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Monocular Estimation of Connector Orientation:
Combining Deformable Linear Object Priors

and Smooth Angle Classification
Alessio Caporali, Kevin Galassi, Giovanni Berselli, Gianluca Palli

Abstract—In this paper, a novel method for monocular es-
timation of connector orientation in wire and cable harnesses
is introduced. The proposed approach combines Deformable
Linear Objects (DLOs) priors with a learning-based technique
for smooth angle classification, enabling precise prediction of
connector orientation using only a single RGB image. The
integration of DLO perception is crucial in recovering an
initial coarse understanding of the connector pose. This is
accomplished by linearly projecting the identified DLO endpoint
using the predicted spline-based DLO representation model. To
estimate the axial orientation of the connector, the proposed
approach incorporates a smooth labeling technique in the angle
classification process. This ensures effective handling of the
circular nature inherent in angular data. Additionally, a self-
supervised acquisition and annotation of the dataset samples is
employed. To assess the effectiveness of the proposed method, we
conducted experiments with a collection of real-world connectors
sourced from the automotive sector. The outcomes underscore the
potential applications of the proposed method in tasks related to
the robotic manufacturing and assembly of complex deformable
linear objects, such as wire harnesses.

Index Terms—Deformable Linear Objects, Pose Estimation,
Data Augmentation, Industrial Manufacturing

I. INTRODUCTION

Wires, cables, and wire harnesses are pivotal in industries
like automotive and aerospace [1]. An example of an au-
tomotive wire harness is depicted in Fig. 1. Currently, the
manufacturing and assembly processes for these components
rely heavily on manual execution, giving rise to significant
challenges such as operator fatigue, ergonomic concerns, and
issues related to product quality [2]–[4].

In the literature, cables and wires are commonly classified
as Deformable Linear Objects (DLOs), emphasizing their
characteristic of having a single main dimension. In contrast,
wire harnesses are formed by interconnecting multiple DLOs,
resulting in the creation of several branches. In the literature,
they are frequently denoted as Deformable Multi-Linear Ob-
jects (DMLOs), highlighting their close association with the
DLOs category.
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Fig. 1: Deformable Multi-Linear Object (DMLO) from the
automotive sector with connectors attached at the extremities,
highlighted with dashed black lines.

Connectors and other rigid elements, such as clamps and
fixtures, are typically combined with DLOs and DMLOs.
These rigid objects are essential to ensure proper functionality,
signal transmission, and adherence to mounting and assembly
constraints [1].

Integrating robotics and automation in industrial scenarios
involving DLOs and DMLOs with connectors faces chal-
lenges, particularly in dealing with deformability, the high
number of degrees of freedom, complex perception, and small
sizes of DLOs [5]–[8]. Additionally, detecting connectors and
estimating their poses is hindered by the scarce availability of
3D/CAD models and the susceptibility of depth data to noise
and artifacts caused by the small sizes involved.

This paper tackles the relevant problem of connector de-
tection and pose estimation, with a specific focus on the
estimation of the axial orientation of a connector attached
to a DLO or DMLO using a single RGB image, i.e. within
monocular settings. Vision-based deep-learning solutions, like
those in [6], [9], can reliably perceive DLOs by outputting
sequences of keypoints or curves. Therefore, we can leverage
the usual high stiffness of cables and wires to approximate
the connector pose based on the obtained DLO curve-based
representation. However, determining the axial orientation of
the connector based solely on DLO knowledge remains am-
biguous. Hence, this paper introduces a data-driven approach
to estimate the axial orientation (and additionally the class
type) of the connector, employing a self-supervised data-
collection procedure.

In summary, the paper contributes to:
• Leveraging prior knowledge about DLOs to simplify the



problem of connector pose estimation;
• Self-supervised acquisition and annotation of dataset

samples;
• Developing a data-driven approach for monocular angle

axial classification of connector orientation, demonstrat-
ing generalization across various backgrounds and light-
ing conditions.

In the remainder of the paper, the related works are dis-
cussed in Sec. II while the proposed method is presented in
Sec. III. The experiments are reported in Sec. IV. Finally, a
discussion about the limitations of the approach is proposed
in Sec. V, and the conclusions are drawn in Sec. VI.

