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Introduction: The clinical assessment of mobility, and walking specifically, is still
mainly based on functional tests that lack ecological validity. Thanks to inertial
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measurement units (IMUs), gait analysis is shifting to unsupervised monitoring
in naturalistic and unconstrained settings. However, the extraction of clinically
relevant gait parameters from IMU data often depends on heuristics-based
algorithms that rely on empirically determined thresholds. These were mainly
validated on small cohorts in supervised settings.

Methods: Here, a deep learning (DL) algorithm was developed and validated
for gait event detection in a heterogeneous population of di�erent mobility-
limiting disease cohorts and a cohort of healthy adults. Participants wore pressure
insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw
accelerometer and gyroscope data from both feet were used as input to a deep
convolutional neural network, while reference timings for gait events were based
on the combined IMU and pressure insoles data.

Results and discussion: The results showed a high-detection performance
for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs)
(recall: 99%, precision: 94%) and a maximum median time error of −0.02 s
for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters
were in good agreement with a pressure insoles-based reference with a
maximum mean di�erence of 0.07, −0.07, and <0.01 s for stance, swing,
and stride time, respectively. Thus, the DL algorithm is considered successful
in detecting gait events in ecologically valid environments across di�erent
mobility-limiting diseases.

KEYWORDS

deep learning (artificial intelligence), free-living, gait analysis, gait events detection,

inertial measurement unit (IMU), mobility

1. Introduction

Mobility is the ability to move about in the home and
community (1). Mobility can be affected by chronic health
conditions, including but not limited to neurological, respiratory,
cardiac, andmusculoskeletal disorders (2). Deficits inmobility have
been linked with a reduced quality of life, an increased fall risk, and
mortality (2, 3), therefore, mobility is regarded as an essential aspect
of health (4). The most common and functionally relevant aspect of
mobility that is affected by aging and chronic health conditions is
walking (1, 5).

To date, the clinical assessment of mobility is based on
functional tests that include short walking tasks (6–9). A common
shortcoming of these functional tests is the lack of ecological
validity: Walking, as measured in clinical settings, does not reflect
daily life walking (3, 10–12). The transition to unsupervised
monitoring of human motion in naturalistic and unconstrained
daily life activities is driven mainly using wearable inertial
measurement units (IMUs) (4, 13). It is noteworthy that meanwhile
both European and American notified bodies for the certification
of medical devices (Medical Device Regulation and Food and
Drug Administration, respectively) have put focus on wearable
sensors by updating their regulations for the design, pre-clinical
validation, and clinical validation of devices that include wearable
IMUs (13, 14). Similarly, both the European Medicines Agency and
the United States Food and Drug Administration encourage the
inclusion of parameters from unsupervised patient monitoring as
exploratory endpoints in clinical trials (11, 15).

A critical step for the objective analysis of gait is the
segmentation of gait sequences into gait cycles (16–18), i.e., the

basic repetitive unit that gait is comprised of (19, 20). The
beginning and end of each gait cycle, also referred to as stride,
are often determined from two successive initial contacts (ICs) of
the same foot (19, 20). Together with the instant at which the foot
leaves the ground (i.e., final contact, FC), each stride can be divided
into a stance and swing phase (18–21). ICs and FCs are commonly
referred to as gait events (19, 20, 22) and are a prerequisite for
any further clinical gait analysis (18). The detection of ICs and
FCs from IMUs is typically done using heuristics-based algorithms
(23–30). Many of these algorithms use local maxima or minima of
the acceleration and/or angular velocity signals along one axis (31),
which requires knowledge of the sensor-to-segment alignment (32,
33). However, in unsupervised human gait monitoring, the sensor-
to-segment alignment cannot be controlled as study participants
often attach the sensor themselves, for example, after showering
(34). Therefore, the technical validity of these algorithms for the
case of unsupervised human gait monitoring is still an ongoing
challenge also due to the scarcity of labeled free-living gait data (35–
37). Additionally, IMU-based gait signals are affected by disease
characteristics, participant activity levels, and the exact context in
which walking takes please, and therefore, any heuristics-based
algorithm that was developed based on lab-based gait data might
not translate directly to free-living gait (3, 11, 15, 30, 38).

