area, ρ is the air
density and cw is the aerodynamic coefficient of the EV under
simulation. The EV specification inputs in Figure 1 specify the
value of each coefficient.

The electrical power Pele is computed as

Pelek =
Ftk · vk

η
(8)

where η is the efficiency of the motor.
The corresponding discharge of the battery at each time

interval is defined as follows:

SOCk = SOCk−1 −
Pelek ·∆t

Cbat
(9)

where Cbat is the nominal capacity of the battery.
For the sake of completeness, the EV battery recharges

according to

SOCfin = SOCini +
PCS · tcharge

Cbat
(10)

where SOCfin and SOCin are the final and initial SOC in
the considered time step, respectively, and PCS is the power
received from the charging station.

IV. EXPERIMENTAL RESULTS

To demonstrate the capability of the framework, two scenar-
ios with a 1000 User Agents and 1000 EV Agents are analysed:
i) Scenario 1, which analyses 30 weekdays and ii) Scenario
2 that considers 30 weekends. TableIII summarises the input
data of each block of Figure 1.

TABLE III: Input data of each block of Figure 1

Input data

TUS The Italian TUS [29], considering only car drivers
OSM The city of Turin
Speed The average speed from [24] for the city of Turin
DTM The DTM of Piedmont from [30]

EV specification The same values of [28]

Figure 2 illustrates the road network and the obtained
Grid. The selected road network includes 11337 nodes and
17804 edges. Only trips inside the city, i.e. trips which last
a maximum of 30 minutes when there is no traffic, are
considered. Indeed, without traffic, drivers can cross the city
in less than half an hour. Table IV lists the EV specifications
for completeness. All EVs are equipped with a 40 kWh battery
pack.

TABLE IV: Nissan Leaf Parameters from [28]

Parameters Value

EV mass m 1619 [kg]
Rolling resistance crr 0.01

Air density ρ 1.28 [kg/m3]
Frontal area A 2.576 [m2]

Aerodynamic coefficient cw 0.28

The two charging strategies are compared in both scenarios:
i) drivers who charge their vehicle only at home or ii) always
when the SOC is lower than 50%.

A. EV usage and consumption aggregated results

The Activity Pattern module simulates the users’ daily
activities. Figure 4 depicts an example of the obtained user
state proportions. The different use of time during weekdays
(Figure 4a - Scenario 1) and weekends (Figure 4b - Scenario 2)
is clearly visible. During weekdays (Figure 4a), many people
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Fig. 4: Simulated user state proportions during 4a weekdays
(Scenario 1) and 4b weekends (Scenario 2)

are engaged in work activities during daylight. Instead, during
weekends (Figure 4b), the percentage of the activities coded
as ”Social life and Sport” increased with respect to weekdays.
The ”Study” activity represented only a minor percentage
since only students who travelled by car were included in the
analysis.

As described in SectionIII-A, the Activity Pattern generates
only major activities. Therefore, to model the travel activity,
it is necessary to use the Path Generator.

In Figure 5, the percentage of people driving every 10
minutes, i.e. the resolution of the TUS data, compared to the
simulated ones, can be observed for both weekdays (Figure 5a
- Scenario 1) and weekends (Figure 5b - Scenario 2). In
Figure 5a, two significant spikes can be observed in the
morning and the late afternoon, corresponding to the people
going to work and home, respectively. A third spike is visible
at lunchtime. Instead, during the weekend, travels concentrate
in the late morning and the afternoon. In both cases, the
simulated (blue curve) and the TUS (orange curve) data are
remarkably similar.

To understand the goodness of the results, i) the Index of

(a)

(b)

Fig. 5: Comparison of the simulated and TUS travel activity
for 5a weekdays (Scenario 1) and 5b weekends (Scenario 2)

Agreement (IoA), i.e. the Willmott index; ii) the bias; iii) the
Mean Absolute Error (MAE) and iv) the Root Mean Square
Error (RMSE) are calculated. Table V summarises the results
for both weekdays and weekends.

