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Summary

Sleep disorders encompass a diverse spectrum of motor and non-motor mani-
festations, representing an exceedingly common condition with a global prevalence
of up to 70% in older adults. In recent years, they have emerged as a growing
challenge worldwide due to their association with an increased risk of neuronal de-
generation. Indeed, they may serve as predisposing factors of co-morbidities, neg-
atively impacting the quality of life. In particular, REM sleep parasomnias have
been acknowledged among the earliest markers of neurodegenerative disorders, such
as α-synucleinopathies.

In this perspective, sleep embodies a reservoir of significant clinical information,
and its role becomes twofold.

First, in light of the development of neuroprotective pharmacological treatment,
identifying prodromal conditions, such as REM Sleep Behaviour Disorder (RBD),
may offer a potential window for disease-modifying interventions with beneficial
effects on the quality of life. Second, an objective characterisation of sleep becomes
necessary to deliver effective monitoring strategies for neurodegenerative diseases,
resulting in personalised healthcare outcomes and an improved quality of care.

However, state-of-the-art diagnostic procedures entail complex tests and visual,
rule-based assessments, ofttimes resulting in protracted manual labour.

Hence, this Thesis addressed two aspects: Diagnostic Support Systems and Mon-
itoring Systems by exploiting polysomnographic biosignals and Machine Learning
techniques.

The first part addressed the development of minimally intrusive diagnosis sup-
port strategies. First, a single-channel EEG framework for automatic sleep staging
was proposed, to assess the feasibility of lightweight sleep studies. The pipeline
yielded encouraging results when tested in healthy subjects and patients with RBD.
Then, a method to support the automatic removal of artefacts in EMG record-
ings when assessing REM Sleep Without Atonia was proposed. The approach ex-
ploited the morphology of EMG activity during sleep and provided high agreement
with manual procedures. Subsequently, biosignals collected during sleep (EMG and
EEG, respectively) were exploited to characterise subjects with RBD and highlight
the differences with healthy recordings. The extracted parameters exhibited good
predictive power and tackled the automatic detection of RBD with reasonably high
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validation accuracies. Finally, a continuous, rater-independent metric was devised,
to assess the extent of disease progression in RBD.

The second part explored lightweight strategies to monitor sleep disorders in
neurodegenerative diseases. First, a set of inertial metrics was proposed to objec-
tively characterise sleep-related motor disturbances and sleep quality in Parkinson’s
Disease through a wearable set-up. Second, non-intrusive EMG metrics collected
during REM sleep were employed, to build a predictive model of mortality risk in
Amyotrophic Lateral Sclerosis in a longitudinal retrospective fashion.

To conclude, the presented research activities explored the feasibility of data-
driven approaches for the identification and monitoring of neurodegenerative con-
ditions through the analysis of sleep. The encouraging findings represent possible
approaches for minimally intrusive, accessible, and lightweight sleep studies, for an
improved quality of care.
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Chapter 1

Introduction

That we are not much sicker and
much madder than we are, is due
exclusively to that most blessed
and blessing of all natural graces,
sleep.

Aldous Huxley

Sleep is an essential asset in human health, due to its crucial and intricate
involvement in various physiological processes. Beyond providing physical and con-
stitutional recovery and restoration, robust and healthy sleep enhances cognitive
functioning, supports emotional regulation, and bolsters immune resilience [174].

Although no comprehensive definition has yet been provided, sleep is typically
defined as a recurrent and reversible state of altered responsiveness, associated with
a diminished reactivity to external stimuli [39]. As introduced, this apparent rela-
tional idleness serves a pivotal role in supporting the fundamental functioning of
the organism and brain health. Indeed, besides the valuable contributions men-
tioned above, recent findings identified an association between healthy sleep and
the glymphatic pathways in the central nervous system. These latter promote the
clearance of potential neurotoxic products during the most quiescent phase of sleep
[78].

Disruptions in ultradian rhythms, due to sleep deprivation or insomnia, breathing-
related sleeping disorders, or alterations in sleep architecture, negatively impact
sleep quality. These disturbances lead to the impairment of the physiological glym-
phatic function, ultimately leading to the accumulation of toxic metabolites in the
brain, including the tau (τ) protein, the amyloid-β, and lactate [175].

With mounting evidence of their association with increased risks of neuronal de-
generation, the spectrum of sleep disorders (SD) emerged as a significant challenge
to global public health. Particularly, due to their involvement in the pathogenesis,
development, and progression of various neurodegenerative processes, they have
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been listed among the earliest prodromes of tauopathies and synucleinopathies,
thus sharing important features with Parkinson’s Disease (PD) and Alzheimer’s
Disease (AD). Indeed, it has been shown that an altered sleep architecture, entail-
ing sleep fragmentation or reduced slow-wave sleep (SWS), or the presence of REM
sleep parasomnias, may precede by several years the onset of typical symptoms [82].

Given their valuable potential as a reservoir of relevant clinical information,
research on SD has increasingly gained attention, both for early diagnosis pur-
poses and risk stratification. In this perspective, the identification of either bio-
chemical markers or digital biomarkers as prodromal indicators of neurodegener-
ation holds pivotal importance for an effective, timely diagnosis, precise and per-
sonalised prevention and intervention strategies, and the development of specific
disease-modifying therapies. The adoption of such elements in the clinical practice
might potentially improve disease management, and promote personalised health-
care strategies, positively impacting the quality of life.

However, currently, the diagnosis, monitoring, and follow-up of sleep disorders
presents with many challenges. To begin with, state-of-the-art diagnostic pro-
tocols for sleep disorders, such as polysomnography (PSG) involve complex in-
frastructures. Indeed, PSG entails the overnight collection of numerous electro-
physiological recordings, including electroencephalography (EEG), electromyogra-
phy (EMG), electrooculography (EOG), electrocardiography (ECG) and respira-
tory airflow, often in combination with an infrared camera for monitoring body
movements. This diagnostic test, though highly accurate, is rather intrusive, as it
entails wire electrodes and cumbersome instrumentation. A proper implementation
generally demands specialised facilities, with trained medical personnel. Further-
more, in-hospital PSG is costly, resource-intensive, and requires visual analysis for
screening, regulated by a set of international rules [11], often leading to protracted
manual labour and subjectivity.

Similarly, follow-ups procedures for the vast majority of sleep disorders are
infrequent, and rely on the visual analysis of PSG recordings to retrieve threshold-
based clinical metrics, thus making clinical assessments prone to inter- and intra-
rater variability.

Finally, conditions such as REM sleep parasomnias or neurodegenerative disor-
ders are associated with sleep-related motor manifestations. These latter encompass
a broad spectrum, ranging from violent and abrupt motor behaviour – such as in
the case of REM Sleep Behaviour Disorder (RBD) – to the inability of turning in
bed (nocturnal hypokinesia and akinesia). Monitoring these symptoms remains a
challenging task, as follow-up relies primarily on subjective reports by the patient
or caregiver, and lacks adequate assessment scales.

In recent years, the development of computer-assisted diagnosis systems, as
well as advancements in sleep monitoring technologies, including portable PSG
devices, actigraphy, and wearable sensors, provided an encouraging scenario for
the development of minimally-intrusive sleep studies and continuous monitoring
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strategies. Lightweight data collection, in combination with Machine Learning
(ML) algorithms, offers the possibility to identify specific digital biomarkers for an
objective disease characterisation, in order to facilitate the diagnostic procedures
and allowing for timely diagnosis and effective disease management.

In this context, this Thesis seeks to explore the advantages of lightweight, data-
driven approaches for monitoring sleep and propose accessible monitoring strate-
gies for individuals at risk of, or diagnosed with, neurodegenerative diseases (ND).
Specifically, with the purposes of: (1) supporting minimally invasive sleep stud-
ies for early diagnosis, and (2) providing lightweight TeleHealth frameworks for
continuous monitoring.

Therefore, it covers two main themes: Diagnostic Support Systems, and Moni-
toring Systems, reflecting the two parts of the Thesis; Figure 1.1 provides a graph-
ical outline.

The first part of this dissertation (Diagnostic Support Systems, Chapters 4–6)
will focus on the tools developed for the diagnosis, and the feasibility of minimally-
intrusive sleep studies, while the second part, (Monitoring Systems, Chapters 7–8)
will illustrate the proposed methodology for accessible sleep monitoring (home-
based, or through in-patient settings), and continuous monitoring of sleep disorders
in neurodegenerative diseases.

In more detail, the document is structured as follows.
Chapter 2 offers an insight into the neurobiology and electrophysiology of hu-

man sleep, and the clinical background on sleep disorders and neurodegenerative
diseases, with a focus on REM parasomnias and Parkinson’s Disease.

Chapter 3 provides an overview of the employed Machine Learning methods.
Chapter 4 presents a method for automatic sleep staging based on single-channel

EEG data, to test the feasibility of minimally intrusive PSG.
Chapter 5 is dedicated to the assessment of muscle activity during REM sleep,

and provides a preliminary approach to the automatic detection of artefacts in the
quantification of REM Sleep Without Atonia.

Chapter 6 presents a data-driven, diagnosis support strategy to automatically
identify REM Sleep Behaviour Disorder from polysomnography data, to investi-
gate the feasibility of lightweight, sensor-based detection of RBD. Specifically, it
focuses on the characterisation of RBD through EEG and EMG signals. Finally,
it prototypes a distance-based method for the evaluation of RBD progression over
time.

Chapter 7 describes a wearable set-up for the assessment of sleep quality and
motor disturbances during sleep in subjects with Parkinson’s Disease, in unsuper-
vised, real-world, scenarios.

Chapter 8 illustrates a preliminary study for the prediction of Amyotrophic
Lateral Sclerosis through simple, EMG based metrics.

Chapter 9 reports the principal findings of the research work included in the
Thesis, and concludes the dissertation by outlining possible future trajectories.
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The PhD project was carried out at the Department of Control and Computer
Engineering of Politecnico di Torino, Italy. The research activities presented in
this dissertation were conducted in cooperation with the Regional Centre for Sleep
Medicine at the Molinette University Hospital (Turin, Italy) and the Sleep Dis-
orders Unit at the Medical University of Innsbruck (Austria). The experimental
work involved the analysis of electrophysiological signals, inertial measurements
and medical data, to provide a data-driven, integrated approach to the diagnosis
and monitoring of sleep and related disorders. All data processing was carried out
on MATLAB® and Python, through both custom-written code and open-source
libraries.

Automated methods to
support timely diagnosis

1. DIAGNOSTIC SUPPORT
MAIN IDEA 

Automatic sleep
staging from

single-channel
data

SLEEP
STAGING

Automatic
removal of

artefacts in EMG
scoring 

SCORING

SLEEP IN
NEURODEGENERATIVE

DISEASES

2. MONITORING

Detection of
RBD through a
minimal set of

sensors 

DETECTION

Distance-based
metrics to

quantify disease
progress

ASSESSMENT

Wearable set-ups
for nocturnal

motor disorders 

PARKINSON’S
DISEASE

Prediction of
disease evolution

through simple
EMG metrics

AMYOTROPHIC
LATERAL

SCLEROSIS

Lightweight monitoring
strategies to support

follow-up

Figure 1.1: Graphical overview of the thesis structure. The topics are developed
around the two macro-themes (Diagnosis support and Monitoring).
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1.1 – Scientific Contributions

1.1 Scientific Contributions
The research activities presented in this Thesis were published in the following

scientific contributions, including journal articles, conference papers, and conference
abstracts.

Journal Articles
• Rechichi, I., Zibetti, M., Borzì, L., Olmo, G., and Lopiano, L. (2021). Single-

channel EEG classification of sleep stages based on REM microstruc-
ture. Healthcare technology letters, 8(3), 58-65. [141]

• Rechichi, I., Iadarola, A., Zibetti, M., Cicolin, A., and Olmo, G. (2021).
Assessing rem sleep behaviour disorder: From machine learning
classification to the definition of a continuous dissociation index.
International Journal of Environmental Research and Public Health, 19(1),
248. [139]

Conference Papers
• Rechichi, I., Amato, F., Cicolin, A., and Olmo, G. (2022, June). Single-

Channel EEG Detection of REM Sleep Behaviour Disorder: The In-
fluence of REM and Slow Wave Sleep. In International Work-Conference
on Bioinformatics and Biomedical Engineering (pp. 381-394). Cham: Springer
International Publishing. [142]

• Rechichi, I., Di Gangi, L., Zibetti, M., and Olmo, G. (2024, March). Home
Monitoring of Sleep Disturbances in Parkinson’s Disease: A Wear-
able Solution. In 2024 IEEE International Conference on Pervasive Com-
puting and Communications Workshops and other Affiliated Events (PerCom
Workshops). IEEE.

• Rechichi, I., Amprimo, G., Cicolin, A., and Olmo, G. (2024). Predicting
Amyotrophic Lateral Sclerosis Progression: an EMG-based Sur-
vival Analysis (Accepted at IEEE EMBC2024.)

Conference Abstracts
• Rechichi, I., Olmo, G., Stefani, A., Heidbreder, A., Holzknecht, E., Bergmann,

M., Ibrahim, A., Brandauer, E., Högl, B., and Cesari, M. (2024). Towards
fully automatic quantification of REM sleep without atonia accord-
ing to the Sleep Innsbruck Barcelona (SINBAR) scoring method.
Sleep Medicine, 115(1), 307 [143]
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Over the course of the PhD, other scientific contributions were co-authored,
focusing on Artificial Intelligence approaches for the detection, monitoring, and
rehabilitation of Parkinson’s Disease, and diagnostic support systems for sleep dis-
orders in neurodegenerative disorders.

They were not included in the scientific content of this Thesis, and are listed
below.

• Amato, F., Rechichi, I., Borzì, L., and Olmo, G. (2022, March). Sleep Qual-
ity through Vocal Analysis: a Telemedicine Application. In 2022
IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops) (pp. 706-711).
IEEE.

• Amprimo, G.†, Rechichi, I.†,1, Ferraris, C., and Olmo, G. (2023). Measuring
Brain Activation Patterns from Raw Single-Channel EEG during
Exergaming: A Pilot Study. Electronics, 12(3), 623

• Masi, G., Amprimo, G., Rechichi, I., Ferraris, C., and Priano, L. (2023,
March). Electrodermal Activity in the Evaluation of Engagement
for Telemedicine Applications. In 2023 IEEE International Conference
on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops) (pp. 130-135). IEEE.

• Sigcha, L., Borzì, L., Amato, F., Rechichi, I., Ramos-Romero, C., Cárde-
nas, A., and Olmo, G. (2023). Deep learning and wearable sensors for
the diagnosis and monitoring of Parkinson’s disease: a systematic
review. Expert Systems with Applications, 120541.

• Amprimo, G., Rechichi, I., Ferraris, C., and Olmo, G. (2023, June). Objec-
tive Assessment of the Finger Tapping Task in Parkinson’s Disease
and Control Subjects using Azure Kinect and Machine Learning.
In 2023 IEEE 36th International Symposium on Computer-Based Medical
Systems (CBMS) (pp. 640-645). IEEE.

• Cesari, M., and Rechichi, I. (2023). Automatic and machine learning
methods for detection and characterization of REM sleep behavior
disorder. Handbook of AI and Data Sciences for Sleep Disorders, (In Press)

• Masi, G., Amprimo, G., Rechichi, I., Ferraris, C., and Olmo, G., (2024).
Does Baseline Stress Affect Electrodermal Activity? A Serious-
Game-Based Pilot Study. Accepted for oral presentation at IEEE EMBC2024

1†: shared first authorship.
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Chapter 2

Clinical Background

The scientific content of this Thesis discusses technological strategies to lever-
age sleep for the extraction of significant clinical information in neurodegenerative
diseases, with a special focus on Parkinson’s Disease.

The following Sections will provide an overview on the clinical background, by
introducing the electrophysiology of sleep, and describing sleep disorders affecting
α-synucleinopathies. Finally, the two neurodegenerative disorders dealt with in this
Thesis are presented.

2.1 Sleep
Sleep is a fundamental biological process, that is vital for human well-being.

There is evidence that healthy sleep bolsters proper cognitive function in adults,
supports physical health, and overall well-being [137]. The concept of healthy sleep
entails not only adequate quantity, but also proper sleep hygiene and sleep struc-
ture. Indeed, disruption to physiological sleep-wake cycles, or to the macrostruc-
ture of sleep, have a significantly negative impact on overall health, with observable
detriments on cognitive function and cardiovascular health, ultimately leading to
an increased risk of mortality.

From a metabolical and electrophysiological perspective, sleep is a complex pro-
cess that cyclically alternates between two major neurophysiological states: rapid
eye movement (REM) sleep and non-rapid eye movement (NREM) sleep. The
NREM state consists of various sub-phases, which can be interpreted as gradual
transitions in waveform, detected by EEG.

2.1.1 Architecture of Sleep Stages
Conventionally, the electrophysiological macrostructure of sleep is arranged over

distinct phases, commonly referred to as sleep stages. The first standardisation of
sleep stages was provided by Rechtschaffen and Kales [89], and envisaged four
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stages of REM sleep, from light to deep. An update to this schema was later
proposed by the American Academy of Sleep Medicine (AASM), and encompassed
the union of NREM stages 3 and 4. It is a rule-based method, and details about
the characteristics of each stage are provided in the following paragraphs; the sleep
stages according to these guidelines are displayed in Figure 2.1.

Wake (W) Although not representing a quiescent state, wakefulness is still in-
cluded in the categorisation of sleep stages, as it indicates both awakening and
arousals. Open-eye wakefulness is characterised by the prevalence of beta waves
(13–21 Hz), which represent high-frequency activity. During drowsiness and the
transition from quiet wakefulness to light sleep, the posterior dominant rhythm
(alpha waves, 8–13 Hz) appears, and becomes the predominant brain rhythm. The
amplitude of the EEG signal is low, and eye-movements are present.

Stage 1 (N1) It is the first sleep stage, generally known as light sleep. It serves
as a transitional state between relaxed wakefulness to deeper stages, and accounts
for 5% of the total duration of sleep. From an electrophysiological point of view,
alpha waves are gradually replaced by slower, theta waves (4–7 Hz).

Stage 2 (N2) This stage is the first phase of deeper sleep, and features a slower
heart rate, as well as lower body temperature. It comprises up to 45% of total sleep
time, starting with shorter transitions and eventually consolidating over successive
sleep cycles. Regarding electrical activity, it features peculiar waveforms in the
EEG. Specifically, K-complexes and sleep spindles. The former are high-amplitude
delta waves, in which a negative polarisation is followed by a positive peak, reaching
up to 100 µV. These occur around every minute, and are frequently followed by
sleep spindles. These latter, on the other hand, are rapid bursts of electrical activity,
exhibiting frequency components in the range 12–15 Hz, and duration of 0.5 s.
These oscillatory patterns are believed to support information processing, memory
consolidation, and maintain sleep [7].

Stage 3 (N3) This stage comprises the deepest phases of sleep, and is also re-
ferred to as slow-wave sleep (SWS). It is characterised by the lowest observable
rhythms, with high-amplitude delta waves (0.5–4 Hz), and constitutes up to 25%
of sleep duration. It is the most quiescent of stages, and this reflects in idle mus-
cle activity and the absence of eye movements. This stage is closely correlated
with correct functioning of glymphatic pathways, a concept that will be explored
in following Sections.
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REM Stage REM sleep, or paradoxical sleep, accounts for up to 25% of to-
tal sleep time. Compared to the other stages, it exhibits a multifaceted finger-
print. The EEG activity during this stage reveals mixed frequency components,
and low-amplitude waves, recalling an awake state. These characteristics reflect
an extensively active underlying brain activity. Indeed, during REM sleep vivid
dreaming occurs, though accompanied by total atonia in the skeletal muscles, ex-
cept for the eyes and diaphragm. Although commonly treated as an homogeneous
state, evidence showed the presence of two distinct micro-states [159]; namely, a
phasic and a tonic state, characterised by different electrophysiological patterns,
reflecting diverse cortical activations. The tonic phase is the most quiescent; eye
movements are slow and rare (amplitude lower than 25 µV in a 4-second range),
and skeletal muscles are atonic. Conversely, the phasic state is characterised by the
peculiar, rapid bursts of electrical activity in the EOG – i.e., the rapid-eye move-
ments – fast, low-amplitude EEG waves (sawtooth waves), irregular heart rhythm
and erratic breathing, which results in increased metabolic rate of up to 20% [128].
Similarly to N2, the REM stage starts with shorter periods, which become longer
toward the end of sleep time.

Figure 2.1: Representation of a 30-second EEG epoch for each sleep stage according
to the AASM classification.
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This overall architecture constitutes the ultradian sleep cycle, which envisages
the cyclic alternation between NREM and REM sleep. The average cycle length
in healthy adults is of about 90 minutes; over a night’s sleep, up to 5 cycles may
occur. The architecture is clinically described by the hypnogram (Figure 2.2),
which exhibits the timing of each sleep cycle, as well as the inter-cycle duration
transformation for each stage.

Variations in the sleep macrostructure and in the regularity of cycles commonly
occur with aging. Indeed, the amount of slow-wave sleep decreases with age, with
elderly adults presenting with a considerably shorter N3 duration, and a relatively
fragmented sleep architecture, leading to an increased risk of developing neurolog-
ical disorders, as will be discussed in Section 2.1.3.

Figure 2.2: Hypnogram of a healthy subject. After a gradual transition to slow-
wave sleep, this latter becomes less frequent in the second half of the night. The
REM stage (R) becomes slightly lower and then decreases in duration, towards the
awakening. The sleep data employed to generate this figure were downloaded with
permission from PhysioNet [72].

2.1.2 Polysomnography
Polysomnography is a multi-parametric assessment that stands as the gold stan-

dard diagnostic tool in sleep studies. It allows the identification of sleep stages, and
the subsequent evaluation of sleep architecture, salient features, sleep-disordered
breathing, and sleep disorders.

It consists in the simultaneous recording of various electrophysiological signals
during sleep, through electrodes and sensors, and is generally conducted in equipped
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sleep labs or hospitals. A high number of wired electrodes is employed to record
continuous EEG, EMG, EOG, ECG, and oxygen saturation. In addition, piezo-
electric sensors, and, in some cases, inertial sensors, are employed to measure respi-
ratory activity and body position overnight. In traditional PSG, all recordings are
streamed on a display for concurrent visual inspection and technical artefact mon-
itoring. Additionally, video recordings through infrared cameras have been intro-
duced (vPSG), allowing for a more accurate diagnosis of complex sleep behaviours,
including REM/NREM parasomnias, motor disturbances, and vocalisations.

A concise description of the employed electrophysiological recordings follows, to
better comprehend their usage in the proposed research activities, along with the
montage and technical specifications recommended by the AASM scoring manual.
For the sake of clarity, in this Thesis, electrophysiological recordings will also be
referred to as biosignals.

EEG It measures and records electrical activity in the brain, through wired elec-
trodes placed on the scalp. It allows the classification of sleep stages by visual
inspection of the detected activity. The AASM Scoring Manual requires the record-
ing of derivations F4-M1, C4-M1, O2-M1 (Figure 2.3), in which M1 is the reference
electrode, positioned at the left mastoid. This location is also commonly referred to
as A1. Three additional derivations are recommended as backup, and are C3-M2,
F3-M2, O1-M2, where M2 is located at the right mastoid. The minimum sampling
frequency required for these derivations is 200 Hz, and a visual bandpass filter
(range 0.3–35 Hz) is required for signal inspection.

EMG Surface EMG is employed to record the electrical activity of skeletal mus-
cles, and retrieve information about muscle tone, which reflects voluntary move-
ments during sleep or abrupt and periodic muscle contractions. It entails a non-
invasive recording through electrodes placed above the muscle. In PSG, the first re-
quired derivation is chin EMG, revealing activity of the mylohyoid muscle, through
three electrodes. Additionally, recordings of the tibialis anterior (TA) are required
from both legs. Optional configurations envisage the bilateral recording of the flexor
digitorum superficialis (FDS) muscle; all derivations are displayed in Figure 2.5.
Technical requirements for sleep EMG entail a minimum sampling frequency of 200
Hz and a visual bandpass filter in the range 10-100 Hz.

EOG The electrooculogram measures the relative electrical potential between the
cornea and retina. Essentially, it tracks horizontal and vertical eye movements, and
is employed collectively with the EEG to accurately detect the REM stage (through
the identification of rapid-eye movements) or slower saccades, commonly observed
in NREM sleep. Technical requirements encompass a sampling frequency of at least
200 Hz, and visual bandpass filter of 0.3–35 Hz. It is bilaterally recorded through
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wired electrodes in the derivations E1-M2 and E2-M2 for the left and right eyes,
respectively (Figure 2.4); the electrodes are placed on the outer canthi, 1 above and
below the eye axis.

ECG and Pulse Oximetry The electrocardiogram evaluates the cardiac rhythm
and is recorded through a single-channel, modified lead II derivation. Oxygen
saturation during sleep is measured through a wired pulse oximeter and used jointly
with respiratory parameters for assessing breathing-related events.

Respiration Respiratory parameters are also monitored through diverse instru-
mentation. First, airflow is measured through an oronasal thermal airflow sensor,
and a nasal pressure transducer, for the evaluation of sleep-disordered breathing,
including hypopneas or apneas. For the differentiation between obstructive, central,
and mixed apneic events, additional piezoelectric sensors, revealing the respiratory
effort, are required, and placed on the chest through an elastic respiratory belt.

Body Position It is an optional parameter, assessed manually or through the
use of position sensors. It is particularly relevant for the evaluation of position-
dependent breathing events.

Figure 2.3: Recommended montage of the EEG channels for laboratory
polysomnography. Green channels: required, Violet channels: backup.

Sleep staging is performed manually by sleep technologists or physicians. The
overnight recordings are divided into windows of observation of length 30 seconds
(i.e., epochs), and the above-mentioned biosignals are inspected simultaneously.
Finally, each epoch is scored either as W, REM sleep, or a NREM sleep stage (N1,
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Figure 2.4: Recommended montage of the EOG channels for laboratory
polysomnography. Created with BioRender.com

(a) (b)

Figure 2.5: Recommended montage of the EMG channels for laboratory
polysomnography. In detail, (a): chin channels. Lower channels are placed sym-
metrically under the inferior edge of the mandible. (b): Tibialis anterior channels
and flexor digitorum superficialis channels. Created with BioRender.com

N2, N3), according to the specifications of each stage, provided above. Furthermore,
visual inspection allows the scoring of sleep-related events, such as periodic limb
movements, respiratory events, or arousals (i.e., a shift from deep to light sleep, or
from sleep to wake).

Laboratory PSG is commonly scored through the use of medical-grade review
softwares, which envisage custom channel visualisation for scoring sleep stages and
sleep-related events, and allow raw data export for research applications.
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2.1.3 The Glymphatic System
Although currently the function of sleep has not been completely understood

[120], emerging evidence highlighted its role in facilitating the clearance of metabolic
by-products. This process occurs in the central nervous system, through the so-
called glymphatic system [78]. This latter consists in the perivascular pathways
through which the cerebrospinal fluid (CSF) flows while filtrating toxins from the
brain (Figure 2.6). This process, called the glymphatic clearance, is known to occur
primarily during the deepest stage of sleep, while it is suppressed during quiet and
active wakefulness.

Figure 2.6: The process of glymphatic clearance, according to the type of EEG
activity. Adapted from [78] with permission from Elsevier.

Recent findings suggested that glymphatic pathways are involved in the clear-
ance of the protein Amyloid-β (Aβ) during slow-wave sleep. Aβ is a metabolic
by-product that, if not properly cleared, aggregates into senile plaques and may
lead to the development of neurodegenerative disorders. Indeed, gradual accumu-
lation of Aβ is regarded as a hallmark of Alzheimer’s Disease. In particular, very
slow oscillations (<1Hz in the EEG) have been associated with higher rates of
Aβ clearance, while increasing frequencies reflected positive correlation with the
deposition of the protein [125].

Prolonged wakefulness and sleep deprivation have a negative impact on sleep
quality, revealing a disruption of deep sleep, and significantly impairing glymphatic
clearance. For this reason, these aspects may be identified as risk factors for neu-
rodegeneration [102]. This concept will be further explored in Chapter 6.
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2.2 Sleep Disorders
Disturbances in the physiological architecture, due to sleep fragmentation, in-

somnia, or environmental factors have an adverse effect on the timing, quantity, and
quality of sleep. These diverse events converge on the spectrum of sleep disorders.
These latter exhibit a global prevalence of over 60%, and are often accompanied by
other medical conditions, mental, or mood disorders. They entail a huge variety
of manifestations, and have been categorised by the International Classification of
Sleep Disorders (ICSD-3) into the following [149]:

• Insomnia: Difficulty in falling and maintaining asleep,

• Sleep-related breathing disorders: Abnormal respiratory patterns during
sleep, including apnea, hypoventilation, and hypoxemia [23],

• Central Disorders of Hypersomnolence: Excessive daytime sleepiness,
tiredness and drowsiness,

• Circadian Rhythm Sleep-Wake Disorders: Disruption of the physiolog-
ical sleep-wake cycle, including shift-work related and jet lag sleep disorders,

• Parasomnias: abnormal and excessive behaviours during sleep, including
motor manifestations and vocalisations,

• Sleep-related Movement Disorders: Involuntary movements during sleep
which lead to fragmented sleep architecture.

This Dissertation will focus on Parasomnias and Sleep-Related Motor Disorders.
The two categories are strongly linked to neurodegenerative disorders, as concerns
both the aetiology and secondary symptomatology.

2.2.1 REM Sleep Behaviour Disorder
REM Sleep Behaviour Disorder (RBD) is a REM Sleep parasomnia with a 1.15%

prevalence in the aging population worldwide [38]. In resemblance to a status dis-
sociatus, RBD manifests chiefly with loss of atonia of the skeletal muscles during
REM sleep, accompanied by vocalisations and abrupt, and violent, behaviours.
These manifestations reflect the so-called dream enactment. However, the major-
ity of abnormal motor activities in RBD are identified in minor muscle jerks and
increased myoclonic twitches during REM sleep, while complex motor and verbal
activities due to dream enactment are more evident, but less frequent – though
required for the clinical diagnosis. Indeed, this behaviour generally represents 13–
31% of the recorded motor activity, with complex dream enactment entailing only
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up to 1.8%. [15]. On the other hand, muscle twitches constitute the 66–83% of the
observed loss of atonia [15].

The motor phenomenon is known as REM Sleep Without Atonia (RSWA), and
is clinically considered the polysomnographic hallmark of RBD. Manual scoring
of polysomnographic recordings overnight muscle activity allows the quantification
of RSWA, which is ruled through amplitude thresholds. Chapter 5 will discuss in
detail the current assessment methods.

However, besides evidence of increased muscle activity, the clinical diagnosis
of RBD includes numerous criteria, and is performed through clinical interviews.
Although presently no univocal method for scoring muscle activity has been iden-
tified, the symptoms criteria for the clinical diagnosis have been provided in the
International Classification of Sleep Disorders (ICSD-3), and are the following:

• Repeated episodes of sleep-related vocalization and/or complex motor be-
haviours,

• The behaviours occur during REM sleep according to polysomnographic evi-
dence or, based on the clinical history of dream enactment, are presumed to
occur during REM sleep,

• Polysomnographic evidence of REM Sleep Without Atonia,

• Absence of epileptiform activity during REM sleep, unless RBD can be clearly
distinguished from any concurrent REM sleep-related seizure disorder,

• The sleep disturbance is not better explained by another sleep disorder, med-
ical or neurologic disorder, mental disorder, medication use, or substance use
disorder.