II. RELATED WORKS

A. Object Pose Estimation in Robotics

Identifying an object in an image and determining its posi-
tion and orientation relative to a coordinate system is a task
known as object pose estimation. Learning-based solutions
addressing this problem have gained significant attention, as
evidenced by works such as [10]–[12]. Object pose estimation
is crucial for robotic manipulation tasks, where simpler RGB
devices are preferred due to their low noise, variability in
resolutions, frame rates, and working modalities, as well as
their affordability, compared to 3D devices [10], [12].

The 2022 BOP Challenge [13], a public benchmark ded-
icated to object pose estimation, has observed remarkable
progress in tested methods, both in terms of accuracy and
efficiency. Deep neural network-based methods have now
surpassed traditional approaches relying on point pair features.
The leading method in 2022 exclusively employs RGB image
channels for both the training and testing phases. Notably,
the top-performing method of 2022 outperforms RGB-D ap-
proaches from 2020 [13].

B. Vision-based Connectors Detection

Various studies have explored the perception of connectors
[14]–[20]. In [15] and [14], the focus is on connector detection.
[15] proposes a straightforward image-processing technique
suitable only for structured environments. Conversely, [14]
examines a range of learning-based object detection methods
and introduces a dataset featuring diverse connectors.

In [19], connector detection is realized by exploiting torque
readings traced along a DLO contour. Meanwhile, [20] imple-
ments a vision-based approach to estimate the pose of multiple
connectors, emphasizing a connector-agnostic approach that,
however, omits axial orientation estimation.

For small connectors, [17] employs a high-precision 3D
camera and a data-driven strategy on point-cloud data, incor-
porating an ICP-based registration method.

Investigating the connector-mating process in wiring harness
assembly, [16] adopts a visual servoing solution. Similarly,
[18] delves into the connection between a wiring harness
connector and its socket, utilizing a data-driven approach
and integrating a shape-based 3D matching method for pose
estimation, with the caveat of necessitating the 3D CAD model
of the considered connector.

reference frame
DLO extremity

detected DLO

x

y

z DLO curve

Fig. 2: DLO perception system providing both a mask-based
and curve-based description of the object. In this illustration, a
top-down view is assumed, such that the x−y plane is parallel
to the surface underneath.

C. Perception of Deformable Linear Objects

Among all possible perception systems, the vision-based
approach is commonly preferred for DLOs due to the seamless
integration of diverse cameras into robotic systems [8]. One
key task in DLO perception is semantic and instance segmen-
tation, as addressed in [7], [21]. The process of estimating
the shapes of DLOs is discussed in [6], [22], [23], proposing
recent real-time 2D approaches.

The 3D domain is less explored due to difficulties in sensing
thin objects like DLOs [8]. Practitioners typically tackle the
2D shape estimation problem first and subsequently use depth
data to transform the estimated shape into Cartesian space, as
discussed in [23].

Conversely, [9] explores reliable 3D detection of DLOs
through a multi-view stereo approach. This involves combin-
ing a 2D camera in an eye-in-hand configuration, a robotic
arm, and shape estimation algorithms designed for 2D data to
acquire the 3D shape of DLOs. However, a notable limitation
of this method is its exclusive suitability for static scenes.

III. METHOD

The proposed approach exploits only a monocular RGB
image to estimate the orientation of a small connector attached
to a DLO.

The orientation of a rigid object can be described by 3
rotation components. With reference to Fig. 2, a reference
frame is fixed to the DLO endpoint. Therefore, the orientation
components can be organized into two main groups: those not
oriented along the DLO neutral axis, i.e. rotation around the y
and z axis of Fig. 2; the one oriented along the DLO neutral
axis, i.e. rotation around the x axis. The former orientation
components are estimated based on the DLO perception, as
detailed in Sec. III-A. For the latter orientation component,
a specifically developed data-driven method is proposed, as
discussed in Secs. III-B, III-C and III-D.
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Fig. 3: Schematic view of the self-supervised data collection and labeling approach.

A. Preliminaries: DLO Perception for Orientation Estimation

In this section, our emphasis is on the 2D domain, specifi-
cally to estimate the z-axis rotation component. It is important
to note that the rotation component around the y-axis can
only be addressed in the 3D domain. Nevertheless, it is worth
mentioning that the methodology developed for the 2D domain
is readily extendable to the 3D context.