In contrast to the aforementioned heuristics-based algorithms,
machine learning-based algorithms do not depend on user-defined
sets of rules but rather learn to recognize gait signals directly
from annotated data (39–41). Hidden Markov models (HMMs),
for example, were successfully applied for gait segmentation in
healthy (42, 43) and pathological gait (42, 44), but only in-lab
recorded gait data were used to check for validity. A recent study
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used HMMs to segment gait cycles from free-living gait data and
reached 96% recall and 89% precision for free-living data, however,
data were only from participants with Parkinson’s disease (PD)
(45). Although HMMs thus seem a good fit for modeling the
sequential nature of the gait cycle, one still needs to define the
number of discrete states beforehand, and it would be needed to
have a separate model per activity if more than just gait was to be
detected (46, 47). Deep learning (DL)-based algorithms provide an
alternative approach that does not require any heuristic rules but
rather learns relevant data representations automatically from a set
of input features and reference annotations (40, 41, 48, 49). DL
algorithms have been successfully applied for gait event detection
from stereophotogrammetric data (50–54) and from inertial
measurement unit data (34, 55), however, only for in-lab gait data.

Therefore, the specific aim of the current study was to
determine whether a previously in-lab validated DL-based
algorithm (34) for the detection of ICs and FCs can be used for
the detection of gait events in pre-extracted real-life walking bouts
in a heterogeneous cohort of different mobility-limiting diseases.
For the current study, walking bouts were defined according to
the recently published consensus framework for digital mobility
monitoring (2).

2. Materials and methods

2.1. Data collection

2.1.1. Study participants
As part of the Mobilise-D technical validation study (56),

a convenience sample of 108 participants was recruited at
five independent study sites (Newcastle upon Tyne Hospitals
NHS Foundation Trust, UK, Sheffield Teaching Hospitals NHS
Foundation Trust, UK, Tel Aviv Sourasky Medical Center,
Israel, Robert Bosch Foundation for Medical Research, Germany,
University of Kiel, Germany). The sample represented five
mobility-limiting disease cohorts [congestive heart failure (CHF),
chronic obstructive pulmonary disease (COPD), multiple sclerosis
(MS), Parkinson’s disease (PD), and proximal femoral fracture
(PFF)] and a cohort of healthy older adults (HA) (56). These
cohorts cover a range of walking speed, mobility challenges, and
potential events that are of clinical interest, such as improving
vs. worsening of function, falls, hospitalization, nursing home
admission, and death. Furthermore, as the participants were
recruited at five different sites across Europe, they ensured a
geographical representation and covered a diverse representation
of healthcare organization, such as in- vs. outpatient care, as well
as public vs. private health services (1, 56). Participants needed
to be able to walk 4m independently, to give informed consent,
and have a Montreal Cognitive Assessment score > 15 (57). A
detailed description of inclusion and exclusion criteria is provided
elsewhere (56), and ranges of values for cohort-specific clinical
scales are detailed in Table 1.

2.1.2. Study protocol
Study participants were equipped with the INertial module with

Distance sensors and Pressure insoles (INDIP) system that included

both pressure insoles (PIs) and IMUs to record movement signals
from both feet and the lower back (27, 58, 59). Participants wore
the INDIP system for 2.5 h in their habitual environment, e.g.,
home, work, community, and/or outdoor environment, which was
chosen by the participant, with no specific restrictions (56). To
capture the largest possible range of activities, participants were
provided with a list of activities that could be included if relevant
to their chosen environment (e.g., rising from a chair, walking to
another room, and walking outdoors). No supervision or structure
as to how these tasks were completed was given to the participants.
The duration of the observation has been established as a trade-off
between experimental, clinical, and technical requirements (56).

2.2. Data processing

2.2.1. Data preparation
Data from the INDIP system were synchronized by setting the

clock to have the same timestamp for all the sensors between the left
and right foot, and values were recorded at a sampling frequency, fs,
of 100Hz. As input to the DL algorithm, only the raw accelerometer
and gyroscope data from both feet were used. Data were split into
three different datasets: a training set, a validation set, and a testing
set (40, 41). For this purpose, for each of the six cohorts, data from
approximately 20% of the participants were assigned to the testing
set, data from another 20% of the participants were assigned to the
validation set, and data from the remaining participants were used
as the training set.