From a physiological point of view, REM sleep atonia is regulated by the in-
hibition of the spinal motor neuron through the pre-coeruleus and sublaterodorsal
(SLD) nuclei (Figure 2.7). Hence, the occurrence of REM Sleep Without atonia
may be due to a disregulation in efferent inhibitory pathways, either as idiopathic,
or due to an increased aggregation of proteins (such as α-Syn) in the nervous system
[87].

When manifesting without prior medical conditions, RBD is known as idiopathic
or isolated (iRBD). However, this parasomnia can appear as a co-morbidity in other
pathologies, and is referred to as symptomatic or secondary RBD. The presence of
secondary RBD has been prevalently associated to α-synucleinopathies, including
multiple system atrophy, Lewy body dementia, and PD [119]. However, the involve-
ment of RBD in neurodegenerative diseases is multifaceted. Indeed, longitudinal
retrospective studies associated isolated RBD with a higher risk of development of
α-synucleinopathies, exhibiting a phenoconversion rate to PD of up to 73.5% in a
12-year follow-up [181].
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Figure 2.7: Physiology of REM atonia, originating in the brain stem. The pre-
coeruleus and SLD nuclei activate the inhibitory pathways (direct and indirect
routes, green and red lines, respectively). The pre-coeruleus nucleus stimulates an
inhibitory spinal interneuron, and the SLD activates the MCRF to produce skeletal
muscle atonia. In RBD, the SLD nucleus dysfunction, and consequent disregulation
of the afferent or efferent pathways, cause the muscles to be activated during REM
sleep. SLD: sublaterodorsal, MCRF: magnocellular reticular formation. Created
with BioRender.com

On this premise, RBD has been accounted as among the earliest prodromes of
neurodegeneration, with emerging evidence suggesting the presence of a preliminary
stage – i.e., prodromal RBD – where REM sleep abnormalities are present, but
do not meet the criteria for the actual diagnosis [82]. In this perspective, early
diagnosis and the detection of prodromal markers become pivotal. Indeed, although
neuro-protective treatment is still under study [45], recent findings suggested the
ability of lifestyle modifications in slowing down the disease progression [57, 74].

2.3 Neurodegenerative Diseases
Neurodegenerative diseases (ND) include a spectrum of chronic disorders that

affect the central nervous system and involve progressive neuronal degeneration,
ultimately leading to the death of nerve cells. This condition translates to ma-
jor non-traumatic disabilities, such as motor dysfunctions and cognitive decline.
ND represent a dramatic and social burden, as they currently affect approximately
15% of the global population [170]. The three major conditions are Alzheimer’s
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Disease, Parkinson’s Disease, along with increasing incidence on Amyotrophic Lat-
eral Sclerosis. Although the aetiology of each is multifactorial, including genetic
and environmental contributions, one common causal factor is age. Indeed, the
presence of these diseases increases dramatically with aging, and their prevalence
is expected to rise, with global demographic trends. This issue poses a signifi-
cant burden on healthcare, demanding prompt intervention, as concerns disease
diagnosis and prognosis, and prevention strategies. Pharmacological treatment is
crucial for addressing overt symptomatology. However, a major role is held by non-
pharmacological intervention, such as telehealth strageties for monitoring, physical
and cognitive rehabilitation, potentially highlighting multimodal biomarkers to in-
crease accessibility and enable an effective understanding of disease evolution for
personalised care.

2.3.1 Parkinson’s Disease
Parkinson’s Disease (PD) is the second most common neurodegenerative disease.

It affects a chronic up to 9 million people worldwide, though this number is expected
to double by 2040, with the aging population worldwide. Indeed, generally disease
onset appears after the age of 60, although an increasing number of subjects presents
with a young onset – i.e., before the age of 50. PD exhibits an heterogeneous
clinical fingerprint, entailing both motor and non-motor symptoms (MS and NMS,
respectively).

The primary pathophysiological hallmark of PD is the neuronal degeneration in
the substantia nigra pars compacta. Precisely, this process involves dopaminergic
neurons in the basal ganglia, disregating the circuits that control movement [46].
Motor symptoms appear when about 70% of dopamine-secreting cells underwent
degeneration. Secondly, abnormal aggregations of the α-Syn protein, called Lewy
bodies, observed both inside and outside the substantia nigra, are a clear indica-
tion of PD [171]. These aggregates led to the definition of a six-stage system for
the classification of the disease, based on the extent of the Lewy pathology [19];
this method is known as Braak staging (Figure 2.8). Early stages are primarily
characterised by NMS, while most advanced states exhibit motor and cognitive
manifestations. In more detail, stages I and II entail pre-motor symptoms, such as
autonomic and olfactory disturbances. The first motor disorders appear in stages
III and IV, which envisage also sleep disturbances. Finally, stages V and VI include
emotional and cognitive impairment.

Motor symptoms are the most recognisable manifestations and include tremor
at rest, increased rigidity, bradykinesia (reduced velocity of movement), and gait
impairment, including freezing of gait. Stronger phenotypes may exhibit postural
alterations such as camptocormia, a severe flexion of the torso, commonly observed
in the sagittal and coronal planes.

NMS are less measurable, but highly common, and may precede the onset of
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Figure 2.8: Braak Staging Method for Parkinson’s Disease. Created with
BioRender.com

MS. These include autonomic dysfunction, orthostatic hypotension, speech and
vocal alterations, and neuropsychiatric conditions.

Although a definitive diagnosis relies on postmortem assessment of Lewy bodies
in the midbrain region, from a clinical perspective, the medical assessment of PD is
based on neurological examination and clinical interviews, with evidence of motor
symptoms.

The Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) was proposed
to assess the disease prognosis, by clinical observation of motor and non-motor
manifestations, and approved by the Movement Disorder Society [138]. It is a useful
tool to evaluate the effect of treatment and monitor the subject-specific progression
of the disease.

Presently, there is no cure for PD, and pharmacological treatment aims at pro-
viding symptomatic relief. Generally, Levodopa (L-dopa) is administered to in-
crease the level of dopamine in the brain. It is often combined with carbidopa,
that helps reducing the side-effects of L-dopa therapy. In non-responders, surgical
approaches may be adopted, including lesional surgery and deep brain stimula-
tion (DBS) implantation. This latter involves brain neurostimulation in the areas
responsible for motor control, such as the globus pallidus internus, the thalamus,
subthalamic and pedunculopontine nuclei.

Sleep Disorders in Parkinson’s Disease

Sleep disorders occur at the intersection of the MS and NMS macrocategories,
and manifest both at an early stage or due to medication, affecting up to 96% of
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patients with PD. They encompass insomnia, excessive daytime sleepiness, RBD,
or motor disturbances during sleep. These latter include nocturnal hypokinesia and
akinesia, two conditions that envisage the inability to move during sleep, causing
difficulty in turning in bed, or getting up.

Nocturnal hypokinesia and akinesia were identified in up to 70% of people with
PD [161, 104]. They are frequently observed in mid-stage patients, but, as men-
tioned previously, are present at a subclinical level even in early stages.

Impaired overnight mobility may lead to more severe co-morbidities, such as
ulcers and asphyxia, and significantly affects independence in daily living activities
[176], as well as contributing to a lower quality of sleep [161].

Clinical information on nocturnal hypokinesia and akinesia is collected through
medical history, physical examination or subjective reports, as the MDS-UPDRS
contains only one item for assessing sleep disorders. Generally, sleep diaries are
employed to investigate sleep. Nevertheless, they provide fragmented information,
as the patients subjectively report data related to sleep duration, and daytime naps.
An alternative scale, the Parkinson’s Disease Sleep Scale (PDSS) was proposed [35],
to provide a more comprehensive description of the spectrum of sleep in PD. The
PDSS is a visual assessment tool that includes 15 commonly reported symptoms,
addressing:

• overall quality of sleep,

• sleep onset and maintenance insomnia,

• nocturnal restlessness,

• nocturnal psychosis,

• nocturia,

• nocturnal motor symptoms,

• sleep refreshment,

• daytime dozing.

The survey is completed by patients or caregivers, based on data from the pre-
vious week. Although proving as a reliable tool for the assessment of sleep, it stems
from subjective reports, and is administered during outpatient visits, which are
commonly scheduled on a 6- to 12-month basis. However, sleep disturbances in PD
are manyfold and subjected to ultradian and circadian variations, thus demanding
a precise and holistic approach in their assessment.

Hence, the attention on these conditions is often overlooked, resulting in inad-
equate follow-up and the lack of appropriate symptomatic treatment.

Chapter 7 will investigate sleep-related motor disturbances in PD, and discuss
this topic.
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2.3.2 Amyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis (ALS), also known as motor neuron disease, is

a rapidly progressive and fatal neurodegenerative disease that entails the chronic,
progressive loss of upper and lower motor neurons, responsible of voluntary muscle
contractions [18].

In 95% of cases, the cause of ALS is unknown (sporadic ALS); the remainder
are classified as genetic cases (familial ALS). Other classifications include the age
of onset (typically 47–60 [94]), and the first-affected body part.

A key feature of the disease is found in motor disturbances. Indeed, the degen-
eration of motor neurons involves the gradual development of rigidity, weakness,
and sporadic muscle twitches, ultimately leading to speech alterations, and respi-
ratory failure. Due to the subtle onset of symptoms, the actual median time to
diagnosis is 14 months [94]. This is reflected in therapeutic delay, with devastating
consequences on psychosocial health and quality of life.

At present, no cure is available for ALS. Pharmacological strategies aim at pre-
serving to some extent self-sufficiency and an adequate quality of life. Non-invasive
ventilation, generally adopted in the later stages, proved effective in lengthening
survival and improving the quality of life [58].

Although the disease is primarily characterised by motor manifestations, it
presents with a diversified non-motor symptomatology, as many others neurode-
generative diseases. Specifically, sleep disruptions are frequently observed in ALS,
and have a dramatic negative impact on overall health [58]. These include increased
sleep latency, reduced slow-wave sleep, fragmented sleep, and REM parasomnias.
REM Sleep Without Atonia, with or without a diagnosis of RBD, has been ob-
served, although its impact on disease-related disability has not been investigated
[106]. As emerging evidence suggested the impact of muscular parameters on the
rapidity of disease progression [148], these parasomnias shall be investigated, to
provide a comprehensive approach in the clinical assessment of the disease. Chap-
ter 8 will explore this concept, and study the correlation between the extent of
RSWA and disease severity.
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Chapter 3

Machine Learning for Healthcare

In recent years, Machine Learning (ML) methods have drawn remarkable at-
tention in healthcare, due to technological advancements in the clinical practice,
and the increasing spread of Telehealth or eHealth applications.

This Chapter provides an overview of the ML models employed for the research
activities presented in this Thesis, by describing their rationale, behaviour, and
interpretation. For the sake of clarity, in the context of this Thesis, only shal-
low learning algorithms were employed, due to the moderately limited number of
samples available in the employed datasets.

3.1 Background
Artificial Intelligence (AI) methods have rapidly evolved for years. In a scien-

tific perspective, AI represents all technological applications that offer a simulation
of human intelligence, through computer-based systems. ML is a subfield of AI,
encompassing all methods that enable machines to learn from and echo human
behaviour [2]. This delineates a multifactorial and diversified scenario of possible
applications. Indeed, ML allows data interpretation, i.e., describing the relations
between items in a dataset, data prediction, i.e., making predictions on the basis of
current data, and decision support, meaning that the computer-based system may
provide suggestions about future actions [21].

Hence, ML-based approaches find suitable application in healthcare frameworks.
Indeed, these Tele- and eHealth seek to enhance medical care by facilitating patient
involvement and accessibility, and AI offers encouraging benefits with regard to
diagnosis support, treatment optimisation, and personalised health outcomes.

ML models are classified into three categories, depending on their behaviour.
Namely, they are Supervised Learning, Unsupervised Learning, and Reinforcement
Learning. Generally, the type of approach adopted depends on the study design
and desired final outcome. In more detail, supervised models are trained from
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previously labeled datasets, enabling the models to learn from known sets of data
and later identify unlabelled data. Conversely, unsupervised approaches are trained
on unknown data, and aim at identifying underlying data patterns and trends.
Finally, reinforcement learning involves a heuristic approach of trial-and-error for
training the models, and adopts a feedback reward system for optimising decision-
making.

The research activities presented in this Dissertation adopted supervised ma-
chine learning approaches, as they were deemed more suitable for multidisciplinary
data interpretation, a key feature for technological inclusion in the clinical practice.
The following Sections provide an overview of the employed models, and present
the adopted validation procedures.

3.2 Overview of the Employed Models
Supervised Learning models can be further divided according to their structure

and learning strategies. Precisely, they can be linear, hierarchical, parametric or
distance-based, and an ensemble of other structures. The research works included
in this Thesis exploited various categories, to compare their performance and under-
stand their suitability to the problem, and are described in the paragraphs below.

Support Vector Machine (SVM) This classifier is based on an algorithm that
aims at finding the optimal hyperplane to separate classes in high-dimensional
feature spaces, even with non-linearly separable data [44]. To do so, this classifier
maximises the margin between data points (i.e., support vectors) by transforming
data through a kernel function. This latter can be a linear or non-linear function.
A linear SVM is recommended when the separation of data follows a linear trend.

K-Nearest Neighbour (KNN) This model is based on non-parametric classi-
fication algorithms. It categorises each data point based on its similarity to the K
closest data points in the dataset. These latter are defined as neighbours. The choice
of K is strongly dependent on the composition of the input data, and affects the
performance and robustness of the models. In addition, the distance between the
query point and its neighbours is a key parameter. It can rely on various distance
metrics, such as the Euclidean, Manhattan and their generalisations [70]. A KNN
is a simple algorithm that finds suitable applications with irregular data patterns;
however, it is particularly affected by the curse of dimensionality, and generally
features lower performance on high-dimensional dataset, resulting in overfitting.

Decision Trees (DT) A Decision Tree is a non-parametric hierarchical model,
based on a tree-like structure. It stems from a root node, and follows with internal
(or decision) node, and finally features leaf nodes, that represent the outcomes in
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the dataset. It finds the optimal split point by testing observations at each internal
node, through a set of decision rules based on a greedy search approach. The
process is repeated in a top-down fashion for all observations in the dataset. The
most popular splitting criteria are information gain (through entropy evaluations)
or the Gini index [20].

Ensemble Methods Ensemble methods are variants of the initial DT model.
They consist of a set of DT learners and provide a decision output based on the
combination of predictions in the elemental learners. They are further subcate-
gorised into:

• Bagging, an approach that aggregates predictions from multiple DTs trained
parallelly on bootstrap portions of the initial dataset. A bootstrap sample is
constructed with data sampled from the training set, with replacement. Each
DT is trained on a subportion of the initial data. A typical example of this
learning method is found in Random Forests (RF).

• Boosting Boosting, and its variant Gradient Boosting, work by combining
a set of weak learners into a strong learner, to minimise the training error.
With respect to Bagging methods, this category of classifiers trains the weak
learners sequentially, gradually improving the training accuracy of the models.

Finally, other two approaches were explored, and are summarised in the following
paragraphs.

Naïve-Bayes Classifiers (NB) They are a class of probabilistic classifiers that
adopt the Bayes’ theorem to yield predictions. For each query point, the poste-
rior probability is computed through the Bayes’ theorem; finally, the class output
corresponds to the maximum posterior probability in a group of classes.

Linear Discriminant Analysis (LDA) This is an approach that aims at iden-
tifying the linear combination of features that best separates classes in the dataset.
It finds its application both in binary dataset and multi-class problems. It classifies
items in the dataset by modelling their distribution through a Bayesian approach.
Specifically, the algorithm computes the probability of a query point of belonging
to a particular class. High-dimensional data are projected into one dimension, for
better classification performance.

3.3 Model Evaluation
Model optimisation, validation, and evaluation are three essential procedures

for assessing the performance, generalisation capability, and overall robustness of
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the classifiers. The following Sections will briefly describe these points.

3.3.1 Hyperparameters Optimisation
Hyperparameters tuning is a technique that allows to identify the optimal set

of model’s parameters, to enhance classification performance. The parameters are
the features that help the model in conducting the learning process; hence, they are
not learned during the training process, and need to be specified before. Generally,
hyperparameters optimisation is conducted through automatic approaches, such as
a Grid Search or Bayesian optimisation.

3.3.2 Validation Procedures
Validation procedures are commonly adopted after the training procedure of

the ML models, to assess their performance and investigate their suitability to the
study design. The following paragraph present three commonly adopted validation
approaches, employed in the subsequent research activities.

Hold-Out Validation This method involves partitioning the initial dataset into
two parts: the training and the test sets. The former is employed during model
training, and the latter is used as unknown set of data to carry out predictions,
and evaluate the model performance. Typically, the training set consists of a higher
portion of data (70–80% of the initial dataset). Commonly employed splits set-ups
are 70/30 % or 80/20 % (Train/Test configuration).

K-Fold Cross-Validation (CV) As the common hold-out method may lead
to high variance, a more reliable solution is provided by the K-Fold CV. In this
technique, the initial dataset is divided into K parts (folds), of similar size. The
training process is carried out on K − 1 subsets, and predictions are made on the
remaining fold. The procedure is iterated K times, thus providing a more accurate
assessment of model performance.

Leave-One-Out CV (LOO-CV) This method is a particular configuration of
K-Fold CV, where the parameter K equals the number of observations in the
dataset. Hence, the training/test procedure is repeated for all instances in the
dataset. Similarly as traditional K-fold CV, this method is a reliable solution for
small datasets. However, it is more computationally expensive. In healthcare appli-
cations, a variation of this method is proposed, through the Leave-One-Subject-Out
CV (LOSO-CV). Within this framework, given a dataset with N subjects, at each
iteration, all observations from one subject are held out for testing, and the remain-
ing (N − 1) subjects are used in the training process. The procedure is repeated
for a total of N iterations. It allows to maximise the classification accuracy by
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limiting the effect of overfitting. This latter occurs when the trained model is too
complex with respect to the data patterns, thus fitting too closely with the elements
in dataset, resulting in inaccurate predictions.

3.3.3 Performance Metrics
Finally, to quantitatively assess the performance of a model, and evaluate its

generalisation capability, performance metrics are computed from the obtained pre-
dictions. Commonly, this assessment relies on the definition of confusion matrix,
where the rows represent the instances in the actual class, and the columns rep-
resent the class-wise predictions (Figure 3.1). Precisely, correct predictions are
identified either as True Positives (TPs) or True Negatives (TNs), while misclassi-
fied instances are False Positives (FPs) and False Negatives (FNs).

The most common metrics in supervised ML are Accuracy, Recall, Specificity,
Precision, and F1 score, defined as:

Accuracy = (TP + TN)
(FP + FN) (3.1)

Recall = (TP )
(TP + FN) (3.2)

Specificity = (TN)
(FP + TN) (3.3)

Precision = (FP )
(TP + FP ) (3.4)

F1score = (Precision×Recall)
(Precision+Recall) (3.5)

27



Machine Learning for Healthcare

Figure 3.1: Confusion matrix for the evaluation of Machine Learning models.

In addition, metrics such as the Area Under the Curve (AUC) and Mean Average
Error (MAE) can be employed. The former represents the overall performance
of the model, computed as the integral of the Receiver Operating Characteristic
(ROC) curve. This latter evaluates the performance of a model by plotting the
Recall as function of the False Positive Rate (i.e., 1−Specificity). Values of AUC
approaching 1 represent optimal performance.

The MAE, generally employed in continuous tasks, measures the variance be-
tween the actual (x) and predicted values (y), and is expressed as:

MAE =
∑︁n

i=1 |yi − xi|
n

(3.6)

These metrics provide a reliable tool for the evaluation of models, and the
interpretation of the predictions. As previously said, accurate model assessment
allows for a robust implementation of such methods in healthcare scenarios.
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Diagnostic Support Systems
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Chapter 4

Automatic Sleep Staging

4.1 Context and Background
Polysomnography, a diagnostic test encompassing the study of electrophysio-

logical activity during sleep, is the gold standard to investigate sleep structure
and sleep disorders. Despite being accurate, it is often considered as invasive by
the subjects, and its clinical validity depends on manual inspection, thus requiring
protracted scoring times.

In view of developing minimally intrusive sleep studies, a pipeline for automatic
sleep staging based on a single EEG channel has been proposed.

This Chapter illustrates the rationale behind this idea and the research activity
included in Paper [141].

4.1.1 Machine Learning Approaches to Sleep Staging
The concept of sleep staging refers to the process of labelling sleep into different

categories, relying on precise sets of rules in order to characterise polysomnographic
activity over pre-defined period of times, typically referred to as epochs [79].

As depicted in Section 2.1, traditionally, these rules have been collected in the
Rechtschaffen and Kales (R&K) criteria for sleep scoring [89], and later updated in
the AASM Scoring Manual [11]. However, in the clinical practice, this translates to
a manual and visual process, that is labour-intensive, time-consuming, and subjec-
tive, presenting high rates of inter- and intra-rater variability, significantly limiting
the diagnosis’ fluidity [179].

In recent years, there has been growing interest in developing automated meth-
ods for sleep staging, either by tackling sleep/wake detection [184], stage-specific
[173, 177], or multi-stage classification [42, 84, 144]. These approaches leveraged
PSG signals and Machine Learning environments to expedite the scoring process,
achieving good agreement between the automated results and the manual annota-
tions from sleep experts [42].
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Though providing accurate and reliable results, a vast majority of the automated
frameworks in the literature still carry a considerable amount of complexity. Indeed,
some studies relied on several biosignals to achieve multi-stage classification [42],
while other approaches encompassed the analysis of multiple EEG channels [84].

In this regard, automatic classification has been carried out both through feature-
based approaches, and, more recently, through AI-derived probabilistic approaches
[6, 163] or Deep Learning techniques [178]. These latter, in particular, do not re-
quire any signal processing or feature engineering, and appeared to provide reliable
results, through spatial and temporal architectures [85, 59, 118, 182], or attention-
based models [183, 53], though providing lower clinical interpretability.

Although providing an alternative to manual scoring, offering the potential to
simplify the scoring process, while ensuring reliable results, these approaches still
require multiple PSG signals, thus remaining impractical for use outside of clinical
settings.

By contrast, efforts have been made to develop lightweight sleep monitoring
systems, offer the potential for convenient and accessible sleep monitoring in home
environments [97, 90], though most of them target respiratory events [145]. These
frameworks involve wearable set-ups equipped with sensors, to record PSG biosig-
nals (EEG, EOG, EMG), or photoplethysmography to retrieve heart rate during
sleep, and tackle sleep staging [64].

Following these developments, sleep staging algorithms based on single-channel
EEG have been proposed in the literature. These approaches allow for a reduction
in the required instrumentation and hardware, having a significant impact on the
diagnostic intrusiveness.

In this context, single-channel EEG-based sleep studies need to be explored, to
investigate (1) the reliability of scoring sleep through a single EEG electrode, and
(2) the feasibility of lightweight, home-based sleep monitoring devices.

4.2 Research Overview
In consideration of the presented context, the research activity included in this

Chapter explored the feasibility of automatic scoring of sleep from single-channel
raw EEG signals and its applicability to patients at risk for neurodegenerative
diseases, exploiting supervised ML approaches.

More specifically, the automatic detection pipeline, detiled in the following Sec-
tions, consisted in:

1. Characterising REM sleep through specific predictors,

2. Performing 5-stage automatic classification of sleep based on a a single EEG
channel,

3. Validating the model on subjects at risk for neurodegeneration.
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4.3 Single-Channel EEG Sleep Staging
Manual annotation of sleep stages from full, in-hospital PSG relies on a fixed

set of rules, based on the characteristics of the recorded biosignals, in terms of
waveform and type of eye-movements.

The REM stage is commonly recognised by the presence of muscle atonia and
the typical rapid-eye movements, observed with chin EMG, and the EOG channels,
respectively. Though commonly treated as homogeneous, from an encephalographic
point of view, the REM stage actually presents with mixed characteristics: generally
low amplitude, and the alternation of two main frequency components (phasic and
tonic) [159].

This activity focused primarily on the characterisation of the REM Sleep mi-
crostructure through specific metrics, employed in the automatic classification of
sleep stages to enhance detection performance.

4.3.1 Materials
Subjects

The automated pipeline was designed on two publicly available datasets, em-
ployed in the design and training of the algorithms, and in the external validation
of the models, respectively.

To train the models, the DREAMS Subjects Database [47] was employed. This
dataset includes a collection of 20 PSG recordings of healthy subjects (4 males),
with no sleep disorders nor underlying neurological conditions. The age distribution
of the whole sample is 33.5 ± 14 years (20–65).

Annotations were provided according to the AASM criteria [11]; PSG recordings
presented with a mean duration of 8 hours, 30 minutes, and were analysed in an
epoch-wise fashion, with a standard epoch length of 30 seconds.

In consideration of the hypnographic variability of the recordings, a preliminary
screening was conducted on the dataset, so as to include in the training models
subjects presenting with an adequate duration of sleep stages, to limit class imbal-
ance.

Following this concept, only recordings presenting with at least 50-minute REM
were included in the analysis; this duration threshold was discussed with the clinical
personnel. Finally, 10 subjects were discarded, either (a) due to the complete
absence of REM sleep or SWS epochs, for which a possible explanation might be
found in the first night effect, a common phenomenon in in-hospital PSG [50], or
(b) the presence of irregular sleep cycles, likely not reflecting a healthy pattern.
Table 4.1 reports an overview of the demographics of the included sample.

The final training configuration envisaged a total of 8382 epochs, and the stage
distribution is displayed in the plot in Figure 4.1. As appreciable, a considerable
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imbalance is present. This is a common issue in automatic sleep studies, as the
N2 stage accounts for 45–55% of the total duration of sleep, and N1, due to its
transitional nature, commonly features a very low number of epochs.

Figure 4.1: Distribution of sleep stages, in terms of number of 30-second epochs,
in the training dataset, encompassing 10 healthy subjects.

In the final stage of this work, a second database was included, to validate the
trained models on a set of subjects at possible risk for neurodegeneration, to explore
the applicability of the presented framework.

This second batch included subjects from the CAP Sleep Database [166]. This
dataset included 16 healthy subjects (HS), and 22 subjects with RBD, though
considerably older in age with respect to the other group. Demographics for the
two employed datasets are reported in Table 4.1. Being publicly available datasets,
and due to the general scarcity of data, no preparatory age-matching was performed;
however, the healthy cohort in the CAP Sleep Database features an average value in
line with the subjects in the DREAMS Database. The higher variance observed in
this latter is due to the fact that a number of elder subjects, compared to the healthy
CAP group, are present; however, these represent only 20% of the whole group. No
preparatory data screening was conducted on this cohort, as it only served the
purpose of external validation, in an attempt to simulate a real-world scenario.
The dataset consisted of a total of 14583 epochs, with over 5000 representing N2.

Data

As stated in the research objectives, the detection algorithm was based on data
from a single EEG channel. In the DREAMS Database, three channels were avail-
able: a central (either CZ or C3), a pre-frontal (Fp1), and an occipital.

For the training stage, only the central channel (Cz, or C3 if the former was not
available) was selected. Indeed, pre-frontal channels, besides being uncommon in
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Table 4.1: Sample and demographics of the datasets employed in the study: the
DREAMS Database (healthy subjects) and the CAP Sleep Database (healthy and
RBD subjects).

Dataset Sample Age
DREAMS Subjects Database 10 HS (3 males) 36.4 ± 14.9 years

CAP Sleep Database 22 RBD (19 males) 70 ± 6 years
16 HS (9 males) 32.5 ± 5 years

PSG, are also often affected by eye-blinking artefacts. Similarly, in the perspective
of implementing a wearable and unsupervised set-ups in sleep studies, occipital
channels likely suffer from poor sensor positioning.

4.3.2 Methods
Data Pre-Processing

As the EEG signals in the DREAMS Database were recorded at a sampling
frequency of 200 Hz, they were first upsampled to 256 Hz. Despite knowing that
upsampling could not compensate for missing information, it was carried out only
to computationally ease the subsequent analysis, especially in the spectral domain.

To preserve the idea of raw single-channel analysis, minimal processing was
carried out on the data. No artefact removal was carried out, and, given that a
single EEG channel was employed, no spatial filtering on EEG data was performed.

In an attempt to mimic manual scoring, which employs review softwares with
customisable signal display through visual filters, a similar filtering set-up was
adopted. Specifically, high-frequency noise and slow drifts were removed, through
a cascade of infinite-impulse-response (IIR) filters, detailed below. An anti-causal
filtering approach was chosen, to avoid phase-distortion and preserve the waveform
actual locations.

Slow drifts in the EEG signal were attenuated through a highpass, Chebyshev
Type I filter, of order 1 and cut-off frequency (fc) of 0.5 Hz. High-frequency noise,
identified for this purpose in the spectral components above 40 Hz, was removed
through a low-pass, Chebyshev Type I filter, of order 11 (fc: 40 Hz).

Chebyshev Type I filters [132] present with a steep roll-off, thus offering a quite
narrow transition band, though showing equiripple behaviour in the passband. The
ripple factor (ϵ) is expressed as:

ϵ =
√︂

10(δ/10) − 1 (4.1)
where δ is the ripple in the passband, expressed in dB. For this work, a passband
ripple of 3 dB peak-to-peak was applied.
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Identification of the REM Sleep Micro-Structure

The REM stage presents with a peculiar, underlying, structure. From the ex-
amination of REM segments, in terms of morphology and power spectral density,
two main components emerge (cf. Section 2.1). These are identified as the tonic
REM (TREM), with reduced EOG activity and no rapid-eye movements, and pha-
sic REM (FREM), where rapid-eye movements are present, instead.

Several feature-based, automatic sleep staging algorithms target the REM stage
as a whole, by leveraging linear and non-linear measures to characterise the over-
all signal morphology or its energy contributions [42]. However, given the mixed
characteristics of REM sleep, exhibiting low-amplitude and multiple frequency com-
ponents, this can lead to misdetection with wake or N1 segments.

Other approaches attempted to exploit the multiple frequency components of
EEG during sleep, by identifying additional sub-bands [99, 84].

Following this strategy, and based on the intrinsic characteristics of TREM and
FREM, this work aimed at identifying features for the precise characterisation of
the two REM micro-states, in an attempt to enhance the detection performance of
the overall stage.

Particularly, as previously highlighted in the literature [159], the tonic and pha-
sic REM states present with distinctive traits. An increase in higher frequencies (α
and low-β range) is observed during TREM, while FREM exhibits a higher density
of slower waves, in particular in the δ and θ bands.

On this premise, in this study two frequency bands were experimentally defined
for the subsequent feature extraction step on the REM stage micro-structure, and
named accordingly, as TREM and FREM.

For this purpose, specific frequency boundaries need to be identified, in order
to estimate the exact range for the two bands. Hence, the original REM stage was
inspected in this way. Each manually scored REM epoch was selected individually,
and the power spectral density (PSD) was estimated. From the obtained power
spectrum, two distinct values were computed for each epoch: the median frequency,
and the 95th percentile.

For the sake of clarity, these two values will be referred to as SEF50 and SEF95,
where SEF indicates the spectral edge frequency. In more detail, these represent the
boundaries below which lie the 50% and 95% of the total EEG power, respectively.

Lastly, the bandwidths for each sub-state were estimated by averaging the 25th

and 75th percentiles of the two SEFs, with the former yielding the lower and upper
bounds for the FREM, and the latter the frequency bounds for TREM (Figure 4.2).