The process of deriving the z-axis rotation component starts
with the analysis of an RGB image capturing the scene,
as illustrated in Fig. 2. From the image, DLO instances
are obtained using the real-time DLO perception algorithm
RT-DLO [6]. This algorithm integrates a deep convolutional
neural network for background segmentation [7] and utilizes
a graph-based representation of the foreground scene to extract
individual instances of DLOs. Each DLO instance is then
defined as a sequence of 2D keypoints within the image plane.
If required, one can obtain a 3D representation of a detected
DLO shape by applying established methods, like [9], resulting
in 3D keypoints in Cartesian space.

In both 2D or 3D scenarios, a cubic B-spline is fitted to
the keypoints, providing a continuous representation of the
considered DLO.

Therefore, an estimate of the connector orientation along
the considered axis can be easily obtained by leveraging
the knowledge of the DLO shape. Specifically, assuming a
predominantly linear behavior due to the stiffness of the DLO,
a linear curve can be aligned to match the derivative of the
spline at the designated extremity. In a simpler 2D case, the
result is a direction coincident with the one depicted by the
x-axis in Fig. 2. However, considering a more general 3D
scenario, the presence of a rotation around the y-axis will
result in the definition of a new axis direction in the x − z
plane. Thus, the connector pose is defined at the extrapolated
terminal region of the DLO instance. The main assumption
exploited is the knowledge that a connector is attached to that
end of the DLO. This assumption is reasonable in industrial
applications where the structure of the DLOs and DMLOs
being manipulated is usually known.

The only orientation component that cannot be estimated
with the outlined procedure is the axial one, as a rotation
around the x-axis is not detectable in the DLO shape from
the image data. Therefore, a data-driven approach, detailed in
the following, is developed to address this specific goal.

B. Data Collection and Labeling

Collecting and labeling data for learning-based solutions is
a tedious and expensive process [10]. A common strategy is to
rely on synthetic data [11]. In general, object pose estimation
has witnessed a convergence in task accuracy between syn-
thetic and real domain approaches [13]. However, exploiting
synthetic data requires 3D models of the objects of interest,
which may not always be available, as in the setup considered.

Therefore, we deploy a robotic system for the automatic col-
lection and labeling of data. This decision removes the burden
of both the collection and annotation processes from human
users. The robotic setup, schematized in Fig. 3, employs a
manipulator with a parallel fingers gripper and a statically
mounted 2D RGB camera with a top-down view. The camera
is intrinsically and extrinsically calibrated with respect to the
robot.

The object of interest, in our case a connector, is firmly
grasped with the gripper at a known initial axial orientation
and moved inside the camera field of view. The robot’s
configuration is selected such that the end-effector approach
axis and the camera planes are parallel. Therefore, an axial
angle range within ±180 degrees is considered, thus covering
the entire spectrum of possible orientations. This range is
discretized with a user-defined angular step, and an image of
the connector is collected for each discrete available value.
Within each image, the angular displacement with respect to
the initial configuration is recorded. This value is used to
automatically assign an angular label value to each image. In
order to focus the learning process on the specific connector
of interest, square crops of the objects are obtained from
the saved images. The areas for these crops are determined
based on the projected location of the gripper fingertips in
the image plane, a value easily obtained through the robot’s
forward kinematics and the extrinsic matrix of the calibrated
camera. The result of the data collection and labeling approach
is shown on the right side of Fig. 3.

C. Learning-based Axial Angle Estimation

The input RGB image crop is processed by a CNN-based
model, which predicts the angular orientation of the object
along the axial direction. To enhance information output
during network deployment, a classification branch is also
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Fig. 4: Network structure composed of an image encoder and
two classification heads (angle and object type).

incorporated into the network structure to predict the object
type, for example, connector A or B.

1) Smooth Angle Encoding: Predicting angular values using
a learning-based method can pose challenges due to the
periodic nature of angular data, leading to inaccuracies in
distance representations when calculating the loss function.
For instance, an angle of 0◦ is intuitively ”close” to both 5◦

and 355◦, even though applying common losses like L1-loss or
MSE-loss within the [0◦, 360◦] domain results in significantly
different loss values. To tackle the periodicity and ambiguity
in loss computation, an approach introduced in [24] is adopted.