The validation set was used to find an optimal network
architecture using grid search (60), and the training set was used
to optimize the corresponding model parameters (40, 41). The
testing set was only used for the final evaluation, and notably, the
numbers presented in the Section Results only corresponded to the
performance of the testing set.

2.2.2. Reference system
For all data, the gait events, that is both ICs and FCs, were

detected separately from the PIs and IMUs from the INDIP
system that is described in detail elsewhere (61) to meet the
emerging demands associated with reproducibility and replicability
in biomedical research and regulatory qualification (62). Then,
the results were combined, and priority was given to the PIs in
case both modalities detected an event (63). For the PIs, foot-
ground contact was defined when at least three sensing elements
from the PI belonging to the same spatial neighborhood were
consecutively activated and deactivated (64). For the IMUs, an
existing algorithm, originally designed for shank-worn IMUs, was
adapted for use with foot-worn IMUs. Previously, it was validated
for the detection of supervised gait events in older, hemiparetic,
parkinsonian, and choreic gait (27, 65) and across multiple research
centers for parkinsonian and mildly cognitive impaired gait (66).

From these gait events, walking bouts (WBs) were formed by
merging information from left and right strides (27, 28). Each WB
represented a gait sequence with a minimum of two left and two
right strides (2, 63). Here, strides were only considered valid if
(i) the stride duration was between 0.2 and 3 s and (ii) the stride
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TABLE 1 Dataset details for training, validation, and testing sets, including the total number of bouts and strides.

Set Cohort Number of
participants

Age
(years)

Height
(cm)

Weight
(kg)

Clinical scale
(mean [min,
max])

Number
of bouts

Number
of

strides

Training CHF 8 69 (13) 177 (8) 86 (20) KCCQ: 81.8 [37.0, 96.3] 189 11326

COPD 11 70 (9) 169 (6) 73 (14) CAT: 21.1 [6.0, 33.0]
FEV1 : 1.7 [0.9, 2.7]

187

6562

MS 12 47 (8) 171 (14) 80 (23) EDSS: 3.5 [1.0, 6.5] 139 6216

PD 12 70 (7) 175 (6) 79 (16) HandY: 2.0 [1.0, 3.0]
UPDRS: 31.8 [6.0, 54.0]

165 7574

PFF 10 83 (6) 172 (9) 71 (16) SPPB: 7.3 [0.0, 12.0] 151 5838

HA 12 71 (7) 168 (10) 76 (11) 245 13597

Validation CHF 2 74 (13) 172 (21) 87 (3) KCCQ: 94.8 [89.6, 100.0] 41 1210

COPD 3 69 (14) 171 (10) 69 (12) CAT: 15.3 [6.0, 26.0]
FEV1 : 1.4 [1.3, 1.6]

68 1890

MS 3 42 (15) 172 (13) 97 (24) EDSS: 2.5 [1.5, 4.0] 24 863

PD 3 70 (7) 174 (6) 79 (21) HandY: 2.3 [2.0, 3.0]
UPDRS: 28.0 [24.0, 33.0]

61 3466

PFF 2 71 (1) 164 (8) 60 (9) SPPB: 5.0 [1.0, 9.0] 31 1087

HA 4 72 (4) 163 (10) 77 (18) 126 4952

Testing CHF 2 65 (13) 168 (1) 77 (16) KCCQ: 66.7 [47.9, 85.4] 10 407

COPD 3 69 (8) 166 (3) 80 (18) CAT: 18.7 [13.0, 24.0]
FEV1 : 1.4 [0.8, 2.3]

79 2346

MS 3 58 (12) 172 (16) 87 (25) EDSS: 4.7 [3.0, 6.0] 53 2576

PD 3 70 (11) 166 (11) 73 (8) HandY: 2.3 [2.0, 3.0]
UPDRS: 24.3 [7.0, 41.0]

38 2448

PFF 2 76 (6) 168 (8) 75 (28) SPPB: 6.5 [3.0, 10.0] 21 1649

HA 4 73 (3) 164 (11) 72 (10) 94 3674

CAT, COPD assessment test; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; EDSS, Expanded disability status scale; FEV1 , Forced expiratory volume in 1 s;

HA, healthy adults; HandY, Hoehn and Yahr scale; KCCQ, Kansas City cardiomyopathy questionnaire; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal femoral fracture; SPPB,

short physical performance battery; UPDRS, Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating Scale, part III. Age, height, and weight are presented as mean (standard

deviation), and the clinical scales are presented as mean [minimum, maximum].

length was minimally 0.15m. A resting period of 3 s determined
consecutive WBs, thus, each WB could contain a resting period of
≤3 s.