Thus, the two bands were identified as:

• FREM: frequency range 2–8 Hz,

• TREM: frequency range 7–16 Hz.
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Figure 4.2: Estimation of the FREM and TREM bandwidths from the spectral
edge frequency metrics. Adapted from Paper [141].

Similar boundary values for the two micro-states were identified previously in
[84].

As observable, while partially overlapping at 7 Hz, the FREM sub-state covers
the δ and θ ranges, while, as expected, TREM is skewed towards the higher α waves
or sensorimotor rhythm (up to 15.5 Hz).

Feature Extraction

To carry out automatic sleep staging, a set of features were extracted, to char-
acterise the EEG signal in each sleep stage.

Each sleep stage was inspected epoch-wise, and features were computed in four
different domains: time, frequency, time-frequency and non-linear. This is a com-
mon approach in feature engineering from biosignals, and has also been adopted in
various research activities presented in the following Chapters of this Thesis.

First, each sleep stage was assigned a class label. Then, for each label, a series
of 30-second epochs was identified, and features in the time domain were computed
from each epoch. For the remaining categories, the features were extracted on 1-
second mini-epochs, and then averaged across each 30-second macro-epoch, follow-
ing a uniform segmentation approach, widely adopted in sleep EEG pre-processing
[122].
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Time-domain features are computer over longer epochs, as within this length,
it is possible to assume that the signal remains approximated as stationary [122].
Conversely, shorter epoch lengths are required to guarantee wide-sense stationarity
when computing spectral and non-linear parameters from EEG signals. As men-
tioned, automatic sleep stage classification, epoch lengths of 2, 5, or 10 seconds are
generally adopted [42, 84, 122]. In this study, a resolution of 1 Hz was chosen to
provide for an adequate spectral representation of the analysed signal.

The hand-engineered features aimed at characterising the EEG signal in the
different stages, to mimic visual inspection. The parameters were chosen so as to
primarily describe the amplitude and morphology of the signal in each epoch, and,
for a finer representation, the spectral distribution and regularity of the waveforms.
To do so, a combination of clinical parameters, novel, and well-established fea-
tures was employed; the complete list is displayed in Table 4.2. Various among the
extracted parameters are traditionally employed in EEG signal processing, while
others were adapted from other domains. In particular, the Coastline is an ampli-
tude measure which relies on the derivative of the signal, and highlights the extent
of fluctuations in a signal [177]. Let x(t) be a continuous EEG epoch, and ẋ(t) its
derivative. The coastline factor is expressed as:

Coastline =
∑︂
|ẋ(t)− ẋ(t− 1)| (4.2)

From a spectral point of view, and as previously discussed, this study pro-
posed two bandwidths to accurately describe the dichotomy in the REM stage. To
this end, the absolute and relative power, and the energy density in the FREM
and TREM sub-states were computed and employed as features in the frequency
domain. In addition to those, a differential metric for the power density (SEFd,
difference between SEF95 and SEF50), was also computed, as seen previously in
[84].

The feature extraction step also envisaged time-frequency and non-linear mea-
sures.

Regarding the former, the Short Time Fourier Transform (STFT) was exploited
to retrieve finer details of the frequency contributions overtime; this becomes of
particular importance in non-stationary signals such as the EEG.

This type of transform provides a two-dimensional representation of the signal,
highlighting the frequency distribution at each time istant. In its continuous form,
for an epoch x(t), the STFT is defined as:

STFTx(t)(τ, ω) =
∫︂ ∞

−∞
x(t)w(t− τ)e−iωt dt (4.3)

where w(τ) is the window function, analogous as the one employed in spectral
density estimation. Fundamentally, the STFT can be interpreted as the Fourier
transform of the compound function x(t)w(t − τ), which represent the phase and
magnitude of x(t) over time.
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For this study, the STFT was estimated on 1-second epochs on the whole avail-
able spectrum (0–40 Hz), and its magnitude and maximum value were computed.

Among Time-Frequency parameters, the Discrete Wavelet Transform (DWT)
coefficients were computed and employed as features for the characterisation of
sleep stages. A comprehensive description of the DWT is provided in Chapter 5.

Finally, the Teager-Kaiser energy operator (TKEO) [88] was employed as non-
linear source for the features. This metric provides information about the instan-
taneous energy of the signal, exploiting anew its amplitude and frequency. For an
epoch x(t), it is expressed as:

ψ[x(t)] = [ẋ(t)]2 − x(t)ẍ(t) (4.4)

where ẋ(t) and ẍ(t) represent the first and second order derivatives, respectively.
The TKEO was evaluated on the whole spectrum, and numerical and statistical

metrics were extracted and employed as features for the subsequent classification
step. Specifically, after computing the TKEO on each 1-second sub-epoch, the
values were concatenated, and for each macro-epoch (i.e., 30-second length) the
mean value, standard deviation, skewness, kurtosis, amplitude range, maximum
and minimum values were retrieved.

In the Non-Linear category, the approximate entropy (ApEn) was also com-
puted. It is a statistical measure that represent the extent of regularity of a given
signal [130], and is employed in EEG processing to measure complexity [1]. It as-
sesses the logarithmic probability that patterns observed over a given epoch length
will remain stable as the epoch length increases. Given a time series of N data
points (length of the EEG segment), ApEn is expressed as [130]:

ApEn(m, r,N) = ϕm(r)− ϕm+1(r) (4.5)
where m is the embedding dimension, which can be identified as the length of a

window, and r is the tolerance parameter, that is the maximum dissimilarity allowed
between two sets of data, expressed through distance-based metrics. In more detail,
it is a positive real number that represents the radius of similarity. Finally, ϕm(r)
represents the average natural logarithm of the conditional probability that two runs
of m data points will remain similar at m + 1 [130]. Low values of approximate
entropy reflect higher regularity of a signal, likely underlying repetitive patterns.

Feature Scaling and Selection

As described, the extracted features belong to very diverse domains, and there-
fore present with different scales. This intrinsic variance may lead either to mis-
classification, or potentially erroneous performances.

To minimise this effect, all extracted features were normalised through the min-
max scaling technique. This method consists in rescaling the original feature array
to a defined target range, so as to provide uniformity in data distribution.
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Table 4.2: Features adopted for the automatic sleep staging, along with their de-
scription and proper reference. ⋄: variables adapted from the cited study, †: vari-
ables first proposed in this work.

Category Features Ref.

Time

Numerical and statistical measures (mean, stan-
dard deviation, skewness, kurtosis, range, max,
min)

various

Hjorth parameters (signal and its derivative) [123]
Zero crossing rate [165]
25th, 75thth, 95thth percentile and their differential various
Envelope: number of peaks, peak prominence,
peak width

†

Coastline (1st and 2nd derivative) [177]

Frequency

Power percentage for each clinically relevant band various
SEF50, SEF95, SEFd, Absolute and Relative
Power (TREM)

⋄[84]

SEF50, SEF95, SEFd, Absolute and Relative
Power (FREM)

†

Entropy various
Fast Fourier Transform: numerical and statistical
measures

various

Relative power for each clinically relevant band (δ,
θ, α, β)

various

Energy density in tonic and phasic REM †

Time-Frequency Short Time Fourier Transform: magnitude and
maximum value of its density (0 – 40 Hz)

†

Discrete Wavelet Transform coefficients:
Daubechies order 4 and Haar filter wavelet

[177]

Non-Linear Teager-Kaiser Energy operator: numerical and
statistical measures

⋄[99]

Approximate entropy ⋄[1]

In particular, given a feature f , and a target range of [a, b], the rescaling follows
this definition:
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f ′ = a+ (f −min(f))(b− a)
max(f)−min(f) (4.6)

For this analysis, the range was set to [−1, 1]. A total of 164 features across
all categories resulted from the feature extraction step, for 8382 observations –
i.e., epochs. Since the subsequent classification step envisaged the use of diverse
classifiers, a feature selection step was implemented, to limit overfitting, and to
highlight a subset of most relevant features for the task, to allow for a final clinical
interpretation.

For this purpose, the variance threshold method was adopted [154]. Despite
being a simple, straightforward technique, it requires low computational load, and
might be scalable in tiny-ML frameworks.

The variance threshold was heuristically chosen; finally, all features with vari-
ance below 0.2 were removed from the initial set, leaving a total of 87 features to
be implemented for automatic sleep stage classification.

Automatic Sleep Staging Classification

Automatic sleep staging was tackled through supervised models, in a multiclass
fashion. Training data included the three stages of NREM sleep (N1, N2, N3),
REM sleep, and wake epochs (W).

Two classifiers were explored with a 10-fold CV framework, and an ensemble
method was employed in a hold-out validation fashion, with a 80/20 proportion.

Namely, a KNN and a RF were chosen as classifiers, along with a boosting
algorithm based on random under sampling (RUSBoost), particularly suitable for
imbalanced datasets, as in this case [156]. For this latter, at each iteration of the
algorithm, the majority class is randomly undersampled so as to balance the overall
class distribution (Algorithm 4.3.2).

The final configuration of the parameters of the classifiers is displayed in Ta-
ble 4.3. All parameters were heuristically selected, with a trial-and-error approach,
and the configuration yielding the lowest classification error was adopted.

Table 4.3: Parameters of the classifiers employed for the analysis.

Classifier Parameters Validation

KNN Number of Neighbours (K): 10 10-fold CV
Distance Metric: Euclidean

RF Nlearners: 30 10-fold CV
Maximum Nnodes: 0.2*Nfeatures

RUSBoost Nlearners: 30 80/20 hold-out validation
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Algorithm 1 RUSBoost: Random Under-Sampling Boosting
1: Input: Given a training dataset S, number of iterations T
2: Output: Ensemble classifier hypothesis H(x)
3: Create a temporary dataset S ′ by randomly undersampling the majority class

to obtain the desired distribution (D′
t)

4: Initialise weights for the new dataset S ′

5: for t = 1 to T do
6: Call a weak learner on the weighted dataset S ′, and obtain the weak hy-

pothesis ht

7: Calculate the pseudo-loss parameter (ϵt)
8: Calculate the weight parameter αt as (1−ϵt

ϵt
)

9: Update and normalise weights
10: end for
11: Return the final hypothesis H(x) as weighted vote of the weak hypotheses
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4.3.3 Results
This Section illustrates the results of the proposed automatic sleep staging

framework, in terms of validation of the employed models and external validation
on an unseen dataset.

The results will be presented as macro-averaged and micro-averaged metric. In
multiclass classification tasks, the former depicts the unweighted, class-wise aver-
age performance. On the other hand, micro-averaging targets individual classes by
giving equal weight to each instance in the dataset, and finally the class-wise per-
formance across all predictions. This method is particularly suitable for imbalanced
datasets.

Classification Performance: 5-stage

First, a 5-stage configuration was explored, through the presented classifiers.
As regards the Random Forest and KNN classifier, a 10-fold cross-validation

approach was adopted; Tables 4.4 and 4.5 report the achieved performance. The
metrics were evaluated for each class according to the AASM guidelines – i.e., N1,
N2, N3, REM and wake. The results are further detailed in Figures 4.3 and 4.4,
that provide class-wise performance through the summative confusion matrices.

As appreciable from the illustrated metrics, detection performance of each stage
is fairly good, with the RF achieving a macro-averaged accuracy across the five
stages of 93.85%, and of 93.24% for the KNN. Satisfactory results were also observed
in both classifiers in terms of F1 score, with values above 78%, except for the N1
stage.

This latter featured quite unsatisfactory values both in terms of Recall and F1
score. A possible explanation was found in its nature; indeed, the N1 stage is
largely considered as a transition stage between a wake state and N2, a peculiar-
ity that 30-second EEG epochs probably fail to describe. Additionally, the poor
performance observed on this class may be due to the high class imbalance: the
epochs belonging to stage N1 represent only 6% of the total dataset. A recent
commentary on polysomnography assessment methods in adults stated that stage
N1 suffers from the lowest detection reliability as compared to other stages, as it is
generally characterised through exclusion rules, rather than by clearly recognizable
electrophysiological hallmarks [80].

As regards the REM stage, quite satisfactory metrics were attained, across all
the explored performance metrics. Recall values above 85% were observed, with F1
score above 79% in both classifiers.

In addition, multi-stage performance was assessed through Cohen’s Kappa (κ)
[41], a statistical metrics that provides a measure of the agreement between the
manually annotated value and the one predicted by the algorithm. The RF clas-
sifier presented a κ of 0.846, and the KNN 0.831; both values suggest substantial
agreement between the real and predicted scores.
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Table 4.4: Performance (10-fold cross-validation) of the Random Forest classifier,
in the 5-stage configuration

W REM N1 N2 N3
Accuracy 97.5 % 93.9 % 92.9 % 89.5 % 95.3 %
Recall 90 % 91 % 18.8 % 90.1 % 86 %
Specificity 98.5 % 94.6 % 98.2 % 88.9 % 97.7 %
Precision 88.4 % 76.2 % 43.6 % 87 % 90.8 %
F1 89.2 % 82.9 % 26.3 % 88.6 % 88.3 %

Table 4.5: Performance (10-fold cross-validation) of the KNN classifier, in the 5-
stage configuration

W REM N1 N2 N3
Accuracy 97.6 % 92.7 % 92 % 88.5 % 95.2 %
Recall 88.9 % 85 % 19.3 % 88.5 % 87.9 %
Specificity 98.7 % 94.2 % 97.3 % 88.6 % 97.1 %
Precision 90.1 % 73.9 % 35.2 % 86.4 % 88.8 %
F1 89.6 % 79.1 % 24.9 % 87.4 % 88.4 %

The Random-Under-Sampling Boosted trees envisaged, on the other hand, a 80-
20 hold-out validation. This alternative approach was explored due to the under-
sampling approach adopted by the RUSBoost classifier in the training stage. The
epochs in the training and test set were randomly selected. More specifically, the
split was conducted both on subject and epoch level, in such a way to ensure
inter-class balance, and limit the risk of data leakage. Classification performance
is reported in Table 4.6, and class-wise performance is displayed through the sum-
mative confusion matrix in Figure 4.5.

A macro-averaged accuracy of 87.7% was attained through this boosting method;
however, as a general trend, performance metrics were slightly lower than the two
previously explored classifiers. Indeed, despite presenting with a modest rise in
detection performance as regards sleep stage N1 – although unsatisfactory – a loss
in performance was transversally appreciable. A possible interpretation of this out-
come was found in the under-sampling method adopted by the classifier, which,
on the one hand, ensures balanced class representation, but, on the other hand,
provides the model with a scarce set of examples. However, detection performance
of the REM stage remained reliable, with 87.2% Recall, and almost 69% F1 score.
Furthermore, this classifier featured a κ of 0.7; although lower than the coefficient
obtained by the two other models, this value is indicative of a moderate score
agreement between the real and predicted stages.
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Figure 4.3: Confusion Matrix of the the Random Forest classifier.

Figure 4.4: Confusion Matrix of the the KNN classifier.

Generally, the three tested classifiers proved good detection performance when
considering only the sleep stages, with average accuracy above 86% in the least-
performing configuration.

Validation on External Dataset: 5-stage

The previous paragraph illustrated the results of the 5-stage classification in the
proposed configuration.
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Table 4.6: Performance (80/20 hold-out) of the RUSBoost classifier, in the 5-stage
configuration.

W REM N1 N2 N3
Accuracy 92.1 % 89 % 85.4 % 82.2 % 89.7 %
Recall 49.8 % 87.2 % 43.6 % 57.9 % 98.4 %
Specificity 98.8 % 89.9 % 89.2 % 97.3 % 89.2 %
Precision 86.4 % 56.8 % 26.9 % 93 % 75.8 %
F1 63.2 % 68.8 % 33.3 % 71.4 % 85.6 %

Figure 4.5: Confusion Matrix of the RUSBoost classifier, performance on the test
set (80/20 hold-out).

The performance of the employed models was evaluated both in a k-fold CV and
a more traditional hold-out approach, with reasonably promising metrics. However,
as stated in the introductory part of this Chapter, this study relied on a public
dataset, and the employed models were trained on healthy subjects data.

At the time of the study, no further investigations on sleep structure in non-
healthy cohorts were conducted; however, to assess the reliability of the proposed
set of features, in a single-channel configuration, the trained models were tested on
a set of unseen data including subjects at risk for neurodegeneration.

For this purpose, RBD subjects in the CAP Sleep Database were adopted as
external test set, and the best-performing model – i.e., the Random Forest classifier
– was validated on this data batch.

Data preparation and Feature Extraction followed the procedure described in
the Methods section. A total of 14583 epochs of length 30 seconds were collected in
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Table 4.7: External validation of the RF classifier on RBD subjects from the CAP
Sleep Database.

W REM N1 N2 N3
Accuracy 88.1 % 89.5 % 94.8 % 82.6 % 86.6 %
Recall 85.2 % 58.1 % 41.1 % 65 % 76.1 %
Specificity 89.3 % 95.5 % 98.6 % 88.1 % 90.3 %
Precision 75.7 % 71.5 % 68.3 % 62 % 73.3 %
F1 80.2 % 64.1 % 51.3 % 63.5 % 74.7 %

the dataset. As expected, the data featured a high preponderance of the N2 class,
with over 5000 observations. Data post-processing was carried out as previously
described, and observations with missing data, or with features resulting in NaNs,
were discarded.

This procedure led to a total of 10469 epochs, distributed as follows:

• NREM: 449 epochs for N1, 4894 for N2, 2820 for N3;

• REM: 1555 epochs,

• WAKE: 751 epochs.

The results of the 5-stage classification are reported in Table 4.7 and Figure 4.6. The
results were rather promising, with an overall accuracy of 87.11%. As a general
trend, the detection of N1 stage remained unsatisfactory, with F1 score slightly
above 50%.

A drop in detection performance in the REM stage was also observed, achieving
a Recall and F1 score of 58% and 64%, respectively. This trend might be due to
the fact that subjects with RBD exhibit electroencephalographic differences in the
REM stage, compared to healthy individuals. This concept was later explored and
is presented in Chapter 6.

Classification Performance: REM/NREM

As previously mentioned, one of the study aims was the characterisation of REM
sleep through a set of novel, class-specific predictors. Precisely, these features are
meant to describe the dual nature – i.e., tonic or phasic – of the REM stage.

For this purpose, an alternative configuration was tested on the external dataset.
Specifically, this envisaged a binary classification task, between REM and NREM
sleep, in subjects from the CAP Sleep Database; the healthy and RBD subjects
were tested separately. The choice of employing a different dataset to tackle REM
detection was made to assess the cross-reliability of the proposed REM microstruc-
ture features.
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Figure 4.6: Confusion Matrix of the RF classifier, as regards the external validation
on RBD subjects from the CAP Sleep Database.

To carry out this task, NREM stages N1, N2, N3 were collected in the same
class, and wake epochs were discarded. The choice of only including sleep segments
in this task, as stated in Paper [141], was made to assess the net contribution of
the proposed novel features when targeting the direct detection of REM sleep, with
respect to the commonly employed sleep-describing features. Moreover, as appre-
ciable from the confusion matrices in Figures 4.3–4.5, in the 5-stage configuration,
the detection of the REM stage was quite robust against misclassification with wake
epochs; hence, these latter were not considered in this assessment.

Classification performances of three different supervised models were explored,
to investigate the predictive power of the novel features related to microstructural
arrangements in REM sleep. Namely, a KNN classifier, along with a SVM and DT,
were employed. These two latter were chosen as they are commonly employed in
binary classification tasks.

A nested LOSO-CV approach was adopted to assess detection performance
(Figure 4.7). In this configuration, training is conducted on sleep epochs from
N − 1 subjects, and the model is tested on a single epoch from the left-out sub-
ject. The procedure is repeated for all subjects in the dataset. The Mean Squared
Error (MSE), expressed as:

MSE = 1
N

N∑︂
i=1

(Yreal − Ypred)2 (4.7)

where Yreal and Ypred are the observed and predicted values, respectively, was
introduced to assess the goodness of fit of the models.
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Figure 4.7: Nested Leave-One-Subject-Out approach adopted in the REM/NREM
classification task.

The achieved results are shown in Tables 4.8 and 4.9, for the healthy and RBD
group, respectively.

As appreciable, when testing the binary configuration REM/NREM in the
healthy group, the detection performance remains promising, with Recall values
above 93% in all tested classifiers, and an average Accuracy of 91.26%. The DT
classifier achieved the lowest MSE, suggesting a positive behaviour of the imple-
mented framework, while the SVM classifier performed slightly worse, featuring
the highest value of the MSE. In this regard, it is important to note that model
optimisation was overlooked, and likely the two classes were not linearly separable.

Regarding the RBD group, the classification performance met an observable
decrease, though remaining still acceptable, with the KNN and DT attaining an
overall accuracy above 75%. Though all explored models featured Recall values of at
least 70%, the SVM resulted anew the worst-performing model in this configuration.

Table 4.8: Performance of the binary classification task (REM/NREM) on healthy
controls in the CAP Sleep Database.

Accuracy Recall Specificity Precision MSE
KNN 92.6 % 96.3 % 86.4 % 92.3 % 8 %
DT 94.9 % 97.9 % 89.7 % 94.1 % 5 %
SVM 86.3 % 93.5 % 74.1 % 85.9 % 13 %
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Table 4.9: Performance of the binary classification (REM/NREM) task on RBD
subjects in the CAP Sleep Database

Accuracy Recall Specificity Precision MSE
KNN 75.9 % 77.9 % 74 % 74.9 % 24 %
DT 76.5 % 76.7 % 76.3 % 76.4 % 23 %
SVM 64.3 % 70.2 % 58.2 % 62.7 % 36 %

Predictive Performance of the Proposed Features

The study presented in this Chapter tackled automatic sleep staging by intro-
ducing the analysis of REM microstructure.

The classification performance achieved by the explored classifiers suggested a
good predictive power of the proposed features. However, to further investigate this
point, the proposed features were ranked according to their importance. This latter
was assessed through Pearson’s correlation coefficient. This metric evaluates the
relevance of each variable to the target by expressing the strength (as magnitude)
and direction (as sign) of the relationship.

Table 4.10 reports the results and the statistical significance of each variable,
assessed through Mann-Whitney U test. Moderately high values of correlation
were observed across all variables, which also featured a positive correlation with
the task.

Table 4.10: Correlation (Pearson’s ρ) with the REM class for the set of novel
features implemented, along with their statistical significance (p-value).

Feature Pearson’s ρ Unpaired Test

Approximate Entropy 0.69 < 0.05*

Absolute Power (TREM) 0.67 < 0.01**

Coastline (1st derivative, envelope) 0.52 < 0.05*

Complexity (envelope) 0.57 < 0.05*

Mobility (envelope) 0.74 < 0.05*

SEF50 (TREM) 0.6 < 0.01**

SEF95 (TREM) 0.51 < 0.05*

SEFd (TREM) 0.5 < 0.05*

Shannon Entropy 0.7 < 0.01**

Spectral Entropy 0.7 < 0.01**

Table 4.10 reports the results and the statistical significance of each variable,
assessed through Mann-Whitney U test.

Finally, to evaluate the effect of this implementation, a binary classification
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task (REM vs NREM) with and without this set of features was carried out, in the
RBD cohort of the CAP Sleep Dataset, to assess their applicability in a real-world
scenario.

The KNN classifier, which presented with consistent detection performance in
all tested scenarios, was employed for this task. The results are shown in Table 4.11.
When comparing these metrics with the ones previously presented in Table 4.9, a
minor, yet appreciable rise in performance is observed when the novel features are
implemented. In particular, the KNN classifier in Table 4.9 presents with lower
MSE, and higher values of recall, specificity, and precision.

Table 4.11: Performance of the binary classification task (REM/NREM) on RBD
subjects in the CAP Sleep Database, without implementing the novel features.

Accuracy Recall Specificity Precision MSE
KNN 74.2 % 77.6 % 70.8 % 72.7 % 26 %

4.3.4 Discussion
The research activity described in these Sections proposed an automatic sleep

staging framework based on a single EEG channel, to assess the feasibility of home-
based, minimally invasive, sleep studies.

For this purpose, various features were extracted from each stage, and the REM
stage was further characterised through its underlying microstructure. This step
represented a novelty, since, as a general rule, REM sleep had previously been
considered homogeneous in feature engineering tasks.

The achieved results revealed good ability in detecting the REM stage, with
a micro-averaged accuracy of almost 90% in all the three investigated models. A
good trade-off in Recall and Specificity was also observed, especially in the RF and
KNN models, which expressed a reasonably good Precision value (almost 75%),
considering that the analysis was carried out on raw data, undergoing minimal
signal processing.

The achieved results outperformed those presented in a previous study in the
literature [84], based on the same dataset, where the Authors achieved an overall
Accuracy of 88.5%, and Recall of 82.3%. Furthermore, the classification perfor-
mance of the proposed framework appeared comparable to [42], which, however,
employed a larger number of physiological signals, including multiple EEG, EOG,
and EMG channels in the analysis.

The performance of the classifiers remained quite consistent when testing the
trained models on an external data batch, which served as external validation,
including both healthy and subjects at risk for neurodegeneration.
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The lower performance recorded in the RBD group as regards REM detection
suggested that patients with RBD exhibit a peculiar feature distribution when
considering REM microstructure, a concept that would have been explored in future
studies, and is described in Chapter 6.

The findings highlighted in this study suggested the applicability of the proposed
lightweight metrics in the detection of REM sleep, and subsequent sleep staging ac-
cording to the AASM criteria, with simple but efficient supervised Machine Learn-
ing models. However, some strategies to corroborate the proposed models should
be adopted. First, a larger dataset could be employed in the training part of the
model, thus adding in variability and allowing for better generalisation capability.
Second, the healthy cohort should also envisage older subjects, to promote a more
stratified training framework.

4.4 Conclusion
The classification of sleep stages is a fundamental aspect for the definition of

sleep architecture and the assessment of circadian health and sleep-related disor-
ders. The categorisation of sleep stages in adults is regulated by the AASM criteria,
which envisage overnight wakefulness, three stages of NREM sleep (from light to
deep sleep), and REM sleep.

Nowadays, traditional, in-hospital polysomnography is still considered the gold
standard diagnostic procedure to perform sleep staging; it consists in a collection
of various biosignals, including EEG, EOG, and ECG channels, which allow for the
observation of the sleep evolution over multiple sources. Despite its high resolution
and reliability, this technology bears some limitations in terms of patient comfort,
diagnostic intrusiveness, and, lasty, high costs, and extensive manual labour.

Automatic sleep stage classification methods have emerged as a possible solution
to address the issue of protracted scoring times, by leveraging Machine or Deep
Learning techniques, with performance comparable to manual scoring. However,
a large number of these methods rely on numerous PSG biosignals, thus offering
the opportunity to only streamline the diagnostic process, without alleviating the
intrusiveness of the test.

In recent years, much effort has been dedicated to the implementation of home-
based sleep studies, with a simplified sensor configuration. Moving towards this
perspective, the research activity reported in this Chapter aimed at performing
sleep stage classification through a single EEG channel, to assess the feasibility of
home-based sleep studies through lightweight instrumentation.

Precisely, the central EEG channel was selected from PSG recordings of healthy
subjects in a publicly available dataset, feature engineering was carried out to
characterise both overall sleep architecture and stage-specific patterns. Automatic
5-stage classification was explored through various supervised Machine Learning
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models, achieving considerably accurate results. The same framework was tested
on an external data batch, including both healthy and subjects with RBD, main-
taining reasonable detection capability. This holds premise for future implemen-
tations of the proposed framework in populations including subjects at risk for
neurodegeneration, or subjects with early-stage PD.

Furthermore, the automatic staging approach offered a significant reduction
in scoring times. Upon consultation with a sleep neurologist, we concluded that
manual annotation of sleep stages took on average three working days. For this
work, data analysis was performed on a Windows 10 x64 machine, Intel® Core
i7-6700HQ @ 2.6 GHz, RAM 16 GB, NVIDIA® GEFORCE® GTX 960M. Feature
extraction required 540 ± 60 s per subject, and automatic scoring 0.034 ± 0.009 s
per subject. Though being aware that the obtained results were preliminary, the
proposed framework could alleviate the manual staging step.

Despite the encouraging clinical implications, several challenges persist.
First, and as briefly discussed, future developments should address a larger

dataset, in order to properly validate the classification performance and assess the
model robustness. In this regard, validation studies should be undertaken across
diverse patient populations, including healthy subjects and subjects with sleep dis-
orders, and possibly from different diagnostic centres. An exploratory approach
to this issue has been provided in this Chapter, when evaluating the classification
performance across various datasets, recorded with different instrumentation, in
an attempt to simulate external validation. Furthermore, efforts should be made
towards providing accurate stratification in terms of but also in terms of sex ratio,
or age. Indeed, the employed datasets featured an observable imbalance in terms
of age, and previous studies suggested that EEG signals express varying features
when age and sex are introduced as co-factors [105, 26], with older subjects ex-
pressing reduced slow-wave sleep, and increased fragmentation. Finally, the use of
larger datasets would still inevitably reflect the intrinsic class-imbalance of sleep
data, as thoroughly discussed in this Chapter. While class-balancing could repre-
sent a useful strategy to provide a better generalisation for minority samples, it
might eventually result in overfitting, or in the inability to represent real-world
data. In this Chapter, a potential solution was be found in the adoption of sam-
pling or weighting techniques, as seen through the RUSBoost classifier; however,
the optimal solution should be tailored according to specific deployment use-case.

Second, the framework proposed in this study relied on high-quality data,
recorded by expert technicians with high-resolution sensors. In view of lightweight
sleep studies, the performance of portable devices should also be regarded, to
ensure diagnostic accuracy. Indeed, motion artefacts or electrode detachment
may occur and virtually decrease signal quality, thus providing inaccurate results
which could hamper clinical utility. The verification of this point is still ongo-
ing in cooperation with the Regional Centre for Sleep Medicine at the Molinette
University Hospital (Turin, Italy), where preliminary home sleep tests are being
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carried out through the portable Nox A1s PSG System (Nox Medical, Iceland,
https://noxmedical.com/), which includes frontal (F), central (C), and occipital
(O) channels. While various home-based and consumer-level solutions offer primar-
ily pre-frontal (Fp) or frontal channel recordings, the work included in this Chapter
relied on central-channel data. This choice was made due to the fact that central
channels are regularly available in PSG recordings, and are less affected by motion
artefacts, or muscle cross-talk. Future investigations will explore alternative config-
urations, and compare performances with frontal or pre-frontal locations, especially
in consideration of the convenience of self-applied sleep monitoring headbands [8,
101].

Third, the EEG features have been evaluated on fixed-length epochs, related
to the scoring guidelines provided by the AASM manual, thus allowing the direct
comparison of the automatic performance with the manual annotations. However,
detection capability on the transitional N1 stage remained unsatisfactory, probably
due to its mixed characteristics, which fail to be represented through traditional
methods. Future investigations should explore different epoch configurations, thus
providing an accurate characterisation of sleep, moving towards a continuous-wise,
rather than a discrete-wise, analysis.