TABLE V: Comparison of model-produced estimates with
TUS data

IoA Bias [%] MAE [%] RMSE [%]

Weekdays 0.988 -0.097 0.408 0.615
Weekends 0.984 -0.317 0.443 0.618

The IoA can assume values between 0 and 1, i.e. no
agreement at all and a perfect match, respectively. Table V
shows that the values of the IoA are pretty close to 1,
i.e. higher than 0.98, on both weekdays and weekends. The
simulation of the weekends shows a slightly larger bias with
respect to the weekdays: -0.317 and -0.097, respectively. In
both scenarios, the MAE and the RMSE are small, around 0.4
and 0.6, respectively. These results are not simply obtained
from a sampling of the travel duration, as done in most of
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(a)

(b)

Fig. 6: Average simulated speed during 6a weekdays (Scenario
1) and during 6b weekends (Scenario 2) compared with [22]

the literature, but also from a user’s behavioural model. The
simulations show good results since the IoA is close to 1 and
the errors are small.

Moreover, with the Path Generator we can also observe the
average speed of the vehicle fleet every 10 minutes, as depicted
in Figure 6. During the night, there is a greater spread with
respect to the day. Very few cars are on the street at night, and
the speed depends strongly on the shortest path chosen. During
the day, the average speed decreases during high peak traffic.
It is worth highlighting that using the speed limit retrieved
from OSM, the simulated speed does not perfectly match the
data collected in [24], especially when simulating weekdays.
Indeed, in Table VI, the IoA of weekdays is 0.898, and the
simulated speed is higher than the one observed in [24], with a
bias around 2.7 km/h. The weekends instead show low errors.
In any case, the simulated speed is realistic, and the error rates
reported in Table VI are negligible.

Overall, the results demonstrate that the Activity Pattern and
the Path Generator modules are able to replicate activities and
vehicle usage.

Figure 7 compares both scenarios’ monthly average power

TABLE VI: Comparison of model-produced estimates with
data from [24]

IoA Bias [km/h] MAE [km/h] RMSE [km/h]

Weekdays 0.898 2.272 2.354 2.581
Weekends 0.974 0.334 0.676 0.955

withdrawal results. At the beginning of the simulation, it
was supposed that the EVs were fully charged; therefore, the
batteries were not charged in the first days of the simulation.

Fig. 7: Monthly average power withdrawal comparison

On both weekdays (blue curve) and weekends (orange
curve), the strategy of charging the EV when the SOC is
below 50% shows better results than the strategy of always
charging the EV when at home. Indeed, in the former case,
the curve is rather flat. Only two and three minor bumps can be
noticed in the orange and blue curves, respectively. Comparing
Figure 7 with Figure 5a and Figure 5b, it is possible to
understand that this increase always follows the traffic peaks.
The green and the pink curves show the electricity load for
the charging strategy at home for weekends and weekdays,
respectively. With this strategy, the peaks happen at similar
times. If charging stations are available only at user premises
and the users get used to charging the EV as soon as they get
home, problems might arise because of the high electricity
demand. In all scenarios, few EVs charge at night since urban
trips are quite short; thus, EVs are already charged before
dawn.

B. Single user’s Path Generator and Driving behaviour results

After showing the aggregated results, a detailed output of
the Path Generator, i.e. i) Path, ii) Slope, iii) Target speed, i.e.
the speed limit also considering the traffic, of a User Agent
single trip from its workplace in the city centre to its home
on the hillside is illustrated. Figure 8 shows the travel route.

The altitude obtained from the DTM, the computed slope
and the target speed are shown in Figure 9. It should be noticed
that the speed can be an average of more than one segment as
described in Section III-B. Moreover, the presence of traffic
was considered. In particular, the targeted speed was 10 km
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Fig. 8: Shortest path found on the map between work, i.e. the
origin, and home, i.e. the destination
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Fig. 9: Altitude, slope and target speed for the selected path

Fig. 10: Driver behaviour output example

less than the usual speed signal. Therefore, while the road
sign indicates a speed limit between 30 km/h and 50 km/h,
the target speed of the user is between 20 km/h and 40 km/h.

The corresponding Driving Behaviour is depicted in Fig-
ure 10. For each road segment, it is not known if a user
stops or only decreases its velocity. Therefore, its behaviour
is computed randomly.

For completeness, the EV battery’s SOC is also given in
Figure 10, where the SOC goes from around 78% to 72% with

a total energy consumption of 2.17 kWh. Notice that with a
constant slope of 1 degree, the total energy consumption would
be 1.27 kWh. A more detailed analysis of the EV model’s
results will be better discussed in the following scenario with
a comparison with real data.