For the current study, we analyzed only those WBs that lasted
≥10 s (67–70) and for which both the INDIP’s PIs and IMUs
were used for determining the gait events. These gait events were
considered as reference annotations for training and evaluating the
DL algorithm.

2.2.3. Deep learning algorithm
The DL algorithm was based on the neural network (NN) that

was previously validated on in-lab gait data from shank-worn IMUs
worn by participants with different neurological diseases (34, 71).
At the core of the NNwas a temporal convolutional network (TCN)
(72, 73). The TCN was built from stacking residual blocks (74) with
an exponentially increasing dilation factor for the convolutional
layers (Figure 1).

Specifically, each residual block comprised two sequences of
a dilated convolution (Conv) layer (75), a batch normalization
(BatchNorm) layer (76), a rectified linear unit (ReLU) activation
layer, and a dropout layer (77). A residual connection was used
to perform convolution with a kernel size of 1 in case the
number of feature maps did not match the number of input
channels (72, 73). The outputs of the second dropout layer and
the residual connection were summed elementwise and inputted
to a ReLU activation layer. The convolution layers consisted of 64
filters with a kernel size of 3 and a dilation factor of 2m−1 with
m = 1, · · · ,Ndil for the m-th residual block (with Ndil = 6, the
number of residual blocks, and thus, the maximum dilation factor
was 25 = 32).

The outputs of the last residual block were passed through
a fully connected (also referred to as dense) layer followed by
a softmax activation layer (78, 79). The final outputs were then
regarded as probability that a certain gait event took place at the
given time step, tn.
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FIGURE 1

Schematic depiction of the deep learning model architecture with a
residual block (ResBlock) that is repeated (in this case, six times)
before a dense and softmax layer are applied. Inputs to the network
are the raw accelerometer and gyroscope data of both left and right
inertial measurement units. The outputs are estimated probabilities
for each of the gait events for each time step. BatchNorm, batch
normalization; Conv, convolution; DropOut, dropout; ReLU,
recitified linear unit.

2.3. Evaluation

As in our previous studies (34), the performance was evaluated
with the testing set only. The trained model was used to predict
the probability that any gait event occurred from the IMU data.
Peak probabilities, with a minimum probability, 1Pr = 0.5, and
a minimum interpeak distance, 1t = 0.5 s, were considered
detected events.

Performance was evaluated for the overall detection
performance, time agreement between predicted and annotated
gait event timings, and time agreement between subsequently
derived stride-specific gait parameters.

2.3.1. Overall detection performance
The overall detection performance quantified how many of the

annotated gait events were detected (true positives), how many
of the annotated gait events were not detected (false negatives),
and how many of the detected events were not annotated (false
positives). From these numbers, the recall (also referred to as
sensitivity) and precision (also referred to as positive predictive
value) were calculated as follows:

recall =
# true positives

# true positives+ # false negatives
, (1)

precision =
# true positives

# true positives+ # false positives
. (2)

Thus, the recall represented the fraction of annotated events
that were detected, and the precision represented the fraction of
events that were truly gait events.

Here, in case the absolute time difference between an annotated
and predicted event was ≤250ms, it was considered a true positive

event (30, 34, 80, 81) (in other words, a tolerance window of 500ms
centered around the reference timing was used).

2.3.2. Time agreement
For all correctly detected gait events (true positives), the time

agreement between the detected and annotated event timings was
quantified by

ǫ = tref − tpred, (3)

where tpred is the timing corresponding to the peak probability
and tref is the timing of the INDIP-derived annotations.

As a robust measure for the time agreement and its spread,
the median time error and the inter-quartile range (IQR) were
computed (82), and time agreements were visualized using
box plots.