Finally, in order to provide clinical interpretability of the employed metrics, and
to allow for a proper comparison with the contemporary literature, the research
activity presented in this Chapter relied on simple, hand-engineered features, com-
bined with well-known supervised Machine Learning models. This allowed for the
employment of a low-computational cost architecture and the identification of the
most relevant features for each sleep stage. Nevertheless, while on the one hand
future refinements could look to improvements in the feature extraction procedures,
or in the classification algorithms, on the other hand fully data-driven should be ex-
plored. Indeed, in recent years, Deep Learning-based frameworks have been widely
employed for sleep staging paradigms, alleviating class imbalance with data aug-
mentation techniques [56], and providing model interpretation through explainable
approaches. A preliminary investigation of deep networks on size-limited, sleep
EEG data is currently underway. This experimentation seeks to explore the po-
tential of deep architectures on tiny datasets, and its performance, compared to
well-established, feature-driven shallow models. The result of this investigation
have not been included in this dissertation, as they still appear embryonic. How-
ever, although expressing encouraging potential, the large-scale integration of such
models is still hindered in the real-world scenario by data scarcity, and the clinical
implementation necessarily requires validation through domain knowledge.
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Chapter 5

Quantification of REM Sleep
Without Atonia

Clinical scoring and quantification of REM Sleep Without Atonia (RSWA) is
regulated by a set of rules that rely primarily on visual inspection and manual
scoring of polysomnographic recordings, ofttimes leading to inter- or intra-rater
variability, and protracted manual labour. In view of the development of robust di-
agnosis support systems, a semi-automatic framework for the correction of artefacts
in the quantification of RSWA has been proposed.

This Chapter describes the Rationale and Research Activity included in the
work [143], presented at the 17th World Sleep Congress, in October 2023. The
experimental work and study design were conducted at the Sleep Disorders Unit,
Department of Neurology, Medical University of Innsbruck (Austria).

5.1 Context and Background
REM Sleep Without Atonia is a parasomnia that entails the loss of physiological

muscle atonia during REM Sleep, and is considered the polysomnographic hallmark
of REM Sleep Behaviour Disorder (RBD) [149]. From a physiological perspective,
RSWA is a condition that entails abnormal, sustained, or periodic, muscular ac-
tivity, observed through polysomnography, and confirmed through clinical inter-
views [81, 164]. Clinical history of injurious or disruptive behaviour, or episodes,
later documented by PSG is also required to complete the diagnosis of RBD [33].

The currently available RSWA scoring criteria have been regulated by the
AASM Manual for Scoring of Sleep and Associated Events [11], and require visual
inspection, combined with manual scoring of EMG traces in PSG, though there is
no standardised indication of abnormal EMG activity. More recently, and in the
context of RBD assessment, the International RBD Study Group proposed an up-
date to the recommended scoring methods included in the international guidelines
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[149, 33], by adding the requirement of dream enactment as seen through video-
polysomnography (vPSG) for an accurate and complete diagnosis of RBD. The
recommended clinical guidelines, and the recent adjustments, bring RSWA scoring
often to the stage of long and protracted, manual labour. Indeed, the scoring met-
rics are primarily obtained after visual assessment of PSG recordings, carried out by
sleep technologists or neurologists. Specifically, visual inspection of PSG recordings
is required to determine the type of EMG activation, which, is commonly defined
either as tonic, i.e., sustained, elevated background activity, or phasic, i.e., rapid
bursts of activity, generally identified as twitches.

In this Chapter, tonic activity will be referred to as elevated background tone.
Over the years, various manual scoring methods have been proposed in the lit-
erature to quantify the extent of RSWA (cf. Table 5.1). These methods, which
are manual and visual-based, aimed at quantifying the amount of abnormal EMG
activity during REM sleep in previously set lengths of windows of observation, com-
monly employing pre-defined amplitude and duration thresholds. The first scoring
method, commonly referred to as the Montréal Method, was proposed by Lapierre
and Montplaisir [100]. The method evaluates tonic activity over 20-second length
epochs, and phasic activity in epochs of 2-second length. An epoch is defined as
tonic if sustained EMG activity of amplitude at least twice the background, or above
10 µV, occurs at least for 50% of its duration. Phasic activity, on the other hand,
is assessed over 2-second epochs, and defined as bursts of activity of amplitude four
times the background, and duration between 0.1—10 seconds.

Subsequently, other methods have been developed, mainly differing in terms of
observation window length and activity duration. The most relevant two are the
Mayo Clinic method [116] and the Sleep Innsbruck Barcelona (SINBAR) scoring
method [68], along with others, though less common [114]. For the sake of clarity,
the Montréal, Mayo and SINBAR specifications are summarized in Table 5.1.

Despite the plurality of RSWA scoring methods proposed in the literature [135,
66], none has been included as the official framework in the AASM manual for
scoring sleep. Nevertheless, the most recent update of the ICSD-3 [149] highlighted
the SINBAR method as the recommended scoring procedure for quantifying RSWA.
As briefly mentioned, this method is based on the evaluation of EMG activity during
REM sleep on various channels to allow for a reliable diagnosis [81], and it will be
described in the following Section.

5.2 The SINBAR Scoring Method
The SINBAR scoring method [68] provides a reliable framework for the quantifi-

cation of RSWA, and the subsequent detection and screening for RBD, as emerged
from a validation study on a RBD patients cohort [67]. While the Montréal method
[100] relied solely on the mylohyoid activity, and the Mayo [116] introduced the
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Table 5.1: Overview of the most common visual-based scoring methods for REM
Sleep Without Atonia. Bkg: background activity (baseline). Tonic Density is
evaluated on the mentalis muscle.

Method Tonic Density Phasic Density
Montréal [100] (%) of 20-second epochs

with at least 50% of the
epoch with amplitude twice
the Bkg, or greater than
10 µV

(%) of 2-second mini-epochs
with bursts of activity (du-
ration: 0.1–10 s) with am-
plitude 4 times the Bkg, or
greater than 10 µV

SINBAR [68] (%) of 30-second epochs
with at least 50% of the
epoch with amplitude twice
the Bkg, or greater than
10 µV

(%) of 3-second mini-epochs
with bursts of activity (du-
ration: 0.1–5 s) with am-
plitude twice the Bkg, or
greater than 10 µV

Mayo Clinic [116] (%) of 30-second epochs
with at least 50% of the
epoch with amplitude twice
the Bkg, or greater than
10 µV

(%) of 3-second mini-epochs
with bursts of activity (du-
ration: 0.1–14.9 s) with am-
plitude twice the Bkg

analysis of the tibialis anterior (TA), the SINBAR scoring method identified the
combination of the mentalis and bilateral flexor digitorum superficialis (FDS) as the
optimal configuration for accurately quantifying RSWA [69]. Precisely, abnormal
muscle activity is manually quantified as tonic, phasic, or "any" – i.e., either of the
two. This latter was introduced to ensure an exhaustive evaluation, by analysing
those EMG activations who would not fall within the first two conditions. The
criteria for the categorisation are the following:

• Tonic activity: it is scored in the mentalis in 30-second epochs. Each epoch
is scored as tonic if elevated background tone is present for more than 50%
of the epoch, with amplitude at least twice the background, or above 10 µV.

• Phasic activity: it is scored in the mentalis and FDS muscles, on mini-
epochs of length 3 seconds. Each mini-epoch is scored as phasic when bursts
of muscle activity with amplitude twice the background and duration between
0.1—5 seconds are present.

• "Any" activity: it is scored in the mentalis muscle on 3-second mini-epochs.
The epochs include “any” activity when either phasic or tonic activations are
observable.
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Finally, the phasic, tonic, and "any" indices are computed as the ratio between
the epochs featuring activity and the total number of epochs. The SINBAR index
[67] is also computed, as the combination of the presence of "any" activity in the
mentalis and phasic activity in the FDS muscle. Normally, artefacts and sustained
EMG tone due to arousals lead to an exclusion from the RSWA quantification.

A computerized version of this method was first presented in [69], with good
scoring accuracy. The validated software (OSG, Belgium, https://www.osg.be/),
is currently integrated in a clinical PSG system (BrainRT) at the Medical University
of Innsbruck, and enables the automatic detection of EMG activity during REM
sleep. Although the automatic scoring software is widely used, a validation study
by the same group [69] shed light on the need for manual artefact correction to
ensure robustness between the obtained score and the expected manual evaluation,
although the performance on the FDS activity remained stable between the two. An
important source of artefacts is found in snoring or sleep apneas, that significantly
alter the submentalis EMG amplitude, resulting in observed loss of atonia, even in
the absence of clinically confirmed RSWA. This is likely not observed in different
muscle sources, such the tibialis anterior, or the flexor digitorum superficialis, as
proposed in the SINBAR montage [67].

5.2.1 Manual Artefact Correction
Currently, no clear definition of artefact is provided in literature or in the guide-

lines. Generally, artefacts during REM sleep may be linked to arousals, snoring,
or technical issues. The lack of a systematic approach likely translates into the
proneness of visual and semi-automatic methods to inter-rater and intra-rater vari-
ability. For this reason, the SINBAR scoring method recommends manual removal
of artefacts caused by snoring, technical issues, or ECG cross-talk when evaluat-
ing RSWA through the semi-automatic PSG software [69]. Recently, a study on
interrater reliability, in the context of artifact correction, has been conducted by
the same group, on a cohort of 25 RBD patients [31]. After manual correction of
artefacts performed independently by four expert scorers (Figure 5.1), the SINBAR
metrics were retrieved for each of the manually-corrected subjects and compared
to the automatic scores obtained through the software.

The study highlighted the FDS as the source with higher inter-rater variabil-
ity (p < 0.001), especially in the case of phasic activity. Although proving high
reliability of the FDS muscle in representing phasic activity in RBD subjects, man-
ual correction of artefact still requires huge, and often protracted, manual labour.
Moreover, the results presented in the study show some disagreement in the choice
of correction of artefacts, and the subsequent metrics assessment. This likely oc-
curs in the mentalis muscle, as phasic activity, breathing and snoring introduce
artefacts.

These premises harbour the need for automatic detection of artefacts, primarily
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Figure 5.1: Example of considered breathing/snoring events in the mentalis mus-
cle, and phasic activity in the flexor digitorum superficialis muscle. Portions in
blue indicate manually corrected artefacts, whereas portions in green indicate the
activity correctly identified by the algorithm. Adapted from [31] with permission
from Oxford University Press (obtained: 19th February, 2024).

to: (1) expedite the scoring process, by easing manual labour, and (2) facilitate
the full automatic scoring of muscle activity during REM.

Finally, it would allow for a full automated pipeline in the evaluation of REM
sleep without atonia.

5.3 Research Activity
The presented research background raised the need for an objective, possibly

automatic, evaluation of artefacts, to smooth the evaluation procedures for scor-
ing REM sleep without atonia. The research activity presented in this Chapter
addressed this issue.

The research pipeline, detailed in the following Sections, aimed at:

1. Objectively characterise the morphology of the EMG signal during sleep,

2. Highlight differences in muscle activations of RBD subjects vs controls,

3. Automatically detect muscle artefacts,

4. Validate the artefact removal method by comparing the obtained scores to
the manual ones.
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Automatic Detection of Artefacts in the Evalua-
tion of REM Sleep Without Atonia

5.3.1 Materials
Subjects and Data

The preliminary investigation stage of this study included 185 subjects who
underwent vPSG at the Sleep Lab in the Medical University of Innsbruck (Austria);
these recordings were employed to explore the morphological characteristics of the
EMG signal.

Subsequently, the second stage included a total of 25 subjects (aged 57.2 ± 14.9
years), who underwent 8-hour vPSG, scored according to the AASM criteria [11],
and already included in [31]. All PSG recordings included six EEG channels (F3,
F4, C4, C4, O1, O2, with reference electrodes M1, M2), the EMG channels (men-
talis, submentalis, bilateral FDS, and bilateral tibialis anterior), one ECG channel,
electro-oculography for eye movements, and the canonical cardiorespiratory signals.
This cohort included 8 subjects with RBD, carefully selected so as to have four sub-
jects with AHI1

REM < 15/h and four with AHIREM > 15/h. The remainder (17
subjects) were randomly included from a cohort under study for suspected para-
somnia, and were selected likewise, so has to have two groups following the same
AHI criteria. No statistical differences in age or sex distribution in the two groups
were observed [31].

Manual Artefact Correction and Scoring

The manual artefact correction rationale and procedure was thoroughly de-
scribed in the prior study by the Innsbruck group (cf. Section 5.2.1, [31]); for the
sake of clarity, this paragraph will briefly report the steps employed.

First, 3-seconds mini-epochs for the analysis were selected by an expert scorer
among the available 30-s REM epochs, following the SINBAR recommendations
for scoring RSWA [68] The occurrence of a sleep spindle, a K-complex, or the
prolonged absence of rapid-eye movements determined the end of the mini-epoch
[100, 31]. A total of 956 ± 70 mini-epochs were included. Subsequently, semi-
automatic RSWA scoring was carried out through the validated OSG Software,
included in the BrainRT scoring system. As mentioned previously (cf. 5.2), the
algorithm was employed to score tonic, phasic, and "any" activity in the mentalis
muscle, and phasic activity in the bilateral FDS and TA muscles. Finally, following
the pipeline previously described by [31], manual artefact correction was carried

1The AHI is the Apnea-Hypopnea index, and represents the combined number of ap-
nea/hypopnea events that occur in one night.
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out independently on all subjects by four different scorers, blinded to the subjects’
diagnoses. For the purpose of this work, probabilistic consensus of the four scorers
was obtained and employed as ground-truth for the final score comparison.

5.3.2 Methods
The following Sections illustrate the Methods adopted in the study, from the

preliminary signal processing to the automatic detection of artefacts in the two
proposed configurations.

Signal Pre-Processing
The EMG recordings from the mentalis, submentalis and bilateral FDS were

pre-processed with a Butterworth bandpass filter (order 16), in the range 50–300
Hz; powerline rejection at 50 Hz was also carried out. To ease the computational
load and facilitate the subsequent procedures, the EMG recordings were down-
sampled from 1000 Hz to 600 Hz. As in [31], the recordings from the bilateral TA
were not included in the subsequent analysis, as previous studies highlighted that
this muscular activity is not directly connected to the identification of subjects with
RBD [67].

Feature Extraction and Statistical Testing
As per research objectives number (1) and (2) (cf. Section 5.3), this work

first aimed at characterising the morphology of muscle twitches during REM sleep,
to differentiate between RBD subjects and controls. To this end, morphological
characterization was addressed through various descriptors – i.e., features – sorted
in the following categories: temporal, spectral, time-frequency, and non-linear. The
list of extracted features is displayed in Table 5.2, along with their description.
These features were computed on 1-second epochs, and concatenated so as to obtain
a feature array. Finally, for each feature, a set of statistics were computed (mean,
median, mode, 25th and 75th percentiles, interquartile range, and interdecile range)
and employed in the classification.

A Mann-Whitney U test [109] was applied to the extracted data to evaluate
differences in distribution as regards the EMG signal characteristics in the two
groups (RBD and controls, respectively).

Automatic Removal of Artefacts
The second part of the study focused on developing a method for the mor-

phological characterisation of EMG during REM sleep to allow for the automatic
removal of artefacts, through supervised ML methods. The employed pipeline is
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Table 5.2: Features extracted for the morphological characterisation of EMG during
REM, along with the domain and proper reference. ⋄: adapted from the cited study;
†: first proposed in this work.

Category Feature (Name and description) Reference

Time

Amplitude metrics: mean, standard deviation, skew-
ness, kurtosis, range, maximum and minimum value,
root mean square

various

Zero Crossing Rate ⋄[165]
Hjorth Parameters ⋄[122]
Percentiles (5th, 10th, 25th, 75th, 90th) various
Form, Crest and Impact Factors various
Event Duration †

Frequency

Fast Fourier Transform: numerical and statistical
measures (mean and median frequencies, total power,
...)

various

Spectral Edge Frequencies (SEF25, SEF75, SEF95) ⋄[141]
Entropy measures ⋄[141, 1]

summarized in Algorithm 2. For the sake of clarity, in this Chapter, the occurrence
of RSWA will be referred to as activity (-ies).

As the selected REM mini-epochs included both activities and artefacts, the
rationale behind this work was to accurately characterize the regions of interest, in
order to proceed to the automatic detection of artefacts. Since the prior interrater
reliability study from the SINBAR group [31] stated that phasic activity was the
most affected by artefacts, this work first aimed at finding a metric to accurately
match the morphology of phasic activations.

To serve the purpose, wavelet-based approaches are widely adopted in EMG
processing [127, 126], and were previously proposed in the identification of EMG
activations in sleep studies [54].

Following an approach similar to [28], a Continuous Wavelet Transform (CWT)
was employed to match the morphology of the phasic activations. Indeed, although
similar from a morphological point of view, signals and artefacts are likely based
on different time-frequency scales. As wavelet transforms are commonly employed
to decompose the original signal of interest into various time-varying frequency
components (i.e., scales), this approach was adopted to differentiate the two classes.
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Algorithm 2 Automatic Detection of Artefacts
1: Select 3-s REM epochs;
2: Divide into 0.1-s mini-epochs (M);
3: for epoch← 1 to M do
4: Compute Correlation Index
5: Compute Energy-Based Metric
6: end for
7: Binary Classification of mini-epochs (Artefact vs Activity)
8: Exclude epochs marked as Artefact
9: Compute RSWA Metrics (according to the SINBAR assessment)
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From a theoretical point of view, a CWT is defined, for a continuous signal x(t):

C(a, b;x(t), ψ(t)) =
∫︂ ∞

−∞
x(t)1

a
ψ∗(t− b

a
) dt (5.1)

Where ψ(t) is the so-called mother wavelet. This function is the dot product of
continuous signal x(t) with a shifted (b) and scaled (a) version of ψ(t). It yields
the various constituent waveforms of the original signal. The two factors represent
the morphology and the time positioning of the wavelet, respectively.

Generally, this enables the use of a wavelet transform as a feature detector, by
employing a proper mother wavelet – for instance, a function resembling the de-
tectable feature. As phasic activations present with a symmetrical distribution (Fig-
ure 5.2), the mother wavelet of choice was selected from the biorthogonal wavelet
family [91], that includes compactly supported, symmetric wavelets. In principle,
differing from Equation 5.1, a biorthogonal wavelet is formed by duality, and the
presence of two wavelet functions [40], one employed in the analysis and one in the
synthesis.

The selected mother wavelet (biorthogonal 3.9) is displayed in Figure 5.2; this
wavelet family was selected as the shape strongly resembles the shape of a phasic
activation.

Figure 5.2: Morphology of a rapid, phasic activation observed in the mentalis muscle
(blue line), and the bior3.9 mother wavelet selected for analysis and synthesis (red
line).

In its discrete form, i.e., the Discrete Wavelet Transform (DWT), the scale and
shift factors are integers. To obtain the various frequency components of a signal
x(t), the DWT can be applied to the continuous signal as a filter bank, working
in a dyadic way (Figure 5.3), at the specified level of decomposition, to obtain
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the approximate (cA) and detailed (cD) coefficients, virtually corresponding to the
low-pass and high-pass version of the signal, respectively.
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Figure 5.3: Discrete dyadic Wavelet Transform at the Nth level of decomposition. At
each level, H[n] works as a low-pass filter and yields the approximate coefficients
(cA), while G[n] works as a high-pass filter with the detail coefficients (cD) as
output. At each level, the cut-off frequency is downsampled by a factor 2.

In this work, multi-level decomposition (5 levels) was applied to the selected
REM mini-epochs, to obtain the cA and cD, to allow for a fine tuning of the one-
dimensional signal reconstruction. The spectral distribution of the reconstructed
signal (both for activity and artefacts segments) was explored through the Kernel
Density Estimation (KDE), which highlighted the coefficients at the third level
of detail (virtually corresponding to the frequency range 75–150 Hz) as the ones
providing the best differentiation between the two signal types (Figure 5.4).

As appreciable, the selected time-frequency scale is able to decouple the different
spectral contributions. Finally, the original signal was reconstructed by employing
the wavelet decomposition at level 3 (Figure 5.5).

From a preliminary, visual inspection, the reconstructed signal morphologically
resembled the signal with phasic activations, leaving less precise and noisy signals
when matching with the artifacts.

Feature Extraction

To carry out the automatic detection of artefacts, supervised Machine Learning
algorithms were employed, with features extracted from the selected EMG REM
epochs, which were processed in 0.1-seconds sub-segments.

To differentiate artefacts from phasic activity, the original signal and its wavelet-
reconstructed version have been exploited. Namely, an index of correlation and an
energy-based metric were extracted and used in the ML pipeline.
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Figure 5.4: Power density distribution for activity and artefact in the frequency
range 75–150 Hz (3rd level of detail (sampling frequency: 600 Hz).

(a) (b)

Figure 5.5: Wavelet-based synthesis of a portion of: (a) phasic activity, and (b)
breathing artefact. The reconstructed signal is shown in the solid orange line.

More in detail, to objectively capture the extent of similarity between the orig-
inal and reconstructed signal, a correlation metric was proposed. This latter was
defined as the ratio between the cross-correlation of the original signal x(t) and the
reconstruction y(t) (Equation 5.2), and the auto-correlation (Equation 5.3).

Rxy(τ) =
∫︂ ∞

−∞
x(t)y(t+ τ)dt (5.2)

Rxx(τ) =
∫︂ ∞

−∞
x(t)x(t+ τ)dt (5.3)

The index of correlation (5.4) was computed in 0.1-second epochs, and expressed
in the range 0 to 1, where values close to 1 represent higher similarity.

CI = Rxy

Rxx

(5.4)
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This metric featured high values (above 0.7) for phasic activity areas, and low
values (below 0.5) for artefacts, showing potential as screening tool to for artefacts,
by excluding the low correlation segments.

However, one potential drawback lied in the fact that low EMG-activity areas
– i.e., areas with no phasic activations nor artefacts – featured high CI values,
significantly introducing noise in the ML detection and subsequent RSWA metric
assessment.

For this reason, an additional, energy-based metric, was proposed, in order to
adequately characterize the areas of interest. The metric was retrieved epoch-wise,
by computing the 90th percentile of the integral of the signal, as high-amplitude
peaks were mostly found in the top-10% of the signal amplitude. Virtually, this
metric functions as a high-pass filter for the energy of the signal, by setting a
threshold to discard the low-activity areas.

On the other hand, this approach was not applied in the detection of artefacts
versus background activity, due to their morphological resemblance. Instead, the
features described in Section 5.3.2 were employed in the ML classification.

Automatic Detection of Artefacts

The extracted features were employed in a supervised ML framework to carry
out the automatic artefact detection, in the two following configurations:

1. Artefact vs Phasic Activity,

2. Artefact vs Background Activity.

The two procedures will be described in this order.
Regarding the configuration (1) (Artefact vs Phasic activity), the feature set

only consisted in the index of correlation and the energy-based metric. Therefore,
no feature selection techniques were adopted, as, otherwise, the system would rely
only on one feature, switching the problem to a probabilistic approach. In this
binary class detection task, five different supervised models were tested. Namely,
the following models were tested: SVM, KNN, RF, LDA, AdaBoost (Chapter 3).

Considering configuration (2) (Artefact vs Background activity), a larger set
of features was extracted from the available data. This differentiating choice was
made due to the fact that statistical testing of the morphological features yielded
promising results compared to the phasic configuration, and this set of features was
employed.

Specifically, to trim the initial feature set, preliminary statistical tests were
conducted on the extracted features. Feature normality was first tested through the
Shapiro-Wilk test [157], which highlighted the normality of the features. Second,
the t-Student’s independent sample test was applied. Given the high number of
significant features, a feature selection approach was adopted to obtain the final
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feature set. The adopted approach is the ReliefF algorithm [168], whose results
were inspected, and the top 10 ranked features were employed for the analysis,
following the elbow-method. The explored classifiers were: DT, SVM, KNN, RF,
and LDA.

The two classification tasks were carried out independently.
For both tasks, a hold-out, combined with a Leave-One-Subject-Out cross-

validation approach were adopted. Specifically, 72% of the available data (18 sub-
jects) were employed in the training and validation steps, while the remaining 28%
was set aside for external validation and RSWA metrics testing. To allow for bet-
ter generalization capability of the tested models, the model hyperparameters were
optimised through a Grid-Search approach, by employing the F1 score as metric
for model performance comparison. For each tested model, detection performance
was evaluated by means of overall Accuracy, Recall, Specificity, Precision, and F1
score.

5.3.3 Results
This subsection illustrates the results of the research activity.

Data Distribution, Statistical Testing, Feature Selection
Distribution testing of the extracted features, through the Shapiro-Wilk test,

highlighted all the extracted features (both in configuration 1 and 2) to have a
normal distribution (p>0.05).

The results of the independent sample test on the morphological features em-
ployed in the configuration (2) are shown in Table 5.3; the most discriminative
feature (p<0.001) for the two types of EMG activations resulted to be SEF25,
which virtually represents the 25th percentile of the frequency spectra.

The proposed index of correlation featured a significantly different distribution
the two classes, i.e., artefact and activity, respectively, as shown in Figure 5.6. The
data distribution is consistent with the manual scores independently provided by
the expert scorers. Phasic activity segments featured a correlation index above 0.6,
whereas the average value for artefacts was of 0.42.

Performance of Automatic Detection of Artefacts
Automatic detection of artefacts was carried out through Machine Learning

Algorithms. As described in the Methods paragraph, after cross-validation, the
best model in each configuration was optimized through a grid search approach
and later employed in the external validation set, consisting of 7 subjects. The
performance metrics of the LOSO-CV are shown in Table 5.4 and Table 5.5 for the
two configurations, respectively.
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Table 5.3: Top 10 ranked features according to the ReliefF algorithm, in the con-
figuration (2): Artefact vs Background Activity. The results of the Mann-Whitney
U test are shown. Significance level: *: p<0.05, **: p<0.005, ***: p<0.001.

Feature Source Independent Sample Test

SEF25mean Mentalis (50–300 Hz) < 0.001***

Kurtosismean Mentalis (50–300 Hz) < 0.001***

95pctlmean Mentalis (50–300 Hz) < 0.001***

75pctlmean Mentalis (5–10 Hz) 0.005*

5pctlmean Mentalis (50–300 Hz) < 0.001***

90pctlmean Mentalis (50–300 Hz) < 0.001***

MEDFmean Mentalis (50–300 Hz) < 0.001***

AbsPowermean Mentalis (5–10 Hz) < 0.005**

MEDFmean Mentalis (5–10 Hz) < 0.001***

Entropymean Mentalis (50–300 Hz) < 0.001***
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Figure 5.6: Index of correlation (for activity and artefacts), in the (a) mentalis,
(b) right flexor digitorum superficialis, and (c) left flexor digitorum superficialis.
Consensus with the four scorers is shown.

Regarding the classification task (1), the highest validation F1 score was ob-
tained with a LDA classifier (89.59%). Overall, the features employed in this clas-
sification task proved high discriminative power, leading to an average validation
accuracy of across the tested models. Performance metrics reach slightly lower
values in the configuration (2), artefact vs background activity, with an average
validation accuracy of 73.44 ± 3.27 %. An optimized RF achieved a F1 score of
76,56% in the LOSO-CV approach. This modest misalignment in performance be-
tween the two configurations may find its explanation in the fact that the artefacts
morphologically resemble the muscle activity under study.
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Table 5.4: Classification task: Artefact vs Phasic Activity. Performance metrics of
the optimised classifiers, employing a LOSO-CV.

Accuracy Recall Specificity Precision F1
SVM 84.90 % 90.10 % 77.78 % 83.30 % 86.95 %
KNN 84 % 87.78 % 79.70 % 80 % 85.32 %
NB 81 % 85.70 % 75 % 80.35 % 82.94 %
LDA 89.04 % 91 % 88.2 % 89.18 % 89.59 %
AdaBoost 82.50 % 84.21 % 80.95 % 81 % 82.05 %

Table 5.5: Classification task: Artefact vs Background Activity. Performance met-
rics of the optimised classifiers, employing a LOSO-CV.

Accuracy Recall Specificity Precision F1
DT 71.37 % 69.18 % 73.31 % 69.79 % 69.48 %
SVM 76.8 % 80.23 % 73.83% 73.21 % 76.56 %
KNN 73.15 % 74.70 % 71.76 % 70.21 % 75.67 %
RF 77.26 % 76.16 % 78.23 % 75.72 % 76.56 %
LDA 68.63 % 70.05 % 67.35 % 65.66 % 67.79 %

Metrics Validation
The two best classifiers for the two configurations, respectively, were employed

in the external test set to independently carry out automatic artefact detection.
The test set included 7 subjects, for whom the four scorers previously conducted
manual scoring of the selected REM epochs. The trained models were employed to
carry out automatic artefact detection in the selected REM mini-epochs.

Finally, the clinical RSWA metrics according to the SINBAR scoring system,
namely, phasic and tonic activity, "any" activity and SINBAR index (%) were
computed in the automatically corrected signals, and compared to the metrics
obtained after manual correction by the four scorers (Figure 5.7). The accuracy of
the proposed artefact removal method was assessed in terms of Pearson’s correlation
between the automatic and manually-corrected scores. The highest correlation
coefficient (ρ) was obtained for the phasic activity index, with values of 0.96 and
0.82 for the mentalis and FDS muscles, respectively. A slight decrease was observed
in the evaluation of the "any" activity and SINBAR index, with Pearson’s ρ of 0.76
and 0.71, respectively.
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Figure 5.7: Score agreement between the automatic and manually corrected scores.
Phasic (FDS, Mentalis), "any", and SINBAR indices are shown.

5.3.4 Discussion
The research activity presented in this Chapter aimed at providing a possible

solution for the automatic detection of artefact in the evaluation of REM Sleep
Without Atonia, by exploiting the morphology of EMG activations during REM
sleep and ML methods. The proposed method relied chiefly on the objective char-
acterisation of EMG activity, to allow for a finer detection of muscle artefacts
according to their type. More specifically, a metric of correlation was introduced to
distinguish artefacts from phasic activity, and a set of features, characterizing the
EMG signal in the temporal, spectral, and non-linear, domains was employed for
the detection of artefacts against elevated background tone. The results attained
through the presented configurations prove the effectiveness of a low computational
cost, automatic method for artefact removal in the evaluation of RSWA. Clinical
validation of the RSWA metrics, from a 4-scorer consensus, was achieved with over-
all Pearson’s ρ of 0.81 ± 0.04. The best agreement was obtained when detecting
artefacts from phasic activity, especially in the mentalis and FDS EMG sources.
This result is in line with the findings in [31], which highlighted the FDS and sub-
mentalis phasic indices as the metrics with higher inter-rater reliability. A slight
decrease in agreement was observed for the "any" mentalis and SINBAR indices,
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which featured higher values of inter-rater variability in [31], even after manual
correction. A possible explanation may be found in the fact that some types of
artefacts, especially snoring or breathing artefacts, are ofttimes hardly detected
from the elevated background tone.

Despite holding promising applicability, the limitations of this study need to
be discussed. First, the study included only 25 subjects, due to the high workload
required for manual scoring. Future investigations will include a larger population,
with an increased number of RBD subjects. Second, being a feasibility study,
train, testing, and validation were conducted on on previously selected, manually
scored REM epochs. Future works should test the efficacy of the quantification
of RSWA without prior epoch selection. Furthermore, the wavelet decomposition
process was conducted on 0.1-second epochs. Although this allows for an efficient
computational load, other window lengths should be investigated to test for better
accuracy in artefact detection.

Future developments of this project should focus on the automatic differentia-
tion of artefacts in REM sleep, due to snoring or breathing, technical interference,
or ECG crosstalk. This feature could facilitate fully automatic quantification of
REM without atonia without prior manual epoch selection, significantly decreas-
ing the PSG scoring times. Indeed, the optimised framework could be applied to
whole-night PSG recordings, thus enabling the fully automatic RSWA quantifica-
tion according to the SINBAR method, and significantly decreasing the scoring
times. Finally, an automatic analysis framework could find clinical implications in
the automatic detection of RBD subjects based on the automatic scores.