In this approach, a given angular value θ within the range
[0◦, 360◦] is encoded as a k-dimensional vector, where k is
a function of the angular discretization step selected. For
instance, with a step of 5 degrees, k = 72. This vector is
created by applying a Gaussian function centered at θ with
variance σ. This encoding method ensures a smooth propa-
gation of the angle θ in its proximity, providing advantages
during the loss computation process. During training, binary
cross entropy serves as the loss function, framing the learning
task as a classification problem for the angular value among
the k available classes. As a result, extracting the actual
predicted angle is straightforward, as it corresponds to the
index of the vector associated with the maximum probability.
The encoding of the angular label via a Gaussian function for
classification purposes is graphically shown via color-codes in
Fig. 3 (bottom right side).

2) Object Type Classification: Beyond predicting the angle,
an additional output for the object type has been introduced.
The label for the object type is readily acquired during the
data collection process and is represented as an ID number
(e.g., 0 for connector A, 1 for connector B, etc.). This label
is encoded as a one-hot vector, and the optimization of the
network weights is carried out using binary cross-entropy as
the loss function.

D. Network Architecture

The input image undergoes encoding by a pre-trained
backbone network, such as ResNet [25], resulting in a linear
layer with dimensions that vary depending on the chosen
backbone size. To ensure consistent dimensions, an extra linear
layer is introduced to transform the feature dimensions of
the backbone to a fixed size. Subsequently, the output from
the backbone is fed into two classification heads — namely,
the angle head and the type head. Each classification head is
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Fig. 5: 45◦ configuration of the different connectors across the
dataset splits.

formed by a multi-layer perception (MLP) composed of two
linear layers. The output dimension of the angle head is equal
to 360/k. Instead, the output dimension of the type head is
equal to the number of classes present. For both outputs, an
argmax operation is performed to retrieve the predicted values.
The overall network structure is illustrated in Fig. 4.

IV. EXPERIMENTS

The approach outlined in Sec. III is assessed using a robotic
configuration consisting of a UR5 robot equipped with a Robo-
tiq Hand-E parallel fingers gripper. In the robotic work cell, an
OAK-1 RGB camera from Luxonis is securely mounted with a
top-down perspective, mirroring the configuration schematized
in Fig. 3. The camera’s resolution is constrained to 1920×1080
pixels. An Ubuntu 20 PC with an Intel i9-9900k CPU, 64GB
of RAM, and an Nvidia RTX 2080 Ti is used as the computing
platform.

A set of four distinct connectors is utilized to validate the
approach. The connectors come from the wire harness of Fig. 1
and are depicted in more detail in Fig. 5. These connectors,
commonly found in the automotive field, are characterized by
small dimensions on the order of a few centimeters, making
them challenging to detect with common depth sensors like
Intel RealSense devices.

Data and source code are openly released at the following
repository: https://github.com/lar-unibo/connector orientation.

A. Optimization Details

To generate the training dataset, each connector is made free
of cables/wires to enable secure and accurate characterization
of its axial orientation, eliminating possible ambiguity caused
by the deformability of DLOs during the learning process.
Then, the data collection and labeling methodology explained
in Sec. III-B is employed to generate the training dataset. An
angular step of 5 degrees is utilized, so a total of k = 72
images is collected. For each image, a crop of 512×512 pixels
around the connector is performed. Since the generation of the
dataset is quite efficient, requiring only a couple of minutes,
for the same connector a set of 5 different backgrounds is
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Fig. 7: Error comparison among different backbones archi-
tectures, specifically ResNet [25] (18, 34, and 50 layers) and
ConvNext [26] (Tiny) concerning the different test connectors.

employed to increase the dataset variance. The process is
repeated for each connector resulting in a total dataset of 1440
samples. During the network optimization, 4 backgrounds are
employed for the training split, while one background is for
the validation split. The model described in Sec. III-D is
optimized using the mentioned training and validation datasets.
ResNet34 [25] is selected as the backbone network. The
training process involves 50 epochs with a batch size of 4 and a
learning rate of 1×10−4. To enhance the dataset, augmentation
techniques such as random brightness and contrast, random
rotation (limited to 15 deg), and random crop are employed.
The final weights are selected as the ones having the minimum
validation loss.

B. Test Dataset and Error Metric

Following a similar procedure to the one mentioned in
Sec. IV-A, a test dataset is collected to quantitatively evaluate
the approach. In this case, the connectors are kept with
the wires attached to replicate a test scenario more closely
resembling actual settings. The presence of the wires makes
the connector move slightly, resulting in unwanted rotated
shapes as opposed to the perfectly horizontal orientation of
the training/validation dataset (see Fig. 5). The labeling of the
test dataset follows the same approach detailed in Sec. III-B.