2.3.3. Stride-specific gait parameters
For those strides where both ICs and the FC in between were

detected, the stance, swing, and stride times were computed (19,
20, 83). Stance time was the time between an FC and the preceding
IC of the same foot, swing time was the time between an IC and the
preceding FC of the same foot, and stride timewas the time between
two consecutive ICs of the same foot (34, 83).

For each of these temporal gait parameters, the mean time
difference and the limits of agreement (LoA) based on a 95%
confidence interval (CI) were computed (82). Differences were
visualized using Bland–Altman plots (84, 85).

3. Results

3.1. Demographics

Data were collected from 108 different participants, and
eventually data from 99 participants were used for the current study
(Table 1). Data from the other participants were excluded due to
incomplete or missing data from the INDIP system or because no
WBs ≥ 10 s were recorded. Eventually, the DL-based algorithm
was evaluated for its performance in detecting gait events of 13,100
strides divided over 295 bouts recorded from 17 participants in the
testing set.

3.2. Overall detection performance

The overall detection performance was quantified by the
number of true positives, number of false negatives, and number
of false positives. From these numbers, the recall and precision
were calculated (Table 2). In total, from 13,134 ICs, the algorithm
detected 12,985 events (i.e., 99%) and missed 169 events (i.e., 1%),
and similarly, from 12,838 FCs, the algorithm detected 12,747
events (i.e., 99%) and missed 91 events (i.e., 1%). When evaluated
per cohort, the recall for the IC detection was ≥98%, and the
precision was ≥96%. Similarly, the recall was ≥99%, and the
precision was ≥94% for FC detection for all cohorts.
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FIGURE 2

Time di�erence between the predicted and reference events
timings for initial and final contacts evaluated per cohort. A positive
time di�erence corresponded to an advanced detection. CHF,
congestive heart failure; COPD, chronic obstructive pulmonary
disease; MS, multiple sclerosis; HA, healthy adults; PD, Parkinson’s
disease; PFF, proximal femoral fracture.

3.3. Time agreement

For all the correctly detected events, i.e., true positives, the
difference between the detected event timing and the annotated
event timings was calculated according to Equation (6). Themedian
time error was close to 0 s with the IQR enclosing a zero difference
for both ICs and FCs for all cohorts, except for the PFF cohort
(Figure 2). The PFF cohort showed a median time error of −0.02 s
and an IQR of 0.03 s for IC detection, and a median time error of
0.03 s and IQR of 0.05 s for FC detection (Table 3).

3.4. Stride-specific gait parameters

For those strides that had two correctly detected ICs and a
correctly detected FC in between, stride-specific temporal gait
parameters (i.e., stance time, swing time, and stride time) were
calculated. For all cohorts, the mean differences between the stance,
swing, and stride times derived from the detected events and those
derived from the annotations were close to zero with the LoA
encapsulating a zero-mean difference (Figure 3). Notably, for the
PFF cohort, the mean time difference for the stance time was
+0.07 s, and the mean time difference for the swing time was
−0.07 s, which resulted in a zero-mean difference for the stride
time (Table 4). Similarly, for all gait phases, the absolute errors were
0.04 s or less for all cohorts, except the PFF cohort (Table 5). This
resulted in a relative time error for the stride times of ≤2% across
all cohorts, but for the swing times, the relative time error for the
PFF cohort was 27%, and for the COPD cohort, it was 12%.

4. Discussion

The specific aim of the current study was to determine
whether a previously in-lab validated DL-based gait event detection
algorithm (34) could be used for the detection of gait events
from real-life walking bouts in a heterogeneous cohort of different

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2023.1247532
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Romijnders et al. 10.3389/fneur.2023.1247532

TABLE 3 Time di�erences between the predicted event timings and the annotated event timings evaluated per cohort.

Cohort Initial contacts Final contacts

Median (ms) IQR (ms) Median (ms) IQR (ms)

CHF 0 20 0 20

COPD 10 40 10 40

MS 0 10 20 30

PD 10 10 20 30

PFF −20 30 30 50

HA 10 20 10 20

CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; MS, multiple sclerosis; HA, healthy adults; IQR, inter-quartile range; PD, Parkinson’s disease; PFF, proximal

femoral fracture.