5.4 Conclusion
Evidence of REM Sleep Without Atonia is largely considered the polysomno-

graphic hallmark of REM Sleep Behaviour Disorder. RSWA manifests with sus-
tained muscle tone during REM sleep, either in the form of elevated background
tone (i.e., tonic activity), or periodic bursts, or twitches, of muscle activity. Though
abnormal activations are commonly observed in submental recordings, more re-
cently the FDS activity proved to be a reliable alternative, and prone to lower
variability in scoring [31].

The current guidelines for the clinical assessment of RSWA require manual
scoring of polysomnographic recordings. This entails a long and protracted pro-
cedure, ofttimes resulting in tangible inter-rater variability, especially due to the
frequent occurrence of artefacts. A solid alternative to this issue has been provided
through the semi-automation of the SINBAR assessment [146], with a clinical PSG-
integrated software for the automatic detection of abnormal activity in REM sleep.
However, activity mis-identification remains an open issue, leading to the necessity
of manual correction. Indeed, artefacts observed in the EMG channels are often

72



5.4 – Conclusion

misclassified as either phasic, or background activity, depending on the expressed
waveform [31]. While manual post-processing provides highly precise scores, it still
translates to manual labour and lengthy scoring times.

Following the findings presented in [31], which highlighted the efficacy of manual
correction for inter-rater reliability, the research work described in this Chapter
aimed at moving a step forward towards the automatic detection of artefacts, to
expedite RSWA assessment through full-automated, reliable, and robust computer-
based methods.

Based on these assumptions, the experimental activities presented in this Chap-
ter led to the definition of two possible strategies for the automatic detection of
artefacts from phasic and background activity, respectively.

While for the latter a straightforward, feature-engineering approach was adopted,
with supervised Machine Learning models, the former required additional attention
in the signal characterisation. For this purpose, a matched-wavelet approach was
proposed and employed for the identification of phasic activity segments, through
a biorthogonal mother wavelet. Two novel metrics, representing (1) the similar-
ity to the selected mother wavelet, and (2) the amount of energy carried by the
muscle activation, were proposed and employed as features to discriminate the two
components (i.e., artefacts and activity).

Though based on a simple pipeline, the proposed method appeared as a valid
tool for the automatic detection of artefacts and subsequent assessment of RSWA
metrics, achieving for the atonia metrics a 0.81 ± 0.04 consensus with the manual
scores, through Pearson’s correlation. Furthermore, the obtained results corrobo-
rated the previous findings highlighted by [31], and confirmed the FDS muscle as
the EMG source least affected by muscle artefacts.

The results presented in this Chapter hold premise for the implementation of
a fully-automated pipeline for the evaluation of RSWA according to the SINBAR
scoring system. However, as formerly discussed, the validity of this method on
unlabelled, large sets of data, currently remains an open question, as the models
were trained and tested on vPSG data from 25 subjects.

Furthermore, the applicability of the proposed novel features in the automatic
detection of RBD subjects from all-night vPSG recordings shall still be explored,
and is left for future investigations. Indeed, former studies [32] suggested the feasi-
bility of detecting RBD subjects from the analysis of EMG patterns, thus overcom-
ing the amplitude thresholds currently employed alongside with RSWA metrics.

73



74



Chapter 6

Automatic Detection of REM
Sleep Behaviour Disorder

Within the context of minimally invasive sleep studies, automatic detection of
subjects with REM Sleep Behaviour Disorder from physiological signals has been
addressed. This Chapter will explore the methods developed to pursue this aim,
and included in Papers [139] and [142].

6.1 Context and Background
REM Sleep Behaviour Disorder (RBD) is a parasomnia that coexists with REM

Sleep Without Atonia (RSWA), and dream enactment or complex motor behaviour.
However, the diagnosis is not straightforward. Among the screening criteria for the
diagnosis of RBD (Section 2.2.1) the polysomnographic demonstration of RSWA is
required.

As described previously (Chapter 5), the scoring rules for RSWA have require
primarily a combination of visual inspection and manual scoring of EMG traces in
PSG. Although a computerised version of the SINBAR method is already available
[69], manual adjustments are still required, leading to long and protracted scoring
procedures.

To overcome this limitation, numerous semi-automatic methods have been pro-
posed in recent years, to assess muscle activity during sleep and aid the detection
of RSWA. Generally, a combination of EMG signal processing and rule-based ap-
proaches is employed to detect and quantify RSWA, by expressing the latter through
continuous indices. In more detail, surface EMG signals, recorded at the mentalis
and submentalis, TA and FDS muscles are processed by means of signal processing
techniques, in order to highlight the variations over time in amplitude, primarily
during the REM stage. As a large majority of these approaches are threshold-based,
they will be referred to as rule-based. The following Section provides an overview.
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6.1.1 Rule-Based and Semi-Automated Methods
In the vast majority of rule-based methods, the EMG activity during REM sleep

is measured within epochs of fixed length (1-, 2-, 3-seconds), and then compared to
pre-defined values – i.e., baseline – commonly identified through the observation of
the same source during quiet REM or SWS sleep. Although traditionally, basing on
[100], a window length of 2 seconds was adopted to identify phasic activity in RBD,
the majority of the semi-automatic methods proposed in the literature rely on a
3-second length window. Namely, these are the Supra-Threshold-REM-Activity-
Metric (STREAM), the Frandsen Index (FRI) and the computerised version of
the Sleep Insbruck Barcelona (SINBAR) method (cf. Section 5.2); a detailed de-
scription of these will follow, and a summary is provided in Table 6.1, in terms of
approach and performance.

As mentioned in Section 2.1, in physiological conditions, the activity observed
at the mentalis muscle during REM sleep is not expected to exceed the lowest tone
observed during NREM sleep [89]. From this assumption, the STREAM algorithm
employs as baseline reference value the 5th percentile of the EMG variance in NREM
sleep. The EMG signal during REM sleep is analysed in 3-second mini-epochs;
the STREAM metric accounts for the percentage of REM epochs with variance
exceeding the baseline [24]. A similar approach is adopted in the evaluation of
the FRI; in this case, the optimal detection combination, including the baseline,
activity, and threshold values, is established heuristically [65]. In this framework,
the EMG signal is processed as to obtain an activity curve (AC), virtually related
to the peak amplitude within the observation window. Motor activity is detected
when the AC value is found above the detection threshold, which, in the optimal
combination, represented 4 times the selected baseline. The same epoch length is
employed in the computerised version of the SINBAR method. Recently, an open-
source version has been proposed [146], with an AUC of 0.945 and 0.994 when
detecting RBD from the mentalis and combination "mentalis + bilateral FDS",
respectively.

A shorter epoch length is adopted in the computation of the REM Atonia In-
dex (RAI), by Ferri et al. [60]. This method has been developed with the aim
of quantifying the extent of RSWA, and modelled on an initial cohort of healthy
subjects and people with RBD. An improved version was later proposed [61], ac-
counting for the reduction of noise primarily due to motion artefacts, which may
be very common in sleep recordings in the mentalis and submentalis muscles. More
specifically, the RAI is defined as a continuous value in the range 0 to 1, with 0
representing total loss of REM muscle atonia. The value is retrieved as the ratio
of 1 second mini-epochs with amplitude values below 1 µV over the total number
of REM mini-epochs, excluding those with amplitude values ranging from 1 to 2
µV, as this EMG amplitude level may result ambivalent, and describing both ato-
nia and muscle activation [60]. A value below 0.8 or 0.9 is indicative of RSWA.
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A comparative study [62] was conducted to investigate the detection performance
of the RAI alongside with the two commonly employed visual procedures – i.e.,
Montréal and SINBAR. The study, conducted on PD patients with and without
RBD, highlighted the clinical validity of the RAI as a first-line, screening tool for
RSWA. Finally, Kempfner et al. [93, 92] proposed a semi-automated method for
the detection of RSWA based on the envelope of the EMG signal recorded at dif-
ferent sources, including the submental and tibialis anterior muscles. Following
an approach similar to the one adopted for the computation of the FRI [65], the
envelope of the EMG signal is observed over mini-epochs of 3-second length, and a
feature, virtually corresponding to on-off muscle activity, was extracted from each
mini-epoch by comparing its amplitude to the observed minimum. Afterwards, the
automatic detection of RSWA is proposed in a semi-supervised fashion, through a
one-class support vector machine (OC-SVM) [152], trained on data from healthy
subjects. The epochs corresponding to abnormal muscle activity are detected as
outliers from the algorithm, and a continuous index is computed as the ratio be-
tween outliers and total number of observation, and used as a quantitative indicator
of muscle activity.

Although presenting with reasonable RBD detection performance (cf. Table 6.1),
these methods are generally based on rigid sets of rules and, therefore, rely strictly
on pre-defined thresholds to identify RBD-like muscle activity. However, in cer-
tain circumstances, such as sleep apneas, the EMG amplitude during REM sleep
substantially increases, though without the occurrence of RSWA [29].

It has been shown that manual intervention is still required in many cases; the
topic of artefact correction was discussed in Chapter 5. Besides, the presence of
RSWA is a required condition in the diagnosis of RBD, but other aspects, often
overlooked in rule-based and semi-automated methods – i.e., dream enactment,
vocalisations – need to be taken into account [81], as well as peculiar patterns in
PSG signals.

To partially overcome these limitations, without the need for human interven-
tion, alternative methods were proposed, exploring Machine Learning approaches
to detect abnormal EMG activity during REM sleep.
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Table 6.1: Semi-automatic, rule-based methods for the assessment of REM Sleep Without Atonia presented in this
Section. For each method, the following are included: EMG source, pre-processing specifications, window length,
population under study, performance metric (in terms of area under the curve). The acronym ND indicates subjects
with neurodegenerative disorders.

Index EMG Filter Epoch Sample AUC Reference

RAI Mentalis 10–100 Hz 1 s

35 controls
31 RBD
10 MSA
5 OSAS

0.83 [61, 62]

STREAM Mentalis 10–70 Hz 3 s 6 controls
23 ND (9 RBD) 0.84 [24]

FRI Mentalis 10–70 Hz
Notch 50 Hz 3 s

29 controls
21 RBD
43 PD

0.81 [65]

Automated
SINBAR

Mentalis
Bilateral FDS 50–300 Hz 3 s 60 controls

20 RBD 0.93 [69, 62]
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6.1.2 Machine Learning for RBD Detection
Different approaches to the automatic detection of RBD through feature en-

gineering and ML were proposed in the literature, relying on various biosignals
collected during sleep.

Specifically, Cooray et al. [42] proposed a feature-driven classification pipeline
based on EEG, EMG, and EOG signals, achieving a detection accuracy on the
test set of 96%. In a following work [43], the Authors propose a similar approach,
though disposing of the EEG source, showing significantly high accuracies for the
EMG channel alone (90%), and 92% when combining the EMG with ECG features.
Other works [37] explored the combination of EEG and EOG channels in detecting
subjects with neurodegenerative diseases (PD and RBD), yielding a 91.4% recall
in the validation stage.

Other approaches investigated the ability of EMG, or EEG channels alone, in
detecting subjects with RBD. Kempfner et al. [93] trained a one-class SVM (OC-
SVM) in classifying outliers – i.e., subjects with RBD – based on the envelope of
the tibialis anterior muscle, reaching a validation AUC of 0.989. Later, Cesari et al.
[32] proposed a data-driven, probabilistic method for the evaluation of RSWA based
on EMG characteristics, outperforming previous approaches, with a validation ac-
curacy of 81.52 ± 8.20 %, considering both REM and NREM sleep segments. The
method was also validated on an external test set, achieving a RBD-wise accuracies
of 84.17% and of 85.60% when excluding PD patients.

Lastly, as some differences were observed in the EEG waveforms when compar-
ing RBD subjects to healthy ones [113], various studies examined the potentiality
of detecting RBD through one or more EEG channels. Hansen et al. [75] employed
a total of 6 EEG channels (commonly recorded during PSG) to tackle automatic
classification through a Bayes probabilistic classifier and a KNN, achieving a 80%
recall with the former, after a feature selection step. Likewise, Bisgard et al. [13]
attempted RBD detection with the same number of channels, though on a larger
cohort and with unsupervised ML models. The Authors attained a 78% accuracy
on the test set, though with a slight decrease in recall, reaching a value of 63%.

The vast majority of these approaches rely on biosignals collected through PSG,
exploring heterogeneous combinations – e.g., EEG, EMG, EOG – or multiple EEG
channels. However, as discussed in Chapter 4, PSG offers very precise diagnostics,
but requires cumbersome instrumentation.

While, from a clinical perspective, PSG is fundamental in the assessment of
REM atonia, especially in consideration of the fact that higher degrees of RSWA
have been highlighted as clinical predictors of RBD with higher probability [117,
115], on the other hand, RSWA does not manifest uniformly, and RBD is likely
to progress differently for each subject. This aspect is noteworhy, since RBD is
regarded as a precursor to most α-synucleinopathies, achieving a pivotal role in the
development of neurodegenerative diseases (cf. Section 2.2.1).
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Therefore, while RSWA remains a potential biomarker for risk stratification, in
the perspective of providing accessible screening tools for early detection of RBD,
simpler configurations shall be investigated, with the aims of (1) detecting RBD
from a minimal set of sensors, thus assessing the feasibility of outpatient screening,
possibly through lightweight technology, and (2) propose strategies to quantita-
tively monitor the progression of RBD.

6.2 Research Overview
Automatic detection of RBD from sleep biosignals provides a possible solution

for expediting the diagnostic process.
The research activity described in this Chapter attempted at overcoming the

possible limitations of full PSG, by tackling RBD detection from single-source
biosignals (either EEG or EMG). The research work was conducted in coopera-
tion with the Regional Centre for Sleep Medicine, Department of Neuroscience,
of the Molinette University Hospital (Turin, Italy). This resulted in two main re-
search branches, focusing on muscular activations and brain activity ((A) and (B),
respectively).

The research activities, detailed in the following Sections, aimed at:

1. Characterising EMG spectral patterns in RBD subjects (A),

2. Detecting RBD from EMG recordings (A),

3. Investigating REM sleep and Slow Wave Sleep in RBD (B),

4. Detecting RBD from a single EEG channel (B),

5. Providing an EMG-based, objective metric to assess the degree of disease
progression (A).

6.3 A) Automatic Detection of RBD based on
EMG

The first approach tackled the characterisation of EMG patterns in RBD, and
subsequent automatic detection through a set of simple metrics.

The work presented in this Section is included in Paper [139].

6.3.1 Materials
This work included both a public and a private dataset. The well-known CAP

Sleep Database, publicly available on PhysioNet ([166, 72], https://physionet.
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org, accessed: 15 March 2021), was employed. The dataset includes PSG recordings
of 22 RBD subjects and 16 healthy subjects (HS); the demographics are displayed
in Table 6.3.1. In the dataset, 14 subjects had a diagnosis of iRBD, while the re-
mainder were affected by secondary: 6 with PD-RBD, 1 with Dementia with Lewy
Bodies, and 1 with Multiple System Atrophy. Quality check was carried out on
the recordings prior to the subsequent analysis; one subject in the HS group was
discarded as it lacked any EMG recording, and three more were excluded due to
the presence of ECG artefact. Subjects were included in the final processing if the
recordings presented with more than 5 minutes of scored REM sleep. The private
dataset (TURIN Sleep Disorders Dataset, TuSDi) was collected at the Regional
Centre for Sleep Disorders in Turin, Italy; this second cohort was employed to as-
sess the robustness of the proposed framework. It includes 18 clinically diagnosed
or suspected RSWA subjects (Table 6.3.1), for which the diagnosis was confirmed
after PSG. One subject was undergoing treatment for PD at the time of the study.
Inclusion criteria for this dataset are provided in the Supplementary Material (Ap-
pendix A.1.1); as mentioned in Appendix A.1.1, this dataset is available on request,
and was not made publicly available for privacy reasons.

All PSG recordings were manually scored by a sleep technologist, and events
during sleep were manually identified. Specifically, the submental EMG channel was
screened for elevated muscle tone during REM related to arousals and sleep apneas.
These occurrences were labelled as artefacts and excluded from the analysis.

Table 6.2: Sample and Demographics of the datasets employed in the study: the
CAP Sleep Database and the TUSDi Database.

Dataset Sample (Sex) Age

CAP Sleep Database 22 RBD (19 males) 70 ± 6 years
16 HS (9 males) 32.5 ± 5 years

TuSDi Database 18 RBD (11 males) 60 ± 2 years

6.3.2 Methods
The following Sections illustrate the Methods adopted in the study, from the

extraction of features to the implementation of the Machine Learning pipeline.

Feature Extraction

The feature extraction process regarded two main macro-categories: polysomno-
graphic – i.e., features describing the sleep structure – and EMG-derived features.
As regards the former, clinically employed variables [63] were chosen, and computed
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from the manually annotated hypnogram. Additional polysomnographic parame-
ters were introduced, following previous work by Cesari et al. [27], covering the
substructure of the sleep cycle, and providing information about sleep fragmenta-
tion. Specifically, the Sleep Transition Index (STI), REM and non-REM Fragmen-
tation Indices (RFI and NFI), and the average length and proportion of segments
classified as belonging to the same sleep stage (cf. Table 6.3).

Regarding feature extraction from EMG data, the recordings from the men-
talis muscle were selected, and processed in 1-second epochs; the parameters were
extracted in the time and frequency domains.

First, the RAI was computed for each subject; it accounts for the extent of
atonia during REM sleep (cf. Section 6.1.1), and is computed from the amplitude
of the time series. Then, various parameters from the power spectrum (PSD) of
the EMG were extracted. Specifically, the Mean Frequency (an averaged measure
which represents the PSD centroid), the Median Frequency, i.e., the Spectral Edge
Frequency at 50%, (SEF50) representing the threshold frequency below which 50%
of the total power lies, and the Spectral Edge Frequency at 95% (SEF95), i.e., the
spectral 95th percentile.

For the sake of clarity, the whole set of extracted features is displayed and
described in Tables 6.3 and 6.4, along with their description.

Post-Processing and Feature Selection

As the final set of features encompassed different categories and varying scales,
feature normalisation was applied to prevent bias from affecting the classification
task. After confirming the normality of the distribution through a Shapiro-Wilk
test, Z-score normalisation (Equation 6.1) was applied to all the features; this step
ensured that the final feature set had a null mean (µ) and the standard deviation
(σ) equalling 1. For any feature f :

fnorm = f − µ
σ

(6.1)

Variance threshold feature selection was employed, in order to remove the low-
variance predictors in the dataset, and decrease the risk for over- and underfitting.
The threshold was the 25th percentile, heuristically selected; all features with vari-
ance below that value were discarded.

Machine Learning Classification

This work aimed at performing a binary classification task, between healthy
subjects and subjects with RBD, through the use of supervised learning models.
Specifically, a KNN and a SVM were employed for this task; both models are built
on distance-based algorithms (cf. Chapter 3). To ensure the best possible general-
isation capability for this framework, the models hyperparameters were optimised,
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Table 6.3: Polysomnographic features employed for the analysis, along with their
description and proper reference (if needed). They encompass both clinically em-
ployed parameters and polysomnographic patterns.

Feature Description
Sleep Onset Latency (SOL) The amount of time required to fall asleep

(minutes)
Wake After Sleep Onset (WASO) The amount of time the subject is awake

during the recording (minutes)
Total Sleep Time (TST) Total hours of sleep
Time in Bed (TIB) Lights-off to lights-on interval (hours)
Sleep Efficiency (SE) The ratio between TST and TIB (%)
Arousal Index (ARI) Frequency of occurrence of arousals
Minutes of REM Sleep (MREM) Total duration of REM Sleep (minutes)
Proportion of N1 Sleep (PN1) N1 sleep per TST (%)
Proportion of N2 Sleep (PN2) N2 sleep per TST (%)
Proportion of SWS Sleep (PN3) SWS sleep per TST (%)
Proportion of REM Sleep (PNR) Proportion of REM sleep per TST (%)
NREM Fragmentation Index (NFI) A measure of the number of transitions

from NREM to any other NREM stage per
hour of NREM sleep [27]

REM Fragmentation Index (RFI) A measure of the number of transitions
from REM to any other sleep stage per
hour of REM [27]

Wake Proportion (WP) Awake time during the night (%)
Sleep Transition Index (STI) A measure of the number of transitions

from REM to NREM (and vice versa) per
hours of sleep

Average Length N1 (ALN1) Average length of N1 segments (minutes)
Average Length N2 (ALN2) Average length of N2 segments (minutes)
Average Length SWS (ALSWS) Average length of SWS segments (minutes)
Average Length REM (ALREM) Average length of REM segments (min-

utes)

through a Bayesian approach, with 30 iterations. Information about the employed
models and the optimisation step is provided in Table 6.5. The models were trained
and cross-validated on the CAP Database cohort; to ensure classification robust-
ness, a hold-out approach was adopted. In more detail, 70% of the dataset (23 total
subjects, 15 RBD) constituted the training set, and the remainder the test set (11
subjects, 7 RBD). A k-fold CV (k=5) was employed to mitigate overfitting.
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Table 6.4: EMG features proposed and employed in this study for the caractheri-
sation of RBD subjects, according to their category. A description is provided.

Domain Feature Description
Time REM Sleep Atonia Index

(RAI) [61]
A measure of the amount of ato-
nia during REM Sleep (1-s mini-
epochs)

Frequency
Mean Frequency of REM mini-
epochs (MF)

Mean Frequency of EMG sig-
nal during REM Sleep, 1-s mini-
epochs (Hz)

Mean Frequency of REM mini-
epochs (SEF50)

Median Frequency of EMG sig-
nal during REM Sleep, 1-s mini-
epochs (Hz)

Spectral Edge Frequency at 95%
of REM mini-epochs (SEF95)

Frequency below which 95% of
the total spectral power is found
on the EMG signal during REM
Sleep, computed on 1-s mini-
epochs (Hz)

To assess the generalisation capability of the tested models, an additional ex-
ternal validation step was conducted on the TuSDi Database, so as to provide a set
of unseen data to the previously trained models.

Table 6.5: Overview of the hyperparameters optimisation search range, and the
optimised configuration, for the two explored classifiers.

K-NN SVM

Hyperparameters

K : range [1:1:12] Kernel: Linear,
Quadratic,

Distance Metric: City
Block, Chebyschev,

Gaussian, Cubic

Euclidean, Hamming,
Mahalanobis,

Maximum Penalty:
range [0.001, 1000]

Minkowski, Spearman

Optimised Parameters
K : 10 Kernel: Linear
Distance Metric: Spear-
man

Max Penalty: 2.09
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Distance-based Modelling of RBD Progress

As introduced previously, there is no uniform standard to objectify disease pro-
gression in RBD, and the latter is likely linked to a higher risk for developing a
neurodegenerative disease.

For this purpose, the last part of this experimental work was devoted to propose
a distance-based, continuous metric, likely correlated with the degree of dissociation
in REM sleep – i.e., RBD progression. This will be referred to as Dissociation Index
(DI).

Considering that no disease nor healthy model was heretofore proposed in the
literature, different configurations were explored, considering both the variability
of the available dataset and its boundaries, described in Paper [139]. For the
sake of brevity, this Section will only describe the final configuration. Additional
information on the design of the DI is provided in the Supplementary Material
(Appendix A.2).

Let S be a EMG feature vector describing a healthy model – referred to as refer-
ence, from here after. The DI was expressed as the distance in space between each
subjects’ EMG features and the reference array. Lower values of this metric indi-
cate stronger resemblance to the reference, and ideally, a null distance corresponds
to the identity with the healthy model.

After a tuning phase, S was expressed as the mean of all EMG feature arrays
in the HS cohort, thus comprising the muscular characteristics of the HS cohort.

Second, under the same rationale, a neighbourhood, defined as R, mirroring the
extent of similarity within the dataset was proposed. R was computed as the Eu-
clidean Distance (ED) between two locations in space, and served as search range in
the next computations. Specifically, the two points represented the intra-class sim-
ilarity in the HS and RBD group; more details are provided in the Supplementary
Material (cf. Appendix A.2).

The obtained neighbourhood was then employed as the distance limit between
each subject in the dataset and S. For this purpose, all the subjects within distance
R from S were identified, and their actual ED from S was computed (Figure 6.1).
This will be referred to as Hi; subjects lying outside the neighbourhood were au-
tomatically assigned the boundary value – i.e., R, as per the previous definition.

Finally, after a proper normalisation process, the DI was defined in a continuous
range [0, 1], in order to provide a reproducible and easily interpretable metric, as
in Equation 6.2. Increasing values of the index indicate higher dissimilarity to
the reference model – i.e., virtually representing higher RBD progression; subjects
outside the neighbourhood range are automatically assigned the maximum value –
i.e., 1.

DIi = Hi −min
R−min

(6.2)
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Figure 6.1: Geometry of the framework proposed for the assessment of similarity
(simplification). The highlighted circle represents the neighbourhood. The Eu-
clidean Distance Hi is computed for each subject in the neighbourhood (squares).
Distant subjects (x) are assigned the maximum value.

6.3.3 Results
The Results of this activity will be arranged in the following Sections as per the

Machine Learning classification and the Dissociation Index.

Muscular Features Analysis

This work introduced the spectral analysis of EMG in the automatic detection
of RBD subjects, specifically through the mean and median frequencies in REM
sleep, and 95th spectral percentile in the same stage. The distribution of the values
of each feature in the two different classes (Figure 6.2) showed significant differ-
entiation of the two groups. Spectral features in the HS group presented with a
wider interquartile range, which was assumed to reflect the intrinsic variability of
the group. Indeed, the HS cohort included healthy, younger subjects, with likely
a certain extent of physiological variability. Additionally, three subjects in the HS
group presented with values of RAI equalling 0; as values of RAI below 0.8 are
already indicative of RSWA [60], this unexpected occurrence, after post-processing
and inspection of the recording, found its explanation in the presence of sleep-
related breathing disorders, such as sleep apneas and snoring. As the RAI is an
amplitude-based, threshold method, and although in [61] a noise-correction method
was proposed, the spectrum of sleep-disordered breathing may introduce possible
confounding factors that alter its value. The plots in Figure 6.2 represent only HS
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subjects with a value of RAI above the cohort median (0.945). On the other hand,
the RBD group showed less variability, which suggested good predictive power of
this set of features for the class.

A CB

Figure 6.2: Box plot of the spectral features derived from the EMG recording in
REM sleep, for the healthy (HS) and RBD participants. Reproduced with permis-
sion from [139].

Automatic Classification: Cross-Validation and Test Set Performance

The first part of this research activity tackled a binary classification (healthy
vs RBD subjects) based on a minimal set of EMG predictors, combined with a set
of polysomnographic parameters. The two explored supervised classifiers (a SVM
and KNN, respectively) achieved promising training performance. The results of
the 5-fold CV are displayed in Table 6.6, in terms of Accuracy, Recall, Specificity,
Precision and False Detection Rate (FDR). Both classifiers are based on distance
paradigms; the KNN model slightly outperformed the SVM, with an overall Accu-
racy approaching 87%, and Recall of 93%. Specificity and Precision values were
almost comparable in the two classifiers, suggesting good robustness of the em-
ployed predictors against false positives. The metrics attained were comparable to
the ones in the literature [43], though previous works relied on a higher number of
predictors; therefore, the results achieved proved the feasibility of RBD detection
from a limited set of muscular parameters.

Table 6.6: Cross-Validation Performance of the KNN and SVM models (5-fold)

Accuracy Recall Specificity Precision FDR
KNN 86.96 % 93.33 % 75 % 87.50 % 12.50 %
SVM 82.61 % 86.67 % 75 % 86.67 % 13.33 %

Finally, the best model was applied to the held-out cohort (11 subjects, 7 RBD),
to validate the previous findings, and attained a 81% Accuracy, with 85.71% Recall,

87



Automatic Detection of REM Sleep Behaviour Disorder

75% Specificity, and 85% Precision. As expected, a slight decrease in the classi-
fication Accuracy was observed; however, from an overall perspective, the model
showed good generalisation capability.

Automatic Classification: External Validation Set

In the training and validation stages of the Machine Learning pipeline, the KNN
emerged as the best performing model. However, to assess the effectiveness of the
proposed muscular predictors and the analysis framework, both models were tested
on the TuSDi Database.

Albeit following the recommended PSG montage and guidelines [10], this database
included a collection of recordings conducted in a different environment, and likely
with different instrumentation as the CAP Sleep Database, thus providing an effec-
tive test set. Indeed, as highlighted in [30], ML models in sleep science are seldom
tested on datasets recorded at different centres. As the TuSDi database, at that
time, did not include any PSG recording from healthy subjects, the classification
task shifted to a one-class detection problem. For this reason, the models’ perfor-
mance was evaluated in terms of Average Model Accuracy (AMA) – i.e., 1 - Mean
Absolute Error; the average AMA across the two models was of 97.23 %. The KNN
classifier achieved almost optimal results, though this is likely related to the small
numerousness of the dataset.

Dissociation Index

As mentioned in the Methods paragraph, this work explored various combina-
tions for the R/S configuration; these are described in detail in Paper [139], and
provided for completeness in the Supplementary Material (Appendix A.2). For the
sake of clarity, this paragraph will only report the final combination. The more
generalised neighbourhood was selected, with a value R = 5.92; 15 RBD subjects
were found within this search radius. The ED (Hi) was then computed for each
subject in the CAP dataset (5.01 ± 0.6); the 6 subjects outside the search radius
were automatically assigned the maximum distance value (5.81). Then, the DI was
retrieved, for both groups; the values distribution is portrayed in Figure 6.3.
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Figure 6.3: Dissociation Index in the CAP Sleep Database. Box plots for the
healthy (HS) and RBD groups. Reproduced with permission from [139]

The RBD group expressed lower variability in the DI, with values above 0.7; as
expected, the same did not hold for the healthy subjects in the dataset, for which
the 75th percentile was of 0.32, indicative of strong similarity to the healthy model.

The rationale behind the DI was attempting to provide an objective metric to
quantitatively characterise disease progress in RBD. This concept aimed providing
effective screening tools to facilitate longitudinal evaluations, and patient follow-
up in RBD. In this perspective, and in view of future validation studies, from the
analysis of the DIRBD data, four areas, recalling disease progression were proposed.
They are the following (Figure 6.4):

1. Low Tier: minimum value (0) to to 75th percentile of the DI in the healthy
group (Q3HS),

2. Moderate Tier: from Q3HS to the 75th percentile of DIRBD (Q3RBD),

3. High Tier: from Q3RBD to the maximum value (1),

4. Very High Tier: Subjects who were not found in the neighbourhood.
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Figure 6.4: The proposed progression areas, and the Dissociation Index of the RBD
subjects in the CAP Sleep Database.

6.3.4 Discussion
This research activity aimed at proposing a diagnosis support system for RBD

based on simple and lightweight parameters extracted through the submental EMG
during REM sleep.

First, automatic detection of subjects with RBD was tackled, by employing Ma-
chine Learning models trained on polysomnographic parameters and simple mus-
cular predictors. Second, a distance-based metric (i.e, the Dissociation Index) was
proposed, as a follow-up tool to assess RBD severity.

The achieved detection performance in the ML pipeline suggested strong pre-
dictive power of the employed parameters, reaching an overall accuracy of 87% with
an optimised KNN. External validation on an additional batch of data, recorded
in a different Sleep Unit was also performed, with promising performance. The
obtained results bolstered the concept of screening for RBD with a minimal set of
sensors; specifically, a less invasive PSG paradigm, involving a single EEG channel
for sleep scoring (cf. Chapter 4) and an EMG channel to assess REM dissociation.