The error between the predicted and the ground truth value
is computed as the evaluation metric.

C. Results

The results for the test set, depicted in Fig. 5, are further il-
lustrated in Fig. 6. This plot showcases the behavior of angular
errors across various test connectors. The mean and standard
deviation errors for each connector type are as follows: type
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Fig. 8: Visual serving experiment on connector type A. The
robot aligns the connector with the target angle of 90 deg.

A 1.8±6.2 deg; type B −1.4±7.2 deg; type C 3.7±7.1 deg;
type D 1.8± 16 deg. These results highlight the capability of
the proposed method in estimating angular axial values close
to the actual ones. Notably, the type D connector poses the
most significant challenge. We argue that this difficulty arises
from its smaller size and the lack of relevant features, making
it more challenging for the model to learn the key differences
between different viewpoints.

Regarding the classification of connector types within the
4 classes, all test connectors were successfully classified.
This outcome was expected, given the tasks’ simplicity in
comparison to angular axial estimation.

To assess the impact of backbone selection on angular
axial estimation, various backbone architectures were tested,
specifically those from the ResNet [25] family, including the
18, 34, and 50-layer versions, and from the ConvNext group,
employing the ConvNext-Tiny model [26]. The choice of
backbones aligns with the objective of evaluating different
sizes in terms of the number of parameters. The selected set of
backbones encompasses models with parameter counts ranging
from 11.4M, 21.5M, and 24.9M for the ResNet versions,
and 28.5M for ConvNext-Tiny. The results are depicted in
Fig. 7. The plot illustrates that larger backbones result in
more pronounced outlines in error values, emphasizing the
preference for smaller models. Hence, we opted for ResNet34
in the analysis presented in Fig. 6. The small network size
enables fast inference speeds even on non-high-end hardware.
For example, on a laptop with an Nvidia GTX1050Ti, infer-
ence takes 12 ms for 512× 512 image crops. On the outlined
workstation setup, the same image is processed in 7 ms. Both
scenarios achieve over 60 FPS.

D. Real Use Case: Visual Servoing Control

Visual servoing is tested as a real-world application of the
proposed method. Given the timings of Sec. IV-C, the servoing



task is fixed at 60 Hz. Fig. 8 demonstrates the practical
implementation, showcasing the successful integration of the
approach into a control loop to guide the robotic system. The
video of the experiment is available as supplementary material.

V. DISCUSSION AND LIMITATIONS

DLO Prior versus Object Detection: The DLO-based
prior could potentially be replaced entirely by developing an
object detection system to localize connectors, as explored
in various studies [14]. However, this alternative approach
requires the use of oriented bounding boxes to accurately
capture the connector orientation along the two axes detailed
in Sec. III-A. Nevertheless, a notable advantage of the DLO-
based approach lies in its ability to automatically identify one
side of the connector. Even with oriented bounding boxes,
the top-down ambiguity persists. Therefore, a potentially more
efficient strategy might involve combining these two methods
to leverage their respective strengths, enhancing the overall
system’s robustness.

Generalization to Other Objects: The presented approach
extends beyond the scope of connectors and DLOs. The
primary assumptions involve knowledge of the ”bottom” side
of the object of interest (e.g., where the connector and the
DLO are connected) and the asymmetry of the object along its
axial axis. Consequently, the same methodology is applicable
to other objects and will be investigated in future studies.

Angular Discretization Step: In this paper, we define the
angular step as 5 degrees, yielding k = 72 angular classes.
This choice balances accuracy with noticeable appearance
variance in images. Experimentation with a 1-degree step
proved challenging for the human eye to discern visual dif-
ferences between nearby images and optimizing the network
posed difficulties. Addressing this issue is a task for future
research.

VI. CONCLUSIONS

The proposed approach for angular axial estimation tackles
the challenging task of estimating the axial orientation of
a connector attached to a Deformable Linear Object (DLO)
using only a single RGB image. Priors on DLOs have proven
valuable in simplifying the complexity of the problem, focus-
ing on the estimation of the axial component of the orien-
tation through a learning-based approach. A self-supervised
collection and annotation of the dataset for the data-driven
pipeline circumvent tedious and expensive human-based work.
Additionally, the smooth labeling of the angular data addresses
the circularity ambiguity associated with the angle domain.
Experimental validation, conducted with real-world connectors
from the automotive sector, demonstrates the effectiveness of
the proposed method.
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