FIGURE 3

Bland–Altman plots for the stance, swing, and stride times evaluated per cohort. The gray solid line corresponds to the overall mean di�erence, and
the dashed lines correspond to the mean di�erence ± 1 standard deviation. CHF, congestive heart failure; COPD, chronic obstructive pulmonary
disease; DL, deep learning; HA, healthy adults; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal femoral fracture.

TABLE 4 Mean di�erences (bias) and limits of agreement for a 95% confidence interval for the stance, swing, and strides evaluated for each cohort.

Cohort Stance time Swing time Stride time

Mean
di�erence (s)

LoA (s, s) Mean
di�erence (s)

LoA (s, s) Mean
di�erence (s)

LoA (s, s)

CHF −0.00 (−0.08, 0.07) 0.00 (−0.07, 0.07) −0.00 (−0.07, 0.07)

COPD 0.01 (−0.11, 0.13) −0.01 (−0.13, 0.11) 0.00 (−0.08, 0.08)

MS 0.02 (−0.05, 0.10) −0.02 (−0.10, 0.05) −0.00 (−0.06, 0.06)

PD −0.01 (−0.06, 0.04) 0.01 (−0.04, 0.06) 0.00 (−0.05, 0.05)

PFF 0.07 (−0.06, 0.19) −0.07 (−0.20, 0.07) 0.00 (−0.07, 0.07)

HA 0.00 (−0.07, 0.08) −0.00 (−0.09, 0.08) 0.00 (−0.07, 0.07)

CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; HA, healthy adults; LoA, limits of agreement; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal

femoral fracture.

mobility-limiting diseases. For that purpose, participants from
different disease cohorts (CHF, COPD, MS, PD, and PFF) and a
cohort of healthy adults were equipped with the INDIP system
that consisted of PIs and IMUs for both feet. Participants wore the
INDIP system for 2.5 h in the habitual environment, as chosen by
the participants, and a wide range of activities were recorded in
these ecologically valid environments. Data from the PIs and IMUs
were used to generate reference timings for ICs and FCs, whereas

raw data from the accelerometer and gyroscope were used as the
input to the DL algorithm to identify ICs and FCs.

The recall and precision of gait events were used as a general
measure for the detection performance and were considered high
(i.e., recall ≥ 98% and precision ≥ 96%). For comparison, in
Trojaniello et al. (27), no missed or extra gait events were observed
in a heterogeneous sample of elderly, hemiparetic, parkinsonian,
and choreic gait, but data were only collected from walking back
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TABLE 5 Stance, swing, and stride times obtained from the reference and the DL algorithm, and the absolute and relative time errors for comparison.

Gait
phase

Cohort Reference system DL algorithm Absolute error Relative error

s (s, s) s (s, s) S (s, s) % (%, %)

Stance CHF 0.93 (0.90, 0.97) 0.94 (0.91, 0.97) 0.03 (0.02, 0.03) 3 (2, 3)

COPD 0.93 (0.91, 0.94) 0.92 (0.90, 0.93) 0.04 (0.04, 0.05) 5 (5, 5)

MS 0.98 (0.97, 0.99) 0.96 (0.94, 0.97) 0.03 (0.03, 0.03) 3 (3, 3)

PD 0.80 (0.79, 0.80) 0.81 (0.80, 0.81) 0.02 (0.02, 0.02) 2 (2, 2)

PFF 0.90 (0.88, 0.91) 0.83 (0.82, 0.84) 0.08 (0.08, 0.08) 9 (9, 9)

HA 0.84 (0.83, 0.85) 0.84 (0.83, 0.85) 0.03 (0.02, 0.03) 3 (3, 3)

Swing CHF 0.41 (0.40, 0.42) 0.41 (0.39, 0.42) 0.02 (0.02, 0.03) 6 (5, 7)

COPD 0.43 (0.42, 0.43) 0.43 (0.43, 0.44) 0.04 (0.04, 0.05) 12 (11, 13)

MS 0.41 (0.41, 0.42) 0.44 (0.43, 0.44) 0.03 (0.03, 0.03) 9 (8, 9)

PD 0.41 (0.40, 0.41) 0.40 (0.39, 0.40) 0.02 (0.02, 0.02) 4 (4, 4)