In this perspective, RBD monitoring might be transferred to unsupervised set-
tings, or home care, possibly with the aid of wearable sensors and pervasive tech-
nology, and objective metrics such as the DI could significantly impact the course
of follow-up.

Though achieving promising results, this feasibility study bears some limita-
tions. First, the generalisation capability of the employed models might benefit
from the inclusion of a larger, and more stratified cohort. Indeed, training on small
sets of data breeds the risk of overfitting and the effect of temporal bias; in this
study, an attempt to mitigate this may be found in the employment of a held-out set
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and the external validation step. Second, the design of the Dissociation Index re-
lies on a linear distance model, supporting the concept of linear disease progression.
Currently, the actual trend of disease progression is unknown; this leaves space for
clinical validation, with the aid of neurological scales, and possibly exploring REM
Sleep Without Atonia in subjects with co-morbidities, or other neurodegenerative
disorders and parasomnias.

6.4 B) Automatic Detection of RBD based on
EEG

A second approach in the automatic detection of RBD was adopted. The influ-
ence of brain activity during REM and SWS in cognitive processes and cognitive
longevity has been demonstrated [155]. Previous works investigated the potential
of EEG-derived features in revealing RBD, either in combination with other physi-
ological predictors [26, 42, 43] or by employing EEG alone [75, 13, 49]. Polysomno-
graphic alternations in sleep patterns were observed in RBD subjects, who featured
an increase of δ-waves density with respect to age-matched healthy subjects [113].
The research activity presented in this Section proposed a framework for automatic
RBD detection based on EEG data during REM and SWS sleep collected from a
single EEG channel, to investigate the predictive power of the two stages for RBD,
and, once more, explore the feasibility of minimally-invasive studies.

The work presented in this Section was included in Paper [142].

6.4.1 Materials
This work included the healthy and RBD subjects from the CAP Sleep Database

and additional subjects collected at the Regional Centre for Sleep Medicine (Turin,
Italy), in the updated TUSDi Database; written informed consent for observational
study was obtained by all participants. Inclusion criteria for the Turin cohort are
provided in the Supplementary Material (Appendix A.1.2).

A total of 58 subjects (32 RBD) were included across the two datasets; the
participants’ demographics are provided in Table 6.4.1.

PSG recordings from the TuSDi cohort were manually scored by a sleep expert,
following the AASM standards [11]; likewise, sleeps scoring according to the same
standards is provided in the CAP Sleep Database.
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Table 6.7: Sample and Demographics of the datasets employed in the study: the
CAP Sleep Database and the TUSDi Database (this latter updated from the pre-
vious study. Healthy subjects and additional RBD subjects were included).

.
Dataset Sample (Sex) Age

CAP Sleep Database 22 RBD (19 males) 70 ± 6 years
16 HS (9 males) 32.5 ± 5 years

TuSDi Database 10 RBD (8 males) 62 ± 6 years
10 HS (6 males) 37 ± 16 years

6.4.2 Methods
Pre-Processing and Feature Extraction

This study envisaged RBD detection from a minimal EEG configuration; there-
fore, the analysis was based on data from the C3-A2 channel (or C4-A1, if the
former was not available). REM and SWS segments were retrieved from manually
annotated data, and exploited for feature extraction. In the perspective of imple-
menting this classification pipeline in wearable, low-computational cost frameworks,
minimal signal pre-processing was conducted on the EEG signals. Specifically, high-
frequency noise – which, for this study, was identified in frequency components
above 40 Hz – was discarded through an IIR Chebyschev Type 1 filter. Finally,
mean amplitude removal was employed to eliminate the amplitude offset introduced
by the DC, and highly present in the recordings included in the Turin cohort.

The extraction of features, to be implemented in the automatic detection pipeline,
encompassed three main categories:

1. Polysomnographic features: a set comprising clinical parameters and vari-
ables representing sleep architecture and the degree of sleep fragmentation,

2. Electroencephalographic features: quantitative predictors describing the
EEG signal characteristics in the time, frequency, and complex domains,

3. Sleep substructural features: EEG-derived variables, virtually describing
the sub-architecture of the REM and SWS stages, respectively.

These will be detailed in the following paragraphs.
Polysomnographic features were extracted from whole-night, manually anno-

tated data, and were displayed in Table 6.3 in the previous Section. An additional
feature, describing the amount of minutes spent in SWS (MSWS), was included in
this set.

Quantitative electroencephalographic features were extracted on the Time, Fre-
quency, and Non-Linear domain, by processing the EEG in this fashion:
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1. 30-second epochs for features in the time domain,

2. 2-second epochs for features in the spectral and non-linear domains.

The epoch lengths, widely employed in the literature, were chosen (1) to match
the AASM scoring criteria for sleep stages, (2) to ensure wide-sense stationarity of
the EEG signal over the observation interval.

Precisely, considering the intrinsic differences of the REM and SWS stages (2.1),
specific metrics in the time domain were computed to accurately describe their
waveforms, from the EEG signal and its first-order derivative.

First, normalised slope descriptors (Hjorth Parameters, [122]), were extracted;
they provide a description of the underlying energy of a signal while maintaining
low computational cost. Namely, they are the activity (ACT), mobility (MOB), and
complexity (COMP). Though computed from time series, they virtually capture the
statistical properties of the power spectrum – total power, standard deviation of
the spectrum, and total bandwidth, respectively.

Given a 30-second epoch y(t), and its derivative y′(t), they are computed in this
fashion:

ACT = var(y(t)) (6.3)

MOB =

⌜⃓⃓⎷var(dy(t)
dt

)
var(y(t)) (6.4)

COMP =
mob(dy(t)

dt
)

MOB(y(t)) (6.5)

Second, in an attempt to describe the regularity of the two considered stages, the
form (FF), crest (CF), and impact (IF) factors were retrieved. These three variables
are commonly employed in sound analysis, and serve to quantify the regularity of
a wave by comparing its amplitude metric to a perfect sinusoidal wave.

Following the same definition as the previous paragraph, they are described as:

FF = yRMS

|y|mean

(6.6)

CF = ypeak

yRMS

(6.7)

IF = ypeak

|y|mean

(6.8)

As regards the frequency domain, the PSD was estimated from each 2-second
epoch through a Welch modified periodogram, with 50% overlap with a 1-second
Hamming window. These parameters were selected so as to provide an adequate
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spectral resolution (1 Hz) for the EEG segments [124]. To have a proper repre-
sentation of the signal spectrum, the percentiles (25th, 75th, and 95th) and their
differentials (75–25, 95–25, 95–50) were computed, so as to comprise the relevant
data distribution information.

Additionally, given the intrinsic properties of the EEG signals during sleep, the
Absolute and Relative power were computed for each clinically relevant band. For
the sake of clarity, due to the choices in signal pre-processing, the γ band only
depicted the range 30–40 Hz.

The Teager-Kaiser Energy Operator, a non-linear metric accounting for the total
energy of a signal, was computed, in a similar fashion as in Paper [141].

The whole set of EEG features is provided in Table 6.8.

Table 6.8: Employed features, along with the domain and proper reference. ⋄:
variables adapted from the cited study, †: variables first proposed in this work.

Category Feature (Name and description) Reference

Time

Amplitude metrics: mean, standard deviation,
skewness, kurtosis, range, maximum and minimum
value

various

Zero Crossing Rate [165]
Hjorth Parameters [122]
Percentiles (25th, 75th, 95th) various
Form, Crest and Impact Factors various
Coastline [177]

Frequency

Fast Fourier Transform: numerical and statisti-
cal measures (mean and median frequencies, total
power, ...)

various

Spectral Edge Frequencies (SEF25, SEF75, SEF95) ⋄[141]
Spectral Edge Frequencies differentials (75−25, 95−
25, 95− 50)

†

Absolute Power for each clinically relevant band
(δ, θ, α, β, γ)

various

Relative Power for each clinically relevant band
(δ, θ, α, β, γ)

various

Entropy measures ⋄[141]
Non-Linear Teager-Kaiser Energy Operator: numerical and sta-

tistical measures
⋄[88]
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Finally, a set of metrics to describe the substructure of the REM and SWS
stages were extracted; they are listed in Table 6.9. Namely, Absolute and Relative
power, and statistical measures on the power spectrum were retrieved from the
sub-categories in each stage.

Following the rationale in Paper [141], and described in Chapter 4, the REM
stage was treated as having tonic and a phasic components, depicted in the fre-
quency bandwidths of 2–8 Hz, and 7–16 Hz, respectively.

Slow-wave sleep segments were treated in a similar fashion, and two main spec-
tral components were highlighted; namely, the slow oscillations (SO), and the slow-
wave activity (SWA), following the definitions in [14]. In more detail, the former
lie below 1 Hz, and the latter account for brain activity observed in the 1–4 Hz
range – therefore depicting some degree of overlap with the δ-band. This choice
was made as evidence has shown the role of SWA in neurodegenerative processes
related to the development of Parkinson’s Disease [153].

Table 6.9: Sleep Substructure Features, extracted from the spectral properties of
each considered sub-band. ⋄: adapted from the cited study, †: first proposed in
this study.

Sleep Stage Feature Reference

REM stage
Absolute and Relative Power in TREM,
FREM

⋄[141]

Mean, Median Frequencies and Spectral Per-
centiles (SEFx) in TREM, FREM

⋄[141]

Total Power Ratio TREM/FREM ⋄[141]

Slow Wave Sleep Absolute and Relative Power in SOs, SWA ⋄[153]
Mean, Median Frequencies, Spectral per-
centiles (SEFx), statistical measures in SOs,
SWA

†

To explore all possible configurations, and investigate the influence of each stage
in RBD prediction, as well as the most relevant contribution to automatic detection,
the presented variables were extracted separately on three separate data batches,
to retrieve the following feature sets.

1. FSet1: including polysomnographic features and EEG features extracted
from the REM stage,

2. FSet2: including polysomnographic features and EEG features extracted
from the SWS stage,
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3. FSet3: including polysomnographic features and EEG features extracted
from the combination of REM and SWS stages.

Post-Processing and Feature Selection

As described in the previous Section, to provide a scale-homogeneous dataset
for training, z-score normalisation (Equation 6.1) was applied to the three feature
sets.

Due to the high number of extracted predictors, the feature selection step was
also deemed necessary; a minimal-optimal approach was adopted, through the Min-
imum Redundancy Maximum Relevance (mRMR) [129].

This technique aims at finding the optimal subset of features, by maximising
target relevance, or dependency (DT ), and minimising inter-correlation (R). Given
that the computed features are continuous, target-dependency is assessed through
the F-statistic. On the other hand, inter-feature redundancy is evaluated in terms
of Pearson’s correlation. Finally, the importance score is computed by means of
the mutual information quotient, as:

MIQ = DT

R
(6.9)

To obtain the final feature configuration for the binary classification task, feature
rankings were inspected through the elbow method, and the top-5 features were
selected. These are displayed in Table 6.10.

Machine Learning Classification

Pursuing an approach analogous to the previous Research Activity ((A), Sec-
tion 6.3), supervised ML models were exploited to carry out the automatic detection
of RBD subjects.

The constructed feature sets were employed independently with five different
classifiers; specifically a SVM, KNN, Naïve-Bayes classifier (NB), a decision tree
(DT), and the Bootstrap Aggregating ensemble method (BAG).

However, to explore an alternative configuration, the validation procedure relied
on a 5-fold CV approach. Contrarily to Research Activity (A), no external valida-
tion set was available; nevertheless, to mitigate the potential effect of overfitting,
due to the scarce numerousness of the dataset, the CV procedure was iterated 10
times. Furthermore, to limit data leakage, this approach took into account the ID
of each subject.

6.4.3 Results
This Section will illustrate the results of the proposed classification framework,

according to the three explored configurations (FSeti).
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Table 6.10: Features employed for the classification, selected with the mRMR ap-
proach. For FSet3: ⋆ REM features, ◦ SWS features

Feature Batch Top-5 Features

FSet1 (PSG + REM)

Relative Power (α)
Minutes in REM Sleep
WASO
Mobility (2nd order)
SEF75

FSet2 (PSG + SWS)

Relative Power SWA (75th pctl)
Relative Power (θ), STD
Relative Power (α), STD
Minimum Amplitude
Median (75th pctl)

FSet3 (PSG + SWS + REM)

Relative Power SWA (75th pctl), ◦
Relative Power (θ), STD, ◦
Mobility (2nd order), ⋆
Relative Power (α), ⋆
Minimum Amplitude, ◦

Automatic classification: REM Subset

The first data batch (FS1) comprised PSG features and features extracted from
the REM segments. Table 6.11 reports the classification performance of the em-
ployed models, in terms of Accuracy, Recall, Specificity, Precision, F1 score, and
Area Under the Curve (AUC). The models achieved a macro-averaged accuracy
of 80.29% ± 0.03. An optimised KNN emerged as best model, with Accuracy:
83.91% ± 0.81, Sensitivity: 86.46% ± 2.95; the optimised parameters were number
of neighbours (K) equalling 3 (in a search range 1–29), and Chebyschev distance
as employed distance.

Automatic classification: SWS Subset

The second feature set (FSet2) explored the predictive power of SWS in detect-
ing RBD subjects in the cohort under study. Table 6.12 displays the classification
performance. A macro-averaged accuracy of 81.10% was attained, showing a slight
increase in performance with respect to FSet1. An optimised SVM emerged as
best performing model, with an accuracy of of 86.21% ± 2.11, recall of 91.23% ±
5.24; the model featured a cubic kernel and a maximum penalty (C) of 2.56 (range
0.001–1000). An increase in AUC with respect to FSet1 was also observed, with a
value of 0.94 ± 0.02.
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Table 6.11: Performance metrics (%) of the employed classifiers as regards FSet1
(PSG + REM features).

SVM KNN NB DT BAG
Accuracy 81.03±0.5 83.91±0.81 74.14±1.72 82.18±0.81 80.17±0.86
Recall 84.38±3.13 86.46±2.95 73.44±1.56 85.42±5.31 82.81±1.56
Specificity 76.92±3.85 80.77±3.14 75±1.92 78.21±7.2 76.92±0.1
PPV 81.94±1.94 84.78±1.75 78.33±1.67 83.28±4.25 82.16±0.91
F1 83.06±0.52 85.55±0.9 75.81±1.61 84.07±0.87 82.16±0.91
AUC 0.87±0.05 0.87±0.01 0.76±0.02 0.83±0.03 0.89±0.02

Table 6.12: Classification performance (%) of the employed classifiers as regards
FSet2 (PSG + SWS features only).

SVM KNN NB DT BAG
Accuracy 86.21±2.11 80.46±4.94 78.74±4.30 79.52±7.21 80.60±3.31
Recall 91.23±5.24 83.71±12.26 76.67±6.73 80.83±9.78 79.13±5.58
Specificity 83.36±1.57 80.83±2.94 81.16±3.15 79.06±6.25 82.19±1.92
PPV 76.92±2.72 74.36±7.90 76.92±5.44 74.04±6.72 77.88±3.19
F1 83.36±2.38 77.58±3.58 76.50±4.14 77.04±7.31 78.34±2.98
AUC 0.94±0.02 0.85±0.02 0.81±0.02 0.77±0.09 0.9±0.02

Automatic classification: REM+SWS Subset

Finally, in view of stage-agnostic, unsupervised, sleep studies, the combination
of REM and SWS was also explored. This combination attained a significant in-
crease in detection performance (cf. Table 6.13), reaching an average accuracy of
85.70% ± 0.04, with almost +4% rise on the two distinct datasets. The best per-
formance was achieved through a DT, with maximum number of splits of 4, and
cross-entropy as split criterion. Specifically, an accuracy of 90.80% ± 0.8, and recall
of 95.83% ± 2.95 were obtained.

6.4.4 Discussion
This research activity tackled automatic detection of subjects with RBD based

on quantitative metrics derived from a single-EEG channel, after minimal signal
pre-processing. The proposed framework aimed at assessing the feasibility of unsu-
pervised sleep studies, in the perspective of screening tests conducted with minimal,
and possibly wearable, instrumentation.

The analysis relied on supervised ML models, trained on data from the REM
and SWS stages, respectively, and a combination of the two, in an attempt to
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Table 6.13: Classification performance (%) of the employed classifiers as regards
FSet3 (PSG + REM + SWS features).

SVM KNN NB DT BAG
Accuracy 89.08±1.63 85.34±2.59 79.31±1.72 90.80±0.8 83.62±0.86
Recall 92.71±2.95 93.75±0.4 82.81±4.69 95.83±2.95 85.94±1.56
Specificity 86.42 75±5.77 75±1.92 84.62±3.14 80.77
PPV 88.11±0.33 82.33±3.38 80.32±0.32 88.54±1.82 84.61±0.24
F1 90.33±1.56 87.63±1.92 81.47±2.11 91.99±0.79 85.26±0.89
AUC 0.98±0.01 0.92±0.03 0.82±0.03 0.92±0.02 0.93±0.05

determine the influence of the two stages in the disease.
All explored classifiers achieved reasonably good classification performance.

Specifically, the two stages presented independently with good prediction perfor-
mance, achieving accuracies above 80% in both cases, as well as averaged F1 scores
of 82.2% and 78.4%, for the REM and SWS sets, respectively. This metric provides
a more complete explanation on the generalisation capability of the classifiers, as
the original dataset presented with a slight degree of imbalance towards the RBD
class, both in terms of sample size, and age.

Additionally, a considerable rise in performance was observed when consider-
ing both stages, yielding an accuracy up to 91%, and 92% F1 score (Figure 6.5).
This result gains a promising implication in the perspective of implementing stage-
agnostic classification tasks, and preliminary investigations on this topic are being
conducted.

Figure 6.5: Performance comparison of the best model from each explored FSet.
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Furthermore, features from deep sleep appeared to have a greater impact on the
target. Indeed, the results of the feature selection procedure highlighted only EEG
metrics in FSet2 and FSet3. Contrarily, in FSet1, two PSG features were ranked
among the most important. This finding found previous evidence in the literature
[22], where, in a stage-agnostic feature extraction step, the δ-range emerged as the
the most informative for detecting RBD subjects against healthy ones, employing
the CAP Sleep Database [166]. When comparing the results of the classification
framework proposed in this Section to [22], it was possible to observe with FSet3
an increase of 3% percentage points in accuracy, alongside with a considerable rise
in specificity (+26 percentage points), and comparable results when limiting the
dataset to FSet2.

Despite the encouraging perspective suggested by the results obtained, this
research activity presents with some limitations, that future developments shall
address.

First, as already stated for the EMG-based detection of RBD (cf. Section 6.3),
the size of the explored sample is quite limited. In particular, a publicly available,
well-known resource was included, and during the project, efforts have been made
to extend the participants size as regards the Turin cohort. Furthermore, the
sample included a large majority of male participants; this, however, reflects the
demographic prevalence of RBD. Future recruiting campaigns shall also target the
inclusion of age-matched controls, to mitigate bias.

An additional weakness may be found in the fact that only fixed epoch lengths,
as per the AASM standards, were investigated for the analysis. This approach
relies on the premise that human sleep is largely treated in a discrete fashion,
leaving much to be explored in the transitions between stages, or in intra-stage
variability. Future work should investigate additional epoch lengths, or treat data
extraction and sleep transitions in a continuous-wise approach.

6.5 Conclusion
REM Sleep Behaviour disorder is a parasomnia that is considered a prodrome

to overt α-synucleinopathies, with a rate of phenoconversion of 67.5–73.5% in a
range of 10 to 12 years from the initial diagnosis [181, 134].

Presently, the diagnosis of RBD is left to clinical interviews, polysomnographic
evidence of REM Sleep Without Atonia and the documentation of behavioural
events through video-polysomnographic recordings.

Although efforts have been made to expedite the scoring process for RSWA
(cf. Chapter 5), by proposing automatic algorithms for the identification of ab-
normal activity during REM sleep, a large majority of these methods still require
human intervention. Hence, the clinical diagnosis remains an intricate process, en-
tailing considerable professional workload, and ofttimes prone to variability across

100



6.5 – Conclusion

raters.
Most importantly, standard, in-hospital PSG is still required, leading to intru-

sive examinations, and de facto protracting the actual diagnosis, which is simulta-
neously hampered by long waiting times. These premises foster the concept that
current sleep study methods are not suitable for population screening.

Recent research shed light on the feasibility of minimally-invasive strategies for
monitoring sleep disorders, either relying on minimal sets of sensors, or on wearable
technology, to be performed in familiar environments [97]. Accordingly, indentifying
digital biomarkers for the early detection of sleep disorders, possibly through the
use of simplified devices, may lead to significant opportunities in healthcare and
mass screening studies.

The research activities presented in this Chapter aimed at providing possi-
ble diagnosis support tools, focusing on the automatic detection of RBD through
the identification of simple, lightweight metrics to characterise the parasomnia.
Polysomnography studies from both a public repository, and from subjects col-
lected at the Centre for Sleep Disorders in Turin (Italy) were explored. Data from
electromyographic and electroencephalograpic recordings were exploited indepen-
dently to tackle the automatic detection of subjects with RBD through the use of
supervised Machine Learning models.

The outcome of the research activities highlighted in this Chapter suggest the
feasibility of detecting the presence of RBD from information retrieved by muscle
activity during REM sleep, or electroencephalographic patterns during both the
REM and the deepest stage of sleep.

Indeed, as regards the EMG-based automatic classification, simple metrics de-
scribing the spectral distribution of muscle activity were proposed, achieving a
classification accuracy of almost 87% in a 5-fold cross-validation, and 81% on the
test set. An attempt to external validation was also conducted, reaching high values
of average model accuracy.

Similarly, the proposed EEG-based detection pipeline provided promising per-
formance, indicative of the feasibility of assessing RBD from a single EEG channel.
This could possibly imply a less intrusive framework. As regards the optimised
models, the explored configurations attained AUC values of above 0.85, reaching
up to 0.92; accordingly, reasonably high values of F1 score, with a maximum of
92%, were reported.

Finally, most semi-automatic methods are limited to the assessment of elevated
muscle tone during REM sleep, but do not provide any depiction of RBD progres-
sion. Monitoring the longitudinal development of RBD might benefit follow-up
procedures, and, in future perspectives, help shed light on phenoconversion mech-
anisms. To this purpose, a straightforward, distance-based metric was proposed,
in a further attempt to explore unsupervised disease modelling. The Dissociation
Index, though only prototyped, showed encouraging potential in portraying the
degree of dissociation from the healthy status; however, further investigations are
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imperative.
These findings indicate the feasibility of lightweight screening tools, and pro-

vide an insight into the possibility of minimally-intrusive methods for diagnosing
sleep disorders. Indeed, Machine Learning assisted methods show good potential
in facilitating early detection and follow-up procedures, revealing a beneficial effect
on the quality of life.

Nevertheless, and as previously discussed, these studies are not without limita-
tions.

First, the employed datasets – although one of them is widely employed in re-
search – feature a quite limited size, which eventually led to some degree of class
imbalance, in terms of age (the healthy controls were significantly younger) and sex
(prevalence of male participants). Although the obtained performances compared
well with the literature, further investigations and validation procedures should
definitely address this issue, and include a higher number of participants, possibly
with efficient stratification, to ensure the models’ robustness and generalisation ca-
pability. In addition, further work is also needed to assess the clinical validity of the
proposed Dissociation Index. To this aim, preliminary estimations were conducted,
and additional assessments on a larger cohort, comprising PD, RBD, and PD-RBD
patients, are being conducted. Currently, the validation procedure, discussed with
expert neurologists and sleep physicians, relies on the manual assessment of PSG
records of the mentioned subgroups and the longitudinal, retrospective analysis of
the included subjects. REM Sleep Without Atonia scores are computed according
to the Montréal [100] and SINBAR [68] assessment methods, as well as the RAI [61].
Then, the longitudinal scores are compared to the DI values, and their statistical
correlation is explored.

Second, the employment of EMG-based data only might lead to inaccuracies
when co-morbidities affecting muscle activity, or resulting in elevated background
tone, are present. For this purpose, particular attention is being given to sub-
jects with OSA. Preliminary investigations are underway, both in terms of multi-
class detection (healthy, RBD, OSA, RBD+OSA), or cascade-wise detection – i.e.,
(1) healthy vs non-healthy clustering, (2) group-specific classification (RBD, OSA,
RBD+OSA). In more detail, both EMG and ECG data collected during REM and
NREM sleep are being employed, to explore the predictive power of various physi-
ological components, and assess the detection capability of EMG alone, compared
to other PSG sources. However, the experimental outcomes of this investigation
are still preliminary and therefore were not included in this dissertation.

Third, the presented approaches mainly relied on a data-driven paradigm of
feature engineering in supervised Machine Learning frameworks. This choice was
initially made to offer an interdisciplinary understanding of the results, while main-
taining the clinical interpretability of the extracted features, in view of the devel-
opment of a reliable diagnosis support tool. Although a considerable number of
models were tested, other opportunities, such as unsupervised learning, should be
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explored, possibly to enhance patterns in data that fail to be represented in the
standard feature engineering process.

Finally, although Deep Learning applications in the field of RBD are currently
limited, and mostly directed at identifying phenoconversion patterns either through
temporal series [147], or imaging techniques [172], future trajectories might explore
this encouraging frameworks. Indeed, automated video-based analysis of RBD jerks
[34], or contextual learning techniques, might offer the possibility of improving
diagnostic accuracy of RBD, although, at present, their robust implementation is
hampered by data scarcity.
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Monitoring Systems
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Chapter 7

Monitoring Sleep in Parkinson’s
Disease

Sleep in Parkinson’s Disease entails a complex fingerprint, including motor-
related disturbances which often elude clinical assessments. Besides, these latter
are generally scheduled on a long-time basis, and rely on subjective evaluations and
self-reports, making sleep disorders often overlooked. Pervasive health solutions
offer the possibility to bridge the temporal gap between in-person assessments, and
provide better quality of care.

This Chapter presents a possible framework for the continuous monitoring of
motor disturbances in sleep, included in Paper [140].

7.1 Context and Background
Parkinson’s Disease (PD) is the second-most prevalent chronic neurodegener-

ative disease, with increasing incidence (cf. Section 7). Currently, the available
therapeutic approaches are chiefly devoted to alleviating motor manifestations.
However, the definition of an optimal therapeutic approach remains a challeng-
ing task, due to the variety of symptoms and co-morbidities in each individual.

As discussed in Section 7, PD is characterised by both cardinal motor and non-
motor symptoms. Among these latter, sleep disorders are the most prevalent, being
diagnosed in up to 90% of people with PD [162], and occurring with a prevalence
rate of 50–70% already in the earliest stages of the disease [12].

Sleep disorders (SD) in Parkinson’s Disease entail multi-factorial manifestations,
including insomnia, severe exhaustiveness, and excessive daytime sleepiness [17],
eventually causing an increase in depression rates and functional disability. The
disorders include also motor manifestations, such as nocturnal hypokinesia and
morning akinesia, affecting the ability to turn in bed, or getting up, reflecting a
significant impairment of axial movements [161]. These manifestations, though
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profoundly debilitating, are hard to monitor, and often overlooked, as in-person
assessments primarily rely on self-reports.

The lack of a clinically validated, objective scale introduces the need for contin-
uous monitoring of sleep disturbances through accurate and objective parameters.
Sleep actigraphy and wrist-worn inertial devices initially emerged as promising tools
to record overnight motility and provide objective metrics for sleep patterns evalu-
ation [108, 96]. However, as they are commonly placed on the non-dominant or on
the least-affected wrist, they suffer from poor sensor positioning, and fail to prop-
erly describe nocturnal immobility, or difficulty in turning in bed. In literature, an
alternative set-up based on inertial units positioned near the centre of mass [161,
167] or on the lower back [121] proved robust against motion artefacts, and suitable
for describing disordered axial movements during sleep.

Upon these premises, this Chapter seeks to provide a possible solution for the
effective and accessible monitoring of sleep disturbances in PD, in order to (1)
assess the feasibility of remote assessments, and (2) provide kinematic descriptors of
sleep, to facilitate the investigation of symptoms fluctuations. The research activity,
detailed in the Sections below, introduces a framework for automatic detection of
motor-related sleep patterns in PD, and the classification of sleep quality using
objective metrics derived from wearable inertial units.

7.2 Research Overview
As discussed above, sleep disorders in PD are hugely affected by circadian fluctu-

ations and, at present, their monitoring relies primarily on subjective assessments.
The development of pervasive strategies for health offers an encouraging scenario
for the objective characterisation of sleep patterns in people with neurodegenerative
diseases.

Based on the promising results of a previous co-authored study, conducted on
a healthy cohort [3], with a similar purpose, the research work presented in this
Chapter sought to propose a lightweight and low-cost wearable set-up for moni-
toring sleep quality and motor manifestations in Parkinson’s Disease. The activity
is part of an observational study started in March 2021, in cooperation with the
Parkinson’s Unit, Department of Neurology, of the Molinette University Hospital
(Turin, Italy).

Particularly, the study aimed at:
1. Objectively characterise motility during sleep,

2. Assess perceived sleep quality through simple metrics and validate the paradigm
with clinical scales,

3. Identify a set of parameters most suitable to describe sleep in Parkinson’s
Disease.
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7.3 Monitoring Sleep in Parkinson’s Disease
The lack of a clinically validated scale introduces the need for continuous mon-

itoring of sleep disturbances through accurate and objective parameters. Although
actigraphy provides a valid solution for the assessment of diurnal and nocturnal
motility over an acceptable range of time, it suffers from poor positioning. This
work focused on the definition of a set of inertial-derived, simple metrics, to ob-
jectively characterise motion during sleep, and allow for continuous monitoring of
sleep patterns in Parkinson’s Disease when integrated in pervasive health scenarios.

7.3.1 Materials
Experimental Protocol and Instrumentation

The experimental protocol of this study was outlined with expert sleep neurolo-
gists at the Parkinson’s Unit, and aimed at meeting both clinical and technological
needs. Chiefly, it sought to define a minimally-intrusive set-up to ensure accurate
data collection for characterising overnight motility, and capture kinematic patterns
in individuals with PD.

Since data collection adopted an unsupervised approach conducted at the sub-
jects’ homes, all participants received thorough instructions on using the device
and completing sleeping questionnaires. In addition, a written user manual, con-
taining detailed information about the experiment, and the correct device usage,
was provided.

The sleep test was conducted over one night. The experimental pipeline con-
sisted in the following:

1. Completing the clinical questionnaire for sleep quality,

2. Positioning and activating the sensor before bedtime,

3. Annotating lights-off and lights-on time (these two virtually representing the
bedtime onset and waking-up), and turning off the sensor,

4. Fill in the circadian rhythms survey,

5. Record vocal samples while reading a phonemically-balanced text1.

The participants’ screening was conducted by Neurology residents and attend-
ings, among outpatient subjects at the Parkinson’s Unit. The inclusion criteria de-
fined for the study are provided in the Supplementary Material (Appendix A.1.3);

1For future investigations. The text is provided in the Supplementary Material (Ap-
pendix A.3.3)
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the clinical diagnosis of Parkinson’s Disease was a necessary condition for study
inclusion. As mentioned in Appendix ??, this dataset is available on request, and
was not made publicly available for privacy reasons.

The instrumentation selected for the analysis consisted in an integrated, wireless
device capable of recording motion along nine degrees of freedom. Precisely, a
triaxial inertial measurement unit (IMU). The device (Shimmer3) is produced by
Shimmer © (Ireland, https://shimmersensing.com/); it is commercially available
for research purposes. Device calibration and data management and extraction
are allowed through the complementary software ConsensysPRO. The employed
IMU unit includes an accelerometer, a gyroscope, and a magnetometer, working
along the three axes in space (x, y, z) to capture motion. These three sensors
are commonly employed in a wide range of human motion-capture frameworks,
including for human activity recognition and medical purposes, and are breifly
described below.