C. Driving behaviour and EV consumption comparison

Scenario 1 and Scenario 2 were compared with TUS data
and average speeds [24] showing good results. Moreover,
hypothetical future charging scenarios were discussed in detail
in an aggregated form. Detailed results for a single user were
provided. However, the Driving behaviour module and the
EV model were not validated because driving patterns and
the corresponding EV consumption data are seldom available.
Figure 11 (orange curve) replicates EV data presented in [28]
collected from an actual vehicle to perform a qualitative
comparison with real measurements.
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Fig. 11: Comparison of simulated and real velocity from [28]

0 500 1000 1500 2000
Distance [m]

0

10

20

30

40

50

60

Ve
lo
cit

y 
[k
m
/h
]

real
simulated
speed limit
stop
turn

Fig. 12: Comparison of simulated and real velocity from [28]

Given the input of the speed limit for each street (grey
curve), i.e. the speed that the EV is supposed to travel at, to
the driving behaviour sub-module, the blue curve is obtained.
Notably, the real data and the data generated artificially show
similar trends. The pink arrows highlight when the vehicle
turns, corresponding to a decrease in speed, while the red
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Fig. 13: Comparison between simulated and real EV consump-
tion taken from [28]

cross indicates where the vehicle stops. In this simulation, the
stops and turns are known as a priori and are not computed
randomly, as in the previous scenarios. In Figure 11, the real
and the simulated velocities are different in the first segments
since the real driver did not respect the speed limit. Anyhow,
it would be possible to obtain similar behaviour by including
the behaviour of a driver who sometimes does not respect the
speed limit. For example, in Figure 12 the user exceeded the
speed limit, i.e. the target speed is 5 km/h higher than the
speed limit.

Figure 13 plots the corresponding battery consumption in
the function of the distance. The orange curve represents the
actual energy consumption data from [28] while the blue curve
is the output of the EV model of Figure 1 and the same values
of [28] for the EV specification, see Table IV. The two curves
show similar trends.

V. CONCLUSION

The increasing sale of EVs requires new tools capable
of realistically modelling the behaviour of users, their trips
and their EV consumption. Unfortunately, city-specific data
are seldom available. Thus, state-of-the-art methodologies are
usually based on travel surveys. However, the latter are also
only available in some countries. Furthermore, there is a lack
of standardised data-based methodologies that can be used
without more precise data.

To this end, we propose a new framework to simulate the
travel activities of a population of agents with heterogeneous
characteristics, starting from almost worldwide available data,
i.e. TUS. Urban trips are modelled thanks to a specific road
network of the city under study, characterised by different
speed limits and driving behaviours. Then, EV consumption
is computed. Thus, the proposed methodology allows us to
estimate EV consumption in the urban context starting from
limited data, allowing specific studies in all major cities
and comparing different charging strategies. However, the
proposed methodology would necessitate modifications for
rural or intercity travel patterns. This issue will be addressed
in the future.

The modularity of the framework allowed us to test dif-
ferent modules easily. The Activity Pattern module and the
travel activity were validated, showing promising results. The
Driving behaviour and EV model modules were qualitatively
compared to real data, demonstrating that the model can
generate plausible driver behaviours and corresponding EV
consumption, potentially offering the opportunity to use the
modules for different purposes. Having access to more vari-
able real data would allow researchers to understand if, for
example, the Driving behaviour module is realistic enough to
generate synthetic driving patterns. If not, it could be improved
considering all sources of uncertainties, interactions among
cars, road boundaries and line lanes as done in [31]. Moreover,
OSM might also be substituted with a more precise and up-to-
date road network [32] thanks to the framework’s modularity
which enables substituting one single module of Figure 1
without affecting the rest of the framework.

Future massive EV diffusion can make the power system un-
stable, requiring the testing of new Demand-Side Management
programs that consider i) EV characteristics, ii) user willing-
ness and iii) the grid state [33]. The presented agent-based
framework somehow enables us to model the first two points,
while thanks to co-simulation, the grid can be included in
the simulation in future. Indeed, EVs-grid interactions would
allow the framework’s user to test algorithms to manage the
EV charging process as done in [34], where the waiting time
before the plugin is minimised and grid stability is preserved,
or that consider the bidirectional power flow between the EV
and the grid, e.g. [35]. Other aspects could be analysed, such
as road traffic CO2 emissions with advanced models, e.g. [36],
or the inclusion of electric public transport models and related
strategies [37].

To conclude, the proposed framework enables the modelling
of EV mobility in multiple countries, eliminating the reliance
on travel-specific data and providing the basis for future more
complex scenarios.
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