PFF 0.34 (0.34, 0.35) 0.41 (0.40, 0.41) 0.08 (0.08, 0.08) 27 (26, 28)

HA 0.36 (0.36, 0.36) 0.36 (0.36, 0.37) 0.03 (0.03, 0.03) 8 (8, 9)

Stance CHF 1.34 (1.31, 1.38) 1.34 (1.31, 1.38) 0.02 (0.02, 0.02) 1 (1, 2)

COPD 1.35 (1.33, 1.37) 1.35 (1.33, 1.37) 0.02 (0.02, 0.02) 2 (2, 2)

MS 1.39 (1.38, 1.40) 1.39 (1.38, 1.40) 0.02 (0.02, 0.02) 1 (1, 1)

PD 1.20 (1.19, 1.21) 1.20 (1.19, 1.21) 0.01 (0.01, 0.01) 1 (1, 1)

PFF 1.24 (1.22, 1.25) 1.24 (1.22, 1.25) 0.02 (0.02, 0.02) 2 (2, 2)

HA 1.20 (1.19, 1.21) 1.20 (1.19, 1.21) 0.02 (0.02, 0.02) 2 (1, 2)

Values represent the mean and 95% confidence interval of all stances, swings, and strides of the test subjects for the given cohort. CHF, congestive heart failure; COPD, chronic obstructive

pulmonary disease; DL, deep learning; HA, healthy adults; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal femoral fracture.

and forth for 1min in a 12m walkway. Similarly, high recall
and precision (≥98%) were reported for a continuous wavelet
transform (CWT)-based algorithm, but it was evaluated only for
13 healthy participants and 3 hemiplegic participants who walked
continuously along a 10m walkway (86). A recent study (45)
found a recall of 96% and precision of 89% in a cohort of 28
PD participants, who wore two IMUs on the feet for 2 weeks,
which are slightly lower than the recall and precision from the
current study. Overall, the data of the studies presented here,
including the present study, indicate that very high recall and
precision values can be achieved with the deep learning approach
for the detection of gait events. This, together with the higher
flexibility of the DL-based algorithms compared to conventional
algorithms, speaks for the future use of such algorithms for
the detection of gait in mobility-limiting diseases also in the
habitual environment.

For the correctly detected gait events, the time differences
between the predicted event timing and the annotated event
timings were quantified as a measure of temporal agreement
between the reference system and the DL-based algorithm. The
time differences were still in the same range as those previously
reported for CWT-based (23, 27, 30, 86, 87) and DL-based
algorithms (34) validated on in-lab gait data. To put this into
perspective, studies that evaluated the time differences of detected
gait events from PIs when compared to force plates or instrumented
walkways also reported time differences in the range from 0.02 s

to 0.04 s (17, 64, 87). For the INDIP pressure insole method, a
negligible delay (<10ms) was observed for FCs, and a consistent
IC anticipation (20ms) was found when compared to force plates
(64). It suggests that a certain margin of uncertainty should be
considered when interpreting gait event timing differences in the
DL-based algorithm.