An accelerometer quantifies proper acceleration in space, i.e., the acceleration
any object acquires when subjected to freefall. Multi-axis accelerometers generally
measure this physical quantity as a vector, by recording both its magnitude and
direction, and express it in terms of m/s2.

A gyroscope is a device that measures the angular velocity of an item in space,
commonly expressed in dps. The sensor integrated in the Shimmer3 is a MEMS-
based gyroscope, measuring through a vibrating mechanical element the rate of
rotation around each axis.

Finally, the integrated MEMS-magnetometer records the variations, in terms of
magnitude and orientation, of the magnetic field along the three considered axis.
In the employed device, this physical quantity is expressed in µT.

The IMU unit was selected for its high-resolution data acquisition capability,
as well as the low-power consumption, light weight (60 g per unit), and small form
factor (Figure 7.1). Regarding the device positioning, various tests were conducted
to assess the best arrangement, in terms of data quality and intrusiveness. Finally,
the IMU unit was placed on the chest, at the height of the sternum, to favour proper
characterisation of whole-body movements, and minimise effect of motion artefacts
during the night, as previously seen in literature [161]. The selected sampling
frequency was 128 Hz, and the maximal recording range was selected for all sensors
to minimise information loss. Figure 7.2 shows the final experimental set-up, and
the orientation of each axis.

Sleep Questionnaires

In clinical settings, one of the scales to assess overall sleep quality is provided
by the Pittsburgh Sleep Quality Index (PSQI) questionnaire, validated in various
cohorts [25]. It consists in a self-report, 19-item survey, that investigates subjective
sleep quality, sleep latency patterns, duration and efficiency, occurrence of sleep
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51 mm

34 mm

14 mm

Figure 7.1: Dimensions of the IMU adopted in the study (Shimmer3, adapted from:
https://shimmersensing.com/)

disturbances and daytime dysfunction. An additional part envisages five items to
be completed by roommates or bed partners to investigate habitual sleep patterns,
which, however, do not contribute to the overall score.

Since the full version of the questionnaire was at times regarded as misleading,
and time-consuming, a shortened version (sPSQI) was later proposed and clinically
validated. It consists in a 13-item questionnaire, adapted from the original version.
The complete list of administered questions is provided in the Supplementary Ma-
terial (Appendix A.3). The scoring of the sPSQI yields an integer, global score (on
a scale of 0 to 15) that is employed to discriminate between adequate and poor sleep
quality. In a previous co-authored investigation on an adult, healthy cohort, values
above 5 appeared indicative of bad sleep quality [3], consistent with the validated
values [55]. The sPSQI was administered to all participants before bedtime, to
assess overall sleep quality in the month prior to the examination. Despite knowing
that the obtained score does not tangibly represent the actual night of sleep, the
choice of administering the questionnaire before bedtime was made so as to gather
a general representation of the quality of sleep of the subjects, without introducing
any bias due to the presence of the sensors, or the participation in the experiment.

Second, a sleep survey on circadian habits was employed, and filled out after
the sleep test. The survey, which will be referred to as SLEEPS, was first proposed

z

y

x

Figure 7.2: Sensor placement adopted in the study, along with the orientation of
each axis. In detail: x: medio-lateral, y: axial (longitudinal), z: antero-posterior
(vertical)
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Table 7.1: Demographic characteristics of the population in the study. HC: healthy
controls, PD: subjects with Parkinson’s Disease.

Sample Age sPSQI SLEEPS
HC 28 (10 females) 38 ± 10.7 years 6.55 ± 1.27 2.55 ± 1.02
PD 12 (5 females) 68 ± 4.1 years 9.42 ± 4.06 3.68 ± 2.21

and validated in a previous works on remote assessment of sleep quality [3]. It was
designed to explore the correlation between circadian habits and sleep quality, by
examining general health, work (or study) routine, leisure time habits, and sleep
schedule. The complete set of designed questions is included in the Supplementary
Material (Appendix A.3.2). For the purpose of this study, and according to the
results of the previous investigation, only a subset of the most relevant questions
was administered, and is included in the Supplementary Material.

Subjects and Data

An extensive part of this research activity was devoted to the recruitment of
eligible subjects. The study involved a cohort of subjects with Parkinson’s Disease,
who will be referred to with the acronym PD, and a second cohort of healthy con-
trols. As mentioned previously, the former were recruited at the Parkinson’s Unit
(Dept. Neurology, AOU Città Della Salute e della Scienza, Turin), and at a non-
profit patients’ association in Turin (Associazione Amici Parkinsoniani ONLUS).
As regards the healthy group, subjects were rectruited on a voluntary basis, among
the patients’ spouses, or age-matched family members, and University employees
without familiarity for parkinsonisms and sleep disorders.

The observational study, and data collection, is presently ongoing; however, for
the research activity presented in this Chapter, the dataset included 40 subjects.
Demographics for this cohort are displayed in Table 7.1.

7.3.2 Methods
Pre-Processing of Sleep Recordings

To facilitate the feature extraction procedure, minimal pre-processing was car-
ried out on the triaxial IMU data. For the sake of maintaining low-computational
load, only the data from the accelerometer and gyroscope were analysed, as they
provided sufficient information to characterise motility in bed.

Data recorded through the accelerometer were filtered through a moving average
filter, with sliding window of 1s. This procedure mitigated the effect of high-
frequency noise, which in raw data is observable during abrupt changes in position,
such as fast rolling in bed. Gyroscope data, on the other hand, were processed
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through a FIR lowpass filter, with cut-off frequency of 35 Hz, and order 21, to
allow for accurate detection of rolling-over.

Figure 7.3 depicts a one-night accelerometer recording of a healthy subject, and
Figure 7.4 of a patient with nocturnal hypokinesia.

Figure 7.3: Accelerometry recording of a healthy subject. ML: Medio-lateral accel-
eration, L: longitudinal acceleration (body axis), AP: anterio-posterior acceleration.

Feature Extraction

As per the research objective (1), a set of objective descriptors of overnight
motility were extracted from inertial data. A blend of clinical (PSG-related) pa-
rameters and motility features were employed in this research activity. At present,
there is no clinically validated set of parameters to characterise sleep patterns and
nocturnal axial motility in Parkinson’s Disease. Consequently, the proposed fea-
tures encompassed both novel measures and features previously proposed in studies
involving night-accelerometry or actigraphy [107, 161].

Motion-related features encompassed aspects such as reclining angle (θ), the
duration of each sleeping position, and the frequency and speed of turning in bed.
The definition of these quantities is detailed in the following paragraphs. The choice
of employing such parameters was discussed with an expert neurologist, based on
previous evidence that this set of nocturnal movements is descriptive of disease
severity [121]. Indeed, it was observed that more advanced phenotypes presented
with slower turning rates and more upright position, compared to controls and
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Figure 7.4: Accelerometry recording of a Parkinson’s Disease subject with noctur-
nal hypokinesia, respectively. ML: Medio-lateral acceleration, Longitudinal accel-
eration (body axis), AP: anterio-posterior acceleration.

early-stage subjects. The frequency of turns, and their total number over a night of
sleep has also exhibited a significant correlation with the MDS-UPDRS score [167].

The data recorded through the accelerometer were employed to retrieve infor-
mation about sleeping position (Figure 7.5). In more detail, the recordings were
inspected in 30s epochs, to match the international standards, and the position was
estimated by virtue of a heuristically selected threshold. Precisely, values such as
the reclining angle (θ) and the average acceleration for each dimension were simul-
taneously analysed epoch-wise to retrieve one of the five positions: supine, prone,
left-side, right-side, and standing.

Subsequently, the occurrence of turning events was obtained by matching the
sleeping position information with gyroscope data. Any observed change in sleeping
position was initially marked as a potential turning event. To ensure a precise
detection of axial rolling-over, each candidate event was marked as real only if,
over a window of observation of 2 min, no change in sleeping position was observed
before and after the event. From this train of data (Figure 7.5), parameters such as
the number of turning events (Nturns) and the time intervals between events (Rint)
were then extracted.

The features related to the velocity of turns were extracted through the anal-
ysis of the angular velocity along the longitudinal axis (y, as measured by the
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Figure 7.5: Changes in sleeping position during the night. Orange arrows represent
the detected turning events.

gyroscope). In a similar fashion as previously, a preliminary peak detection step
was carried out. Specifically, by inspecting the angular velocity in 30s epochs, all
peaks exceeding 85% of the standard deviation of the signal in the selected epoch
were marked as potential turns (Figure 7.6).

Figure 7.6: Peak detection from the longitudinal angular velocity recorded by the
gyroscope. Actual turning events are marked by a vertical dashed line. The high-
lighted sector (orange) is a peak-search range, described in Figure 7.7.

Then, for each candidate turning event, a 50-second search range was employed,
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to detect the actual peak in angular velocity that corresponded to a real, observed
rolling-over (Figure 7.7). From this information, a second set of data was extracted,
including parameters such as peak height (representing the extent of turning veloc-
ity, ω-turns) and peak width (indicating turning duration, Tturns).

er in bed

Figure 7.7: Turnover event detection from a gyroscope recording of the longitudinal
axis.

Finally, a comprehensive descriptor of overnight motility was employed, namely,
the Activity Index (AI) [9]. This feature was proposed in the literature as an open-
source, straightforward quantifier of motion during the night, as most off-the-shelf
devices do not publicly provide interpretation for their metrics. This quantity is
deemed significant in the analysis of sleep patterns in Parkinson’s Disease, as, on
the one hand, it graphically depicts the motility trends during the night, and, on
the other hand, it provides a numerical summarisation of the extent of motion. It
is defined in the range [0, 1], where values approaching 1 indicate higher motility.

For the purpose of this study, the AI was computed in 30 s epochs, from tri-axial
accelerometry, through the following equation [9]:

AI =
√︄

1
3[(σ2

x − σsys) + (σ2
y − σsys) + (σ2

z − σsys)],

σsys = σx + σy + σz

(7.1)

The quantity σsys represents the systematic noise of the device, a feature that
characterises wide-range accelerometry, which, in this configuration, equalled 27.5 ms−2.
It was assessed as the variance of the three axes, measured by putting the IMU unit
in a still, horizontal position.

Additionally, on the scent of expressing overnight motility as a continuous time
series, the the AI counts – i.e., the values for each 30 s epoch – were exploited to
define a novel metric, termed the Average Motility (AM). In more detail, the AM
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was computed as the moving average of AI counts over a 2-minute window, a time
span deemed suitable for nocturnal movements. Subsequently, the obtained time-
series subsequently was scaled to a continuous value within the range [0, 1]. Values
approaching 1 denote increased nocturnal activity, as depicted in Figure 7.8.

Figure 7.8: Values and trend of the Average Motility metric, for a 45 minute portion
of sleep in a healthy subject, right before wake-up time.

The whole set of extracted features is shown in Table 7.2, arranged ccording to
their category – i.e., Clinical or Motility. Since all features in the Motility category
were computed on epochs of 30-second length, a range of summary statistics (mean,
standard deviation, maximum and minimum value, 25th and 75th percentiles, kurto-
sis, and skewness) were calculated from the array, and utilised as distinct features.

Feature Analysis and Feature Selection

As described, the feature extraction step envisaged the characterisation of night
motility through IMU data, through a set of parameters which included both novel
metrics, and clinically-useful parameters outlined after insight from specialised neu-
rologists.

Given the diverse nature of the extracted parameters, a statistical exploration
was conducted, to investigate their importance for the application at hand. All
statistical investigations were carried out through the open-source jamovi tool ([86],
https://jamovi.org/). First, the distribution normality of the samples was tested
through the Shapiro-Wilk test. Then, independent-samples tests were carried out,
through the Student’s t-test, and Mann-Whitney U test, for a parametric and
non-parametric approach, respectively. In particular, the former was applied to
normally distributed data, whereas the latter was the elected test for non-normally
distributed data.

Notably, given the research objectives (2) and (3) – i.e., assess sleep quality
(SQ), and identify parameters to describe sleep in PD, respectively – different
configurations were adopted in testing.

The following two configurations were initially assessed:
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Table 7.2: Features employed in the study, according to their category. Proper
reference is shown, as in ⋄: adapted from cited study; ⋆: first proposed in this
study.

Feature Description Reference
Clinical
Sleep Onset Latency (SOL) The amount of time required to

fall asleep (min)
various

Wake After Sleep Onset (WASO) The amount of time the subject
is awake during the night (min)

various

Total Sleep Time (TST) Total hours of sleep various
Time in bed (TIB) Lights-off to lights-on interval

(h)
various

Sleep Efficiency (SE) The percentage of time spent
asleep while in bed (%)

various

SLEEPS score Perceived sleep health and
quality

[3]

Motility
Tilt Angle (θ) Reclining angle in bed ⋆
Sleeping position Minutes spent in each sleeping

position (supine, prone, left-
side, right-side)

⋆

Number of turns (Nturns) Number of turns in bed ⋄[104]
Rotation interval (Rint) Interval between turning

events (min)
⋄[104]

Rotation velocity (ω-turns) Velocity of turning in bed
(deg/s)

⋄[160]

Rotation acceleration (α-turns) Acceleration of turning in bed
(deg/s2)

⋄[160]

Turning duration (Tturns) Duration of each turn (s) ⋄[160]
Stand/Sit Duration (SSD) Total time spent standing or

sitting during the night (min)
⋆

Activity Index (AI) Level of activity during the
night. Range: [0, 1]

[104]

Average Motility (AM) Overnight motility trend. ⋄[9]

i) Good SQ vs Poor SQ,

ii) HC subjects vs PD subjects.
Given the wide distribution of sleep quality in the explored dataset, further
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statistical investigations envisaged the following:

iii) HC with good SQ vs HC with poor SQ (HCgood versus HCbad),

iv) HC with poor SQ versus PD with poor SQ (HCbad versus PDbad)

Due to the limited number of subjects in the PD group, and the fact that
sPSQI values were critically skewed towards bad sleep quality, the comparison PD
with good SQ vs PD with bad SQ was overlooked, but will be addressed in future
developments.

In addition to these comparisons, the correlation of the extracted parameters
with the two research objectives was assessed. Precisely, Spearman’s correlation
was employed to evaluate (a) the correlation between the sleep features and the
sPSQI score, and (b) the correlation with the presence of Parkinson’s Disease.

Prior to the classification task, which envisaged configurations (i) and (ii), and
to facilitate the interpretability of the models, and enhance data quality, feature
selection was carried out. The selected approach was the ReliefF algorithm [168];
the top-k features in each configuration were deemed relevant for the subsequent
classification task. For the sake of clarity, the k parameter was chosen independently
for each configuration, by heuristically identifying the elbow on the retrieved feature
importance scores.

Finally, z-score normalisation (Equation 6.1) was implemented to mitigate the
effect of outliers and scale divergence on the subsequent analytic steps.

Automatic Classification through Supervised Machine Learning

As briefly mentioned in the previous Section, the classification task regarded
only configurations (i) and (ii), primarily for numerousness reasons. This distinc-
tion identified a reasonably homogeneous group for (i) – 18 good sleepers and 22
bad sleepers – although group (ii) remained quite umbalanced, with 12 PD and 28
HC.

Due to the feature-based nature of the analysis, a binary classification task
for each configuration was tackled by means of three distinct supervised models.
Namely, a SVM, a KNN, and eXtreme Gradient Boosting (XGBoost). This latter
is an ensemble method based on decision trees, that, at each iteration, incorporates
gradient boosting to enhance classification performance, by training each learner
on the residuals of the previous models.

Due to the rather scarce sample size, in order to promote the robustness of the
models, and limit the risk of overfitting, hyperparameters were optimised following
a Grid Search approach, on a train of 50 iterations. The set of tuned paratemers
is displayed in Table 7.3.

The models were validated through a LOSO-CV approach, to allow for better
generalisation of the results, as already discussed in previous Chapters of this The-
sis. Finally, the performance of the explored models was assessed in terms of overall
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Table 7.3: Summary of the employed classifiers and the searched hyperparameters,
(parameter and range).

Model Searched Hyperparameters

SVM
Kernel function: linear, polynomial, radial basis, sigmoid
Penalty (C): [0.1, 1, 10, 100, 1000]
γ: [1, 0.1, 0.001, 0.0001]

KNN
Minkowski Distance order (p): [1, 2, 3, 4, 5]
Number of neighbours (K): [3, 5, 7]
Weights (W): uniform, distance-based

XGBoost
Number of trees: [25, 50, 100]
Depth: [3, 5, 7]
Learning rate: [0.001, 0.01, 0.1]

Accuracy, Recall, and F1 score.

7.3.3 Results
Statistical Analysis

Table 7.4 illustrate the outcome of the statistical independent sample tests.
For configuration (i) – i.e., Good vs Bad SQ – statistical significance emerged

for variables describing the duration of turns (Tturns,std, Tturns,skew), and overnight
motility (AIp25, AMmean). These metrics also exhibited a moderate negative
correlation with the sPSQI score, as indicated by Spearman’s ρ of -0.46 and -0.44,
respectively.

For configuration (ii), – i.e., HC vs PD – the features characterising overnight
body position (θmean, θp75), whole-body movements (ω-turnsp25, ω-turnsskew), and
overall motility (AIskew, AMmean) displayed statistical significance. Furthermore,
when evaluating correlation with the presence of the disease, the listed features ex-
hibited moderate values of ρ. In particular, θmean exhibiting a correlation coefficient
of 0.54. Anew, negative correlations values were observed in features describing the
velocity of turns in bed.

The final part of the statistical testing aimed at performing a preliminary strat-
ified analysis, in an attempt to provide an exhaustive exploration of the collected
data. Hence, configurations (iii) and (iv) were investigated; Table 7.5 illustrates
the obtained statistics follow.

As appreciable, in the HCgood vs HCbad configuration (iii), the features repre-
senting turning velocity emerged as significant, and exhibited Spearman’s ρ values
suggestive of moderately high correlation.
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Different patterns emerged for HCbad vs PDbad (iv), where parameters re-
lated to body position, velocity of turns, and overall motility were significant, with
p<0.001. These quantities also presented with moderate-to-high correlation with
the sPSQI, with ρ of 0.64 for θmean (body position), and moderate, though nega-
tive correlation for the velocity of turns (ω-turns), in good agreement with previous
observations.

Based on the results presented in this paragraph and summarised in Tables 7.4
and 7.5, it is possible to imply that the proposed set of metrics are appropriate for
the definition of motor-related sleep patterns in the explored population. Notably,
whole-body motility appeared to serve as a robust descriptor of such, both for sleep
quality assessment, and the characterisation of PD.

Table 7.4: Independent Sample statistics of the features employed in the classifica-
tion tasks (configurations (i) and (ii)), along with their correlation with the target
(sPSQI or PD). Significance level is marked as ∗∗: p<0.005, ∗∗∗: p<0.001.

Sleep Quality
Feature Independent Sample Test Correlation (ρ)
ω-turnsp75 <0.05 0.32
Tturns,td <0.005** 0.49
Tturns,skew <0.001*** 0.55
AIp25 <0.05 -0.46
AMmean <0.05 -0.44
HC vs PD
Feature Independent Sample Test Correlation (ρ)
θmean <0.005** 0.54
θp75 <0.001*** 0.45
Rint,p25 <0.05 -0.31
ω-turnsp25 <0.001*** -0.41
ω-turnsskew <0.005** -0.39
AIskew <0.001*** 0.31
AMmean <0.001*** 0.32

Machine Learning: Feature Selection and Binary Classification

This Section illustrates the outcome of the ML pipeline displayed in Figure 7.9.
As discussed, a feature selection step was implemented to highlight two subsets,

including the most relevant features for the classification. The selected features
for each task were summarised in Table 7.4, along with their statistical relevance.
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Table 7.5: Statistical exploration of configurations (iii) and (iv)), along with their
correlation with the sPSQI. Significance level is marked as ∗: p<0.05, ∗∗: p<0.005,
∗∗∗: p<0.001.

HCgood vs HCbad

Feature Independent Sample Test Correlation (ρ)
ω-turnsp25 <0.05* -0.64
Tturns,std <0.005** 0.45
HCbad vs PDbad

Feature Independent Sample Test Correlation (ρ)
θmean <0.001*** 0.64
ω-turnsp75 <0.001*** -0.41
ω-turnsmean <0.001*** -0.35
AImean <0.001*** -0.47
AMmean <0.001*** -0.51

Evidently, 5 features were selected for the first task, and 7 for the second. The
two subsets were independently given as input to the ML classifiers, to test their
predictive power.

The results attained in the the Good vs Bad SQ classification task are presented
in Table 7.6. The employed models presented with an overall accuracy of 79.67%
± 4.43, indicative of reasonable classification accuracy. The optimal scores are
achieved through an optimised XGBoost classifier, with the following parameters:
Ntrees=50, depth=5, learning rate=0.1. This model achieved values of accuracy,
Recall, and F1 score of 85.7%, 78.6%, and 82.5%. These results appeared to confirm
the discriminative capability of the employed features for this task.

Likewise, Table 7.7 illustrates the performance metrics for the explored classi-
fiers, in the HC vs PD task.

A slight increase in classification performance was observed, as all models pre-
sented with moderately high accuracy, with average value of 89.1% ± 6.39. Simi-
larly, the average F1 score across all models reached 81.3% ± 9.57. An optimised
SVM emerged as the best model, with linear kernel and penalty (C) equalling 1.
The classifier achieved an an overall accuracy exceeding 96%. Similarly, it reached
95% and 93.4% accuracy F1 score, respectively.

Overall, both explored configurations demonstrated the feasibility of remotely
detecting Parkinson’s Disease-related sleep patterns and evaluating sleep quality
through a simple and lightweight framework.
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FEATURE 
EXTRACTION

FEATURE 
SELECTION HC vs PD

FEATURE 
SELECTION GOOD vs BAD SQ

DATA COLLECTION OFFLINE PROCESSING CLASSIFICATION

SLEEP 
QUALITY

Figure 7.9: Summary of the supervised Machine Learning pipeline adopted in this
study.

Table 7.6: Results of the classification task in the configuration (i): Good vs Bad
Sleep Quality, in a LOSO-CV approach.

SVM KNN XGBoost
Accuracy 78.1 % 75.2 % 85.7 %
Recall 74.0 % 73.3 % 78.6 %
F1 72.0 % 70.8 % 82.5 %

7.3.4 Discussion
The research activity included in this Chapter aimed at proposing a possible

set-up for monitoring sleep disorders in Parkinson’s Disease, to facilitate remote
monitoring and efficient disease management. In light of the encouraging results of
a previous study on remote assessment of sleep quality [3], this research work aimed
at expanding the paradigm and translating it to the scenario of neurodegenerative
diseases.

An experimental protocol, together with the recruiting campaign, was defined in
accordance with neurologists, who also identified the pool of suitable participants.
Following an unsupervised fashion, data collection took place in home-settings, and
included both healthy subjects and PD patients.

From a technical perspective, the study aimed at capturing nighttime motil-
ity through light weight IMU units. Specifically, the recorded inertial data were
processed so as to obtain a set of accurate and robust descriptors of motility in
bed. Then, supervised ML models were exploited to tackle automatic classifica-
tion of sleep quality (good or poor), and to detect Parkinson’s Disease based on
overnight motility. Hence, the proposed set-up served to assess the feasibility of
remote sleep-related motor patterns via wearable sensors.
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Table 7.7: Results of the classification task in the configuration (ii): Healthy Con-
trols vs PD Subjects, in a LOSO-CV approach.

SVM KNN XGBoost
Accuracy 96.2 % 90.4 % 80.7 %
Recall 95.0 % 72.3 % 85.2 %
F1 93.4 % 80.6 % 70.0 %

In particular, the reclining angle in bed over the night (θ) presented with mod-
erately high correlation with the presence of PD. Values of θ approaching 90°, and
describing an upright position, emerged as distinctive for PD. This outcome might
be related to the higher sleep fragmentation in PD subjects and the frequent sleep
interruptions, as also observed in [121]. In addition, the reduced velocity of turn-
ing in bed (ω-turns) appeared among the most informative features for the binary
classification HC vs PD, as well as the overall motility in bed (activity index, AI).
These results appear to reflect the clinical manifestation of nocturnal hypokine-
sia, in which motility is significantly reduced, and often associated with rigidity.
Furthermore, these findings are consistent with previous studies [121, 167], which
stated that the paradigm of turning in bed likely resembles that of upright turning
in subjects with PD.

The encouraging results attained through the explored supervised models proved
the feasibility of the explored task.

Indeed, automatic classification of sleep quality, with the best classifier achieving
an overall accuracy of 85.7% and an F1 score of 82.5%, was in line with results in
the existing literature. However, it is important to note that direct comparison is
impassable, as most of the published studies with similar set-ups are conducted on
young, healthy cohorts.

Regarding PD detection through overnight motility parameters, the best model
attained an F1 score of 93.4%. Along with high values of accuracy, this performance
suggested the suitability of whole-body motion for the characterisation of sleep in
PD. However, this research activity possibly appeared to be the first to address
feature-driven automatic PD detection exploiting motion during sleep, so a fair
comparison with similar setups was hitherto impracticable.

Although presenting with promising performance and encouraging applicability,
this preliminary study bears some limitations, which shall be addressed in future
developments, and are discussed in the conclusive remarks of this Chapter.
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7.4 Conclusion
Sleep disorders appear among the most common non-motor symptoms of Parkin-

son’s Disease. Although entailing diversified phenomena, they often manifest as
disturbances in motor function during sleep. Particularly, nocturnal hypokinesia
and akinesia affect up to 70% of subjects already at the earliest stages of the disease.
This branch of sleep-related disorders negatively affects the quality of life, signifi-
cantly grazing self-care and enforcing, in certain instances, a significant burden on
caregivers.

Currently, the clinical approach to motor-related sleep disturbances in PD lacks
an objective point of view. Indeed, it relies primarily on subjective reports, includ-
ing rating scales, interviews, or self-reports, which frequently result in symptoms
under-rating [131]. Therefore, nocturnal disturbances are often overlooked, and
assessing overall sleep quality and their occurrence remains a challenging task.

Hence, effective monitoring strategies would have a crucial impact on diagnostic
and therapeutic pathways, by introducing objective insight in the assessment of
symptoms. In this perspective, the adoption of a continuous monitoring approach
would facilitate evidence-based follow-up, and highlight fluctuations over time, thus
bridging the gap between in-person assessments.

Although actigraphy offers a minimally intrusive solution to monitor overnight
activity over large periods of time, it often suffers from poor placement. Conversely,
axial placements are able to capture rotational movements and properly describe
whole-body motility.

This Chapter presented an objective approach in the characterisation of motion
during of sleep, with the primary aims of (1) assessing overall sleep quality and
(2) describing sleep patterns in PD, through a feature-driven approach.

The experimental protocol entailed the recruitment of subjects, and data were
collected through lightweight instrumentation in an unsupervised fashion. Indeed,
this activity also addressed the feasibility of home-based monitoring of sleep-related
motor manifestations.

Precisely, overnight motility data were collected through IMU units placed in an
axial configuration, and kinematic parameters, encompassing positional statistics,
number and extent of rolling-over, were retrieved and employed in a supervised ML
framework.

The results obtained appeared encouraging, albeit the investigation is currently
open. The extracted parameters moderately correlated with the two study aims,
suggesting their good predictive performance in the explored tasks. The highest
values of correlation were observed in parameters regarding the duration of turning
in bed, and average body position during the night. Accordingly, features describ-
ing the velocity of rolling-over expressed moderate correlation with the PD class,
suggesting their ability to describe nocturnal hypokinesia.

125



Monitoring Sleep in Parkinson’s Disease

These findings found confirmation through the outcome of the automatic clas-
sification. Sleep quality – in a discrete, good vs poor, fashion – was detected with
encouraging performance, with the best model achieving a 85.7% accuracy, and
82.5% recall, in a mixed cohort including both healthy and PD subjects.

Finally, to assess the feasibility of detecting PD sleep patterns through overnight
kinetic parameters, a binary task between healthy and PD subjects was addressed.
The employed features proved efficient, with the explored models achieving an over-
all accuracy of almost 90%, and the best model exceeding 96%. Furthermore, the
average F1 score was of 89% ± 5.98, suggestive of good detection capability. This
metric becomes particularly important in this configuration, due to the imbalance
in the class distribution.

Despite the limited size of the dataset, the proposed framework and the re-
sults obtained can be considered robust, as the feature set underwent proper fea-
ture selection, and the models’ hyperparameters were optimised. Additionally, the
performance was evaluated in all configuration through a Leave-One-Subject-Out
cross-validation approach, to limit the influence of classification bias.

The findings described in this Chapter suggested the feasibility of remotely
characterising sleep in Parkinson’s Disease, and possibly implement the proposed
parameters in follow-up procedures, to facilitate continuous monitoring strategies
and allow for personalised therapeutic interventions.

However, as previously mentioned, the presented results are exploratory and
future studies should further explore this scenario.

First, an extensive subject recruitment shall be addressed. Indeed, while the
participation from healthy subjects was rather undemanding, the PD cohort pre-
sented with lower patient adherence. A co-factor, in this regard, were the clinical
protocols related to the COVID-19 pandemic, which significantly hindered con-
tact with the patients and hampered data collection. Future recruiting campaigns
should inevitably target an age-matched control populations. Indeed, the current
dataset envisaged a high age variability within the control group (range: 23–66
years). Introducing healthy, though older in age, subjects could provide better
insight into sleep patterns in the elderly. Indeed previous studies highlighted how
turning velocity and motility patterns in early-PD resembled those of controls [121].
A larger dataset, and a higher number of subjects with Parkinson’s Disease could
facilitate more comprehensive explorations, including longitudinal studies, or strat-
ification according to the disease level, age, and other co-morbidities, to enhance
the model generalisation and robustness.

Second, the employed devices are not commercially-available, and currently pur-
chasable only for research purposes. Patient adeherence may benefit from the use
of off-the-shelf devices, possibly user-friendly. Furthermore, pairing sleep-recording
devices with smartphone apps, possibly with a playful, reward-oriented approach,
could facilitate the integration of wearable setups in a real-world, pervasive scenario.

In addition, the proposed framework is applicable only for axial positioning of
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the sensors. However, when testing other configurations, or sensor orientation, the
predictive power of the kinematic parameters may change. Future developments
will envisage the simultaneous recording of EMG, for an accurate characterisation
of movement and muscle activations during sleep, and preliminary investigations
are underway.

Sleep quality, withal, was assessed through a dichotomous approach. Indeed,
subjects were labelled as having either good or poor sleep quality, by posing a thresh-
old on the sPSQI value. Although the threshold was in line with the one proposed in
the literature [55], future works should investigate regression approaches, therefore
retrieving a continuous score, virtually corresponding to the sPSQI value, based on
kinematic characterisation.

Finally, as mentioned in the introductory part of the study, vocal recordings
were collected through smartphones, to provide for an integrated, multi-modal ap-
proach in the evaluation of motor and non-motor symptoms in Parkinson’s Disease,
and support the development of continuous monitoring strategies, thus possibly
positively impacting the quality of life of individuals and caregivers.
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Chapter 8

REM Sleep Parasomnias in
Amyotrophic Lateral Sclerosis

Sleep disorders are present in over 70% of people living with a diagnosis of
Amyotrophic Lateral Sclerosis. Among the sleep disturbances reported in ALS,
REM-related parasomnias were observed, likely revaling the underlying chronic
degeneration of neurons [16]. In a few cohorts, REM Sleep Without atonia was
reported, and previous studies suggested its correlation with disease severity.