Finally, stride-specific gait parameters were derived for the
correctly detected events. These may be of greatest clinical
relevance since changes in spatiotemporal gait parameters were
associated with a shorter time to PD diagnosis (88) and from
mild cognitive impairment to Alzheimer’s disease (89), and values
of temporal gait parameters were different in disease cohorts
compared to healthy cohorts (90–92). Here, a zero-mean time
difference was found for the stride times for all cohorts. Similarly,
the time differences for stance and swing times were centered
around a zero-mean difference for all cohorts, with only the mean
differences for the stance and swing time of the PFF cohort being
a bit larger (0.07 s and −0.07 s for the stance and swing time,
respectively). The mean differences for stance and swing times in
the PFF cohort may in part be explained by the altered gait pattern
that is observed in this cohort (93, 94). Nonetheless, the time
agreement for the stride-specific temporal gait parameters derived
from the DL algorithm and the reference system was in a similar
range as those communicated before for a comparable DL-based
approach that evaluated results only from straight-line walking in a
supervised laboratory setting (55).
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The very good results that were obtained in the current study
for two-feet-worn IMUs (56) combined with the results for a single
shank-worn IMU from our previous study (34) provided evidence
that the algorithm performance generalizes to other sensor wear
locations and to free-living gait data. The current algorithm has
the additional benefit that it does not require the knowledge of
exact sensor location and orientation relative to the feet contrary to
many previously validated algorithms (23, 24, 31, 34, 95). This has
the practical consequence that there are less stringent requirements
for study participants or future patients on how to attach the
sensors to their feet. Since for the previous validation the input data
consisted of the raw accelerometer and gyroscope signals from a
single sensor that was located either laterally above the ankle joint
or medially below the knee joint (34), the algorithm for the current
validation was again trained, validated, and tested. Both studies
show a high recall and sensitivity, highlighting that the algorithm
is capable of detecting gait events from different sensor locations
without the loss of accuracy provided that sufficient training data
are available for any new sensor location (34). Furthermore, the
algorithm performance was evaluated across a broad spectrum of
five different mobility-limiting disease cohorts, and although the
number of participants in the testing set for each cohort was low, it
showed that the algorithm was able to accurately detect gait events
in heterogeneous pathological gait patterns. This will ultimately
allow future users of the algorithm to perform not only sensitivity
analyses for individual cohorts but also specificity analyses across
different cohorts.

The limitation of the current study included that only data
from detectedWBs were used. This means that gait event detection
relied on the accurate detection of gait sequences as a preceding
step (45). However, several algorithms have been reported for
accurate IMU-based gait sequence detection in both healthy and
disease cohorts (24, 25, 28, 29, 46, 96–100). Furthermore, data
from some participants had to be excluded from analysis due to
missing or incomplete data which was mainly due to issues with
the PIs. As reference timings for gait events are still obtained
mainly from force or pressure measuring device (23), it showed
the difficulty of obtaining a dataset with annotated gait events
on completely unsupervised free-living gait data (35–37, 45). To
get a better picture of the algorithm’s generalizability to other
datasets, it needs to be tested on newly unseen datasets, for example,
with a slightly different sensor setup, such as in Martindale
et al. (46).

In addition, the study did not evaluate clinical aspects in detail,
such as medication and symptom fluctuations. This is, in part, due
to the heterogeneous sample of participants with differentmobility-
limiting diseases. Consequently, the current study did not focus on
identifying, for example, digital biomarkers of disease progression,
for which a greater sample size of a specific disease would be
required. However, as this is a study comparing, in the same person,
systems at one point in time on amotility aspect, we believe that this
does not influence the results reported here. Furthermore, it should
be stressed that the heterogeneous sample is an asset of the current
study as the results show that the algorithm achieves excellent
performance for different pathological gait patterns. Given the
time span of 2.5 h, we did not specifically investigate whether
disease-associated gait abnormalities, such as freezing of gait in PD
(101), were captured by the recording. However, the duration of

the assessment was chosen as a trade-off between experimental,
clinical, and technical requirements (56) and is five times longer
than the recommendations for validation procedures of assessing
physical activity in older adults (102). Lastly, the current analysis
also relied on a peak detection algorithm to identify the most
probable timings of gait events (34, 46, 55). However, from a
clinical perspective, this may be regarded as a benefit since it would
allow a clinician to decide whether to consider certain strides
based on how confidently it can be assumed that it was indeed
a stride.

5. Conclusion

This study aimed to validate a DL algorithm for the detection
of gait events in an ecologically valid environment across different
mobility-limiting disease cohorts. The performance evaluation
showed an excellent detection rate and low time errors for both
event timings and subsequently derived temporal gait parameters
for all cohorts. The DL reached a performance that was in a
similar range or slightly better than approaches that were to
date only validated on in-lab recorded gait data or for a specific
disease cohort.

As the DL algorithm does not rely on expert-defined decision
rules or hand-crafted features nor on exact sensor-to-segment
alignment, it poses fewer requirements on the data collection.

Our next steps include extending the current analysis
for data from multiple days and evaluating to which extent
the DL network can be trained using participant-specific
data to improve gait event detection on an individual level.
Future studies may also consider the development of novel
gold-standard systems that allow validation approaches
beyond lower limb movement, for example, to include upper
limb movement.
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