This Chapter illustrates the preliminary findings of a longitudinal retrospective
study on the correlation between EMG-derived metrics and disease severity, con-
ducted at the Centre for Sleep Medicine at Molinette University Hospital (Turin,
Italy).

The scientific content of this Chapter was included in the paper "Predicting
Amyotrophic Lateral Sclerosis Progression: an EMG-based Survival Analysis", ac-
cepted for presentation at the 46th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC 2024).

8.1 Context and Background
Amyotrophic Lateral Sclerosis (ALS) is a chronic, progressive neurodegenerative

disease, affecting motor neurons that control voluntary movement, whose deteri-
oration ultimately leads to muscle weakness and paralysis [112]. At present, the
median survival time hovers from 2 to 5 years from symptoms’ onset; no curative
treatment is available, and treatment mainly targets symptomatic management and
palliative care.

The disease presents with an heterogeneous clinical picture, including dysarthria,
dysphagia, and breathing-related disorders, often culminating in respiratory failure
[76]. This family of motor dysfunctions are accompanied in the vast majority of
cases by non-motor manifestations, including sleep disorders [16]. Among these,
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sleep-disordered breathing and sleep fragmentation are the most common, but var-
ious studies investigated the presence of RSWA, possibly with its association with
RBD [106].

Although current literature on RSWA in ALS remains scarce, in previous co-
hort studies a potential correlation between the extent of RSWA and ALS disease
severity appeared [133, 103, 180], based on the qualitative and quantitative analysis
of EMG activity recorded during sleep through in-hospital PSG. In more detail, in
[133] a group of 29 patients was enrolled. Then, the RAI, along with a series of
clinical polysomnographic metrics, and the number of chin EMG activations during
REM sleep were retrieved from full vPSG, and significant correlations were observed
with the degree of functional impairment, according to the ALS-Functional Rating
Scale-Revised (ALS-FRS). In [180], abnormal, elevated motor activity during REM
sleep was observed, with and without association with RBD. Although the involve-
ment of RBD in the development of ALS is still unclear, based on these findings,
the investigation of EMG during sleep becomes significant, to explore the risk for
development of RBD in these cohorts, and to monitor disease severity.

However, as extensively discussed in this Thesis, traditional polysomnography
protocols are often considered intrusive, primarily due to the cumbersome instru-
mentation required. With special regard to ALS, PSG becomes a truly invasive
procedure, due to its set-up and the necessity of outpatient clinic settings. Further-
more, many subjects with ALS carry a non-invasive ventilation (NIV) mask, which
may add to the overall instrumentation discomfort.

This scenario implies a clinical and technological obstacle for non-invasive follow-
up protocols in ALS, and highlights the need for innovative monitoring strategies,
to stabilise the quality of life in the best way possible. In the perspective of contin-
uous, remote monitoring strategies, the research activity described in this Chapter
aims at (1) exploring lightweight EMG metrics in sleep, and (2) assessing their
utility in personalised follow-up protocols for high-risk ALS patients.

8.2 Research Overview
As discussed in the previous Section, effective monitoring strategies are needed

in ALS clinical pathways, to allow for improved patient comfort. The investigation
of sleep serves as reservoir of valuable clinical insights about the progression of the
disease, and may possibly help improving disease management.

The study included in this Chapter aimed at investigating the potentiality ex-
pressed by non-invasive EMG parameters collected during REM sleep in predicting
survival outcomes. Previously, survival patterns in ALS cohort were explored, by
stratification according to age, ALS-FRS, apnea parameters [95, 136], or needle
EMG [158].
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The research activity, detailed in the following Sections, was conducted in coop-
eration with the Centre for Sleep Medicine at Molinette University Hospital (Turin,
Italy), and consisted in:

1. Characterising RSWA in the explored ALS cohort through established met-
rics,

2. Explore the relationship between EMG-derived metrics and disease progres-
sion, through survival model analysis,

3. Assess the predictive power of lightweight, unobtrusive EMG parameters as
regards survival time.

8.3 Monitoring Disease Progression in ALS

8.3.1 Materials
Study Protocol, Subjects, and Data

This longitudinal retrospective study envisaged in-hospital PSG follow-up as-
sessments at four time points, each within a 6-month distance from the prior, for
a total of 18 months of observation. The experimental sessions and data collection
were conducted at the Regional Centre for Sleep Medicine in Turin.

An initial pool of 58 subjects were selected for participating in the study; inclu-
sion and exclusion criteria were discussed by physicians and domain experts and
are provided in the Supplementary Material (Appendix A.1.4). As mentioned in
Appendix A.1.4, this dataset is available on request, and was not made publicly
available for privacy reasons.The subjects were undergoing melatonin treatment
and were evaluated for RSWA symptoms at the time of enrollment (T0). Subse-
quent PSG assessments were conducted after 6 months (T1), 12 months (T2), and
18 months (T3), though only one subject reached this end-point. After the overall
dataset inspection, 13 subjects were excluded from the analysis included in this
work due to technical issues.

The final dataset (REMALS Database) comprised 45 ALS subjects (30 males);
only 9 subjects completed the T0–T2 assessments. Drop-out prior to the end of ob-
servation time was primarily due to decease, or the necessity of invasive ventilation,
which implied inability to follow-up. This category of events was therefore identi-
fied as the primary endpoint of the study, and will be referred to as left-censoring
in the following paragraphs. At the time of actual censorship – i.e., the end of the
observation window – a total of 36 ALS subjects reached the primary endpoint.

Finally, 35 age-matched controls (HC) without diagnosis of or familiarity for
neurodegenerative disorders and with no diagnosed RBD were included in the study;
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they underwent PSG at the selected time points, and employed to establish the
healthy reference model.

Table 8.1 provides a summary of the demographic characteristics of the total
dataset. As appreciable, at the time of the enrollment, 25 subjects in the ALS
cohort screened positive for RSWA (RSWA+).

Driven by the aim of developing an unobtrusive follow-up framework, only the
EMG recorded from the mylohyoid muscle was employed. Indeed, this would en-
able a simplified recording approach compared to PSG, thus facilitating long-term
follow-up in these patients’ populations. All PSG recordings were manually scored
for sleep stages according to the AASM criteria [11].

Table 8.1: Summary of the demographic characteristics of the dataset under study.

Sample Age (years) RAI
General ALS 45 (15 females) 65.51 ± 9.34 0.62 ± 0.34
RSWA+ 25 (9 females) 65.36 ± 9.77 0.40 ± 0.30
RSWA− 20 (6 females) 65.70 ± 8.77 0.90 ± 0.04
HC 35 (15 females) 56.95 ± 12.06 0.91 ± 0.02

8.3.2 Methods
Data Processing and Feature Extraction

The selected recordings underwent minimal processing to facilitate the extrac-
tion of EMG-derived features, in line with standard diagnostic criteria, and previ-
ously discussed in Chapter 6.

Specifically, the EMG signal was bandpass filtered in the range 10–100 Hz.
First, the REM Atonia Index was computed [61] on 1-second epochs. To briefly
revise the concept, the RAI accounts for the number of EMG epochs in REM sleep
with amplitude below 1 µV, and values close to 0 represent loss of REM atonia.

Second, an improved version of the Dissociation Index (DI) was computed. Pre-
cisely, a more comprehensive feature set was employed to characterise the healthy
and non-healthy models, in an attempt to minimise information loss from the avail-
able data. Table 8.2 displays the complete set of features. For consistency with
the RAI computation, each metric was computed on 1-second epochs, and various
statistics were derived (median, 25th and 75th percentiles, IQR, kurtosis, skewness,
maximum and minumum value) to obtain the subject-specific feature array. Then,
in accordance with the methodology presented in Chapter 6 and detailed in the
Supplementary Material (Appendix A.2), the DI was computed. For the sake of
clarity, values approaching 1 indicate complete dissimilarity to the healthy model,
which, in this study, was built through the EMG data from the 36 healthy controls.

132



8.3 – Monitoring Disease Progression in ALS

Table 8.2: Features employed in the improved computation of the Dissociation
Index, along with their domain and reference.

Category Feature (Name and description) Reference

Time

Amplitude metrics: mean, standard devi-
ation, skewness, kurtosis, range, maximum
and minimum value

various

Hjorth Parameters: activity, mobility [122]
Percentiles (25th, 75th, 95th) various

Frequency

Power Spectral Density: numerical and sta-
tistical measures (mean and median frequen-
cies, total power)

various

Spectral Edge Frequencies (i.e., spectral per-
centiles): SEF25, SEF95

⋄[139]

Average power of the whole signal band various

Survival Analysis for Disease Modelling

As per study objective (2), multiple survival models were employed in an at-
tempt to model the disease progression and explore the survival-prediction power
of the EMG metrics.

The feature set employed for this task included the following five variables: Age,
Sex, Follow-up Time (days), RAIT 0, and DIT 0, which served as co-variates to model
the survival functions. For the sake of clarity, RAIT 0, and DIT 0 represent the RAI
and DI evaluated at the time of enrollment. As appreciable, demographic variables,
along with clinical and quantitative EMG metrics were included.

The general probability of survival in the explored cohort was investigated
through a univariate Kaplan-Meier approach [51], relying only on the variable
Follow-Up time. This latter was expressed in days from the time of enrollment
until drop-out. The estimated survival function, for a general time instant t, is
expressed as:

S(t)ˆ =
∏︂
ti≤t

(︃
1− oi

ri

)︃
(8.1)

where oi is the number of occurrences (i.e., decease) at time ti, and ri the total
number of individuals in the dataset who have not experienced the event yet, and
therefore have not been censored.

Second, a multivariate survival analysis was conducted, to explore the risk-
prediction capability of each co-variate in the extracted feature set. This was carried
out by means of a Cox’ Proportional Hazards model [52], generally employed to
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estimate the impact of various risk factors on survival time. For a general time
instant t, the expected hazard is expressed as:

h(t) = h(t0)eβ1X1+β2X2+...+βN XN (8.2)

where Xi = (X1, ..., XN) are the values of the N covariates, βi are the effect pa-
rameters for each predictor, and h(t0) is the baseline hazard, obtained when all
predictors Xi equal zero.

Feature importance was assessed by means of the Harrell’s concordance index
(C-index) [77], representative of concordance probability. In more detail, this met-
ric depicts the number of concordant pairs with respect to the total number of
comparable pairs. Given a pair of observations in the dataset i and j, it is defined
as [151]:

C =
∑︁

i,j 1(Tĩ > Tj̃) · 1(ηj > ηi) ·∆j∑︁
i,j 1(Tĩ > Tj̃) ·∆j

(8.3)

where T represents survival times, and ηi the predictions (i.e., a one-dimensional,
average score defined for each observation, which relates to the overall cumulative
hazard over time). ∆ is an auxiliary variable that refers to the occurrence of an
event, such that ∆=0 if the event has not been observed, and ∆=1 otherwise –
e.g., this latter in the case of censoring. The expressions:

• 1(Tĩ > Tj̃) equals 1 if Tĩ > Tj̃, 0 otherwise,

• 1(ηĩ > ηj̃) equals 1 if ηĩ > ηj̃, 0 otherwise.

Ideally, values of C approaching 1 represent a perfect association.
Furthermore, following previous findings in the literature that suggested a po-

tential correlation between the presence of RSWA and the clinical severity of the
disease [133], stratified survival analyses were carried out. Hence, data stratification
according to the absence or presence of RSWA was conducted. For this purpose, a
cut-off value of RAI=0.8 was chosen to split the dataset into two groups: subjects
expressing loss of REM sleep atonia (RSWA+), and subjects that exhibited no signs
of altered REM atonia (RSWA−). The RAI threshold was chosen in line with the
recommendations provided in [61]; a Kaplan-Meier estimator was then modelled on
the two datasets.

Lastly, given the presence of two poignant demographic co-variates in the dataset
(Age and Sex) a further stratified survival analysis was tackled. However, due to the
quite homogeneous Age distribution in the ALS subjects, stratification according
to Age was not feasible. Hence, a stratified analysis based on Sex was conducted,
and a Kaplan-Meier estimator was fit on the two obtained strata. To evaluate
the risk-prediction performance of the trained models a log-rank test was adopted,
employing χ2 and p-values as statistics.
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Predictive Modeling of ALS Progression

In the final part of this work, study objective (3) was addressed, i.e., assessing
the feasibility of modeling disease progression over time through unobtrusive EMG
parameters. Hence, a multivariate-oriented, Cox’ Proportional Hazards model was
fit on the ALS dataset. The survival analysis was carried out following the same
methodology described in the previous paragraphs. Likewise, the performance of
the model was assessed through Harrell’s C-index.

Furthermore, to investigate the prospective applications of this method in follow-
up scenarios, synthetic subjects data were employed. Specifically, feature arrays
representing the entire spectrum of symptoms (including early/late onset ALS,
presence/absence of RSWA, Age, Sex, and DI value) were generated and employed
as input variables in a multivariate approach. Finally, predictive survival functions
were obtained, over a time period of 365 days, to simulate real-world follow-up
procedures.

8.3.3 Results
Preliminary investigation on the RAI

A preliminary investigation on the effect of melatonin treatment on REM Sleep
Without Atonia symptomatology was conducted. Particularly, the analysis sought
to find a reduction in the observed abnormal activity. However, except for very
few and punctual cases, no improvement on the RAI score was observed in the
population under study, as appreciable from the data distribution illustrated in
Figure 8.1. On the other hand, a slight decrease in RAI emerges when considering
the median value.

Hence, although some studies recommend melatonin as first-line treatment for
RSWA in RBD cohorts, no statistically significant trend was identified. Indeed, the
literature on this topic is rather conflicting [150, 98].

General Survival Model and Feature Importance

From the overall Kaplan-Meier model, a median survival time to the primary
end-point of slightly above 6 months was observed. Figure 8.2 shows the overall
survival curve of the employed sample.

As regards the multivariate analysis, feature importance, in terms of the C-
index, is shown in Table 8.3. The variable DIT 0 emerged as the best predictor, with
a C-index of nearly 0.7, implying good estimation capability. The feature RAIT 0,
exhibited a C-index value of approximately 0.6, indicating a moderate contribution
in the prediction of survival. The co-variate Age appeared with a rather strong
value of C-index, though with a non-statistically significant p. Finally, the variable
Sex featured a C-index close to 0.5, suggestive of a non-informative prediction rule,
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Figure 8.1: Distribution of the REM Atonia Index at time points T0, T1, T2. Due
to the presence of only one subject, T3 was discarded in the representation.

Figure 8.2: Kaplan-Meier plot of the overall survival trend. Time between study
enrollment and primary endpoint (decease/inability to follow-up).

however, with a statistically significant p. This outcome, however, might be due to
the class imbalance in the REMALS Database.

Stratified Analyses

The following paragraphs present the outcomes of the stratified survival explo-
rations, based on the predictors RSWA(+/−) and Sex.
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Table 8.3: Harrell’s concordance index for each tested predictor. Statistical signif-
icance is shown as ∗, and indicates a value of p<0.05.

Feature C-index p-value
DIT 0 0.693 0.021∗

Age 0.622 0.437
RAIT 0 0.572 0.045∗

Sex 0.557 0.032∗

Results of Stratification According to RSWA As previously described, the
selected threshold (RAI=0.8) identified two groups, RSWA+, with 25 subjects, and
RSWA−, counting 20 subjects. A Kaplan-Meier model was fit for both groups, and
the obtained survival functions are presented in Figure 8.3. Noticeably, both groups
present with a similar progression trend. Upon a preliminary visual examination,
the RSWA− group appears to initially undergo a more rapid progression, albeit
eventually transitioning to a plateau in the later stages of the disease. Indeed,
the statistical comparison of the two groups yielded a χ2 value of 1.817, with p-
value=0.5. This outcome corroborated the similarity observed in the preliminary
visual inspection of the survival curves, suggesting that stratification based on
RSWA may not be informative in this cohort.

Results of Stratification According to Sex The same procedure was carried
out on this second stratification, which, however, presented with a considerable
group imbalance (30 males and 15 females). The survival function obtained through
a Kaplan-Meier approach is displayed in Figure 8.4. From a visual inspection,
the Male subgroup appeared to exhibit a more rapid degeneration. The log-rank
test conducted on this stratification yielded a χ2 value of 3.768 (p-value 0.035),
indicating statistical significance. This finding confirmed the clinical implications
of the disease [95], although, as previously mentioned, the different class numerosity
may have had an impact.

Prediction of Disease Progression

Finally, to investigate prospective applications in follow-up strategies, a multi-
variate Cox Proportional Hazards model, trained on the entire dataset, was em-
ployed to make predictions on synthetic, subject-specific data.

The trained model attained a C-index of 0.734, which, as discussed, indicates
good prediction performance of the extracted parameters. In Figure 8.5 the pre-
dicted survival curves for two relevant synthetic patients are shown. Precisely, these
represent one young subject with early-onset ALS and no RSWA at the time of en-
rollment, and a second, older subject with moderate RSWA at T0. As formerly
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Figure 8.3: Estimated survival curves for the stratified analysis according to the
RSWA co-variate, in the time between study entrollment and primary endpoint
(death/inability to follow-up).

Figure 8.4: Estimated survival curves for the stratified analysis according to the
Sex co-variate. in the time between study entrollment and primary endpoint
(death/inability to follow-up).

discussed, these curves, previously trained on real subjects data, represent poten-
tial estimators of the disease progression rapidity and may serve as predictors of
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the expected median survival time. Therefore, they may be used as support tools
non-intrusive follow-up strategies.

Figure 8.5: Predicted survival probability on synthetic subjects data. Dotted line:
older patient, RSWA+. Dashed line: patient with young onset, RSWA–.

8.3.4 Discussion
This preliminary study explored REM sleep muscular patterns in ALS, to as-

sess the feasibility of predicting disease progression through a minimally-intrusive
framework. Indeed, lightweight, objective EMG metrics were computed from REM
segments and employed as features in survival models.

The extracted predictors were adopted in a multivariate approach, and showed
overall good predictive power, with the DI yielding a C-index value close to 0.7.

Although a thorough literature search has been conducted, this exploratory
study appeared to be the first tackling survival analyses on unobtrusive muscular
parameters on REM sleep. Indeed, prior studies employed invasive wake measure-
ments, including needle EMG or extensive examination of the genioglossus muscle,
obtaining statistically significant hazard ratios [158, 169]. Consequently, a direct
comparison with studies in the literature is not feasible; however, the results ob-
tained, along with their statistics, are in line with the findings highlighted in pre-
vious studies [95, 136, 169], though these latter employed different cohorts, and
qualitative co-variates.

Finally, when exploring possible applications in follow-up strategies, predictive
modelling of ALS disease progression was proposed, and tested on synthetically
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generated data. The multivariate Cox’ Proportional Hazards model trained on the
REMALS Database achieved C-index of 0.73, indicative of encouraging goodness
of fit. Furthermore, the survival curves obtained by testing the model on unseen,
synthetic data, yielded different progression trends for the proposed case studies,
highlighting their potential as digital tools in follow-up protocols.

Although presenting with promising potential, this research activity was ex-
ploratory, and presents with some challenges and limitations that should not be
left unaddressed, and are discussed in the following paragraph.

8.4 Conclusion
Amyotrophic lateral sclerosis is a chronic neurodegenerative disease, that affects

motor neuron. Sleep disturbances are widely present in subjects with a diagnosis
of ALS, and they have a negative impact on the quality of life of both patients and
caregivers.

Currently, no curative treatment for ALS is available, and pharmacological
treatments primarily regards the management of symptoms or palliative care. Ame-
lioration of sleep-disordered breathing symptomatology, such as sleep apnea, can be
found through continuous positive airway pressure (CPAP) ventilation, which al-
lows proper airflow. However, this temporary solution becomes impracticable once
life-sustaining, invasive ventilation protocols are adopted.

Indeed, sleep disorders should be investigated, to exploit their potential as reser-
voir of clinical information, both regarding the aetiology and disease evolution.

Previous studies in literature highlighted the correlation of RSWA manifesta-
tions with the clinical severity of the disease, and suggested its role as potential risk
factor in a more rapid disease progression trends. However, traditional assessments
for RSWA relies on in-hospital PSG, which remains a highly intrusive diagnostic
tests, and makes follow-up assessments challenging for these populations.

Given the importance of muscular activity analysis in ALS to establish the
overall decline rate [180, 148], tools for unobtrusive data collection acquire pivotal
importance. In particular, minimally-invasive sleep studies could offer alternative
strategies to monitor and manage symptoms, and be beneficial in ALS therapeutic
pathways in order to provide personalised care.

For this purpose, the research activity presented in this Chapter aimed at as-
sessing the correlation between abnormal EMG activity during REM and the rate
of survival, employing simple, lightweight, and unobtrusive metrics. Specifically, a
combination of clinical and demographic data and quantitative muscular parame-
ters were employed. Namely, these were a well-established RSWA metric (i.e., the
RAI) and a previously presented EMG-derived metric (DI), this latter representing
the extent of dissimilarity from a healthy model.

These parameters emerged as meaningful predictors in the explored survival
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models, with the DI assessed at the time of the enrollment yielding an importance
score of 0.7, in terms of Harrell’s concordance index.

Furthermore, their combination with clinical and demographic parameters was
exploited to train survival models and tackle predictive modelling of the disease
progression, subsequently tested on synthetic, subject-specific data.

The encouraging performance of the proposed framework, discussed in the Sec-
tions above, bolsters the feasibility of lightweight follow-up protocols in these pop-
ulations. Indeed, the computed muscular parameters are retrieved from surface
EMG of the mylohyoid muscle. Due to the muscle positioning, this biosignal could
be recorded through minimally-invasive, wearable sensors or patches [110], without
the need for high-resolution instrumentation, with respect to traditional PSG.

Although the presented results promise encouraging scenarios for personalised
care, this study remains preliminary and future developments should explore its
limitations.

In this regard, a larger cohort should be included, to allow for a comprehensive
and reliable survival analysis, to improve the robustness of the trained models
and enhance the reliability of the proposed framework. Indeed, 58 patients were
initially included, but 13 were discarded due to technical issues in the recordings.
This occurrence, combined with the high decline rate of the disease under study,
significantly affected the size of the sample.

Second, given the interesting, albeit exploratory, findings of the stratified analy-
sis, more detailed differentiation in the dataset should be taken into account, which
will necessarily be encouraged by larger cohorts. For instance, meaningful insights
into progression rates could be provided by a stratification according to the type
of onset (i.e., bulbar, truncal, spinal). Furthermore, the age of disease onset, the
functional scale score, or the presence of non-invasive ventilation are important de-
scriptors of self-sufficiency or disability, and should be taken into consideration, as
they may emerge as relevant co-variates. However, in this first investigation, these
parameters were overlooked. Additionally, the subjects in the dataset were all
undergoing melatonin treatment at the time of the study. Although no significant
effect of treatment was observed in this cohort, the inclusion of a placebo-controlled
group could offer the possibility of evaluating the effect of this type of pharmaco-
logical treatment on survival rates.

Upon these considerations, a thorough and more detailed characterisation could
be advantageous for building a robust descriptive model of disease evolution, es-
pecially in the case of neurodegenerative diseases with rapid progression rates.
Eventually, the findings could be generalised to other neurodegenerative disorders
with more extended time-scales.

Finally, although one of the aims of this research activity was to assess the
feasibility of monitoring ALS progression through lightweight metrics, the employed
data were recorded through high-resolution PSG (both through traditional and
NOX instrumentation). Future data acquisition campaigns should envisage the use
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of wearable set-ups, and process data acquired through different sensors, to test
the reliability of real-world, remote scenarios.
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Chapter 9

Conclusion

Sleep disorders represent a growing challenge in healthcare, with a global preva-
lence of up to 70% in older adults, and the majority of cases left undiagnosed [83].
In subjects over the age of 60 they serve as predisposing factors for the development
of co-morbidities, with a negative impact on the quality of life and an increase on
the healthcare burden [73].

They encompass a broad variety of conditions, including insomnia or disorders
of hypersomnolence, sleep-disordered breathing, parasomnias, and motor-related
symptomatic manifestations.

Emerging evidence suggested their involvement in the neuronal degeneration
processes [170], and acknowledged them among the earliest markers of neurodegen-
erative diseases. Indeed, RBD is considered as a prodrome of α-synucleinopathies,
including PD, and dysfunctions in slow-wave sleep have been associated with an
increased risk for the development of AD.

Hence, sleep disorders acquire great potential as reservoir of significant clini-
cal information. Their investigation may thus provide insightful understanding of
the aetiology and progression pattern of various neurodegenerative diseases, and
positively impact the therapeutic pathways.

However, state-of-the-art clinical assessment methods rely, on a large scale, on
obtrusive diagnostic tests, to be performed in laboratory or outpatient settings.
Polysomnographic recordings are the gold standard assessment tool for diagnosing
and monitoring sleep disorders, and require cumbersome, wired instrumentation,
and require extensive manual labour. Indeed, the international guidelines for PSG
assessment currently require the visual inspection of overnight recordings and man-
ual scoring following strict sets of rules, ofttimes resulting in intra- and interrater
variability, and protracted diagnosis time.

This Thesis sought to investigate the feasibility of minimally-invasive sleep stud-
ies in neurodegenerative diseases, with the aims of providing possible frameworks
to (1) support the diagnostic process, and (2) facilitate monitoring and follow-up.

For this purpose, data-driven, automatic approaches for processing sleep data
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have been explored. Precisely, polysomnographic biosignals, such as EEG and
EMG, and motility data collected through IMUs were processed to obtain objec-
tive parameters for the characterisation of sleep disorders. These parameters were
leveraged in combination with supervised ML models, to tackle automatic detection
of patterns, or the assessment of the disease progression. This procedure aimed at
obtaining obtain simple and straightforward analysis frameworks, that could prove
realiable when integrated in the clinical practice.

The research work was conducted on a multidisciplinary approach, involving in
some cases a complete pathway from the study design to data analysis and interpre-
tation, conducted in cooperation with Neurology teams. The experimental studies
for RBD were conducted in close cooperation with clinical units at two facilities:
Molinette University Hospital (Turin, Italy), and the Medical University of Inns-
bruck (Austria). The research projects on Parkinson’s Disease and Amyotrophic
Lateral Sclerosis were devised and conducted in collaboration with the Neurology
Department and the Neuroscience Department of the University of Turin (Italy), in
the Azienda Ospedaliero-Universitaria Città della Salute e della Scienza. The ex-
perimental activities entailed in many cases the interaction with patients, especially
when regarding data collection, both in outpatient settings and at local Patients
Associations (Associazione Amici Parkinsoniani Piemonte ONLUS).

The research works included in this Thesis explored various topics, and tackled
the following challenges:

• Automatic Sleep Staging, to assess the feasibility of minimally-intrusive
strategies in PSG, based on single-channel EEG,

• Quantification of REM Sleep Without Atonia, to remove the need for
manual scoring of artefact, and proceed towards the automatic assessment of
RSWA to facilitate diagnostic pathways,

• Automatic Detection of RBD, through supervised ML, employing a mini-
mal set of sensors (single-channel EEG or EMG), to improve diagnostic strate-
gies in RBD,

• Assessment of RBD Progression, through a continuous metric, presenting
a possible approach to personalised follow-up procedures,

• Home-Monitoring of Sleep Disorders, to objectively characterise noc-
turnal hypokinesia and akinesia in PD through wearable, low-cost instrumen-
tation, and assist remote monitoring frameworks,

• Prediction of Disease Progression, to provide insight into the progres-
sion of ALS through simple and unobtrusive EMG metrics, facilitating sleep
studies in fragile subjects.
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The proposed methodology, explored in Chapters 4–8, presented with encour-
aging outcomes, and:

• Provided effective and robust frameworks for enabling minimally-invasive
sleep studies and supporting the clinical diagnosis of RBD,

• Revealed the feasibility of home-based, continuous remote monitoring solu-
tions for sleep disorders in populations with neurodegenerative diseases.

The obtained results may represent a possible approach to the development
of personalised treatment and care, for beneficial quality of care. However, as
the pathophysiology of neurodegenerative disorders is still unclear, symptomatic
treatment is the only available option to improve the quality of life of patients.
Currently, a pivotal role is played by cognitive and motor rehabilitation, especially
in PD. During the course of the 3-year PhD project, efforts have been dedicated
towards the development of a personalised, adaptive Tele-Rehabilitation framework,
to provide an exhaustive implementation of continuous follow-up strategies. These
activities are discussed in the Appendix A.4, and were not included in the main
document as they relate to awake biosignals.

To summarise, the research works presented in this Thesis proved the feasibility
of objectively monitoring sleep through data-driven, straightforward metrics, and
offered an understanding in sleep patterns in neurodegenerative diseases, presenting
possible approaches for accessible and lightweight sleep monitoring.

Future trajectories shall embrace the technological challenges of the presented
scenario, and tackle the limitations of the current research activity.

First, Deep Learning techniques should be explored, to identify possible under-
lying patterns in sleep architecture or sleep disorders. Second, future developments
shall envisage the adoption of consumer-grade, wearable technology to monitor
sleep in unsupervised settings, and provide accurate follow-up strategies through
remote monitoring. Finally, data-driven frameworks should be employed to con-
duct population screening studies and enhance neurodegenerative risk prediction
strategies.
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Appendix A

Supplementary Material

A.1 Inclusion Criteria (Observational Studies)
The following Sections report the inclusion and exclusion criteria for the patient

cohorts recruited at the Department of Neurology, Molinette University Hospital
(Turin, Italy), and included in the observational studies described in this Thesis.

Data Availability

All data in the TuSDi Database are available on request and are currently not
published in public repositories due to privacy and ethical reasons.

Ethical Committee

The collection of data in all presented studies was conducted in accordance
with the Declaration of Helsinki. Therefore, all participants received detailed in-
formation on the study purposes and execution, and written informed consent for
observational study was obtained. All procedures have been approved by the Ethics
Committee of A.O.U. Città della Salute e della Scienza di Torino (Approval No.
00384/2020).

A.1.1 TuSDi Database: RBD Detection from EMG
For this study, inclusion criteria for RBD patients in the TuSDi Database were:

• Suspected or diagnosed RBD 1,

• Suspected narcolepsy,

1For the diagnosis: (1) occurrence of dream enactment confirmed by vPSG, (2) polysomno-
graphic evidence of RSWA, (3) clinical interviews with a sleep neurologist.
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• Suspected REM dissociation or other NREM parasomnias,

• Diagnosis of secondary RBD due to OSAS,

• Elevated EMG tone during REM sleep.

Exclusion criteria for RBD patients were:

• Dementia,

• Diagnosis or clinical history of psychiatric conditions that could prevent the
correct execution of PSG.

A.1.2 TuSDi Database: RBD Detection from EEG
For this study, inclusion criteria for RBD patients in the TuSDi Database were:

• Suspected or diagnosed RBD2,

• Elevated EMG tone during REM sleep,

• Absence of nocturnal epilepsy.

Exclusion criteria for RBD patients were:

• Dementia,

• Diagnosis or clinical history of psychiatric conditions that could prevent the
correct execution of PSG,

• Ongoing pharmacological treatment with benzodiazepines.

A.1.3 PDSleep Database
For this study, inclusion criteria for the PD cohort were:

• Clinical diagnosis of Parkinson’s Disease,

• Clinical assessment of nocturnal hypokinesia or akinesia,

• Reported or suspected nocturnal motor impairment.

Exclusion criteria for the PD cohort were:

• Dementia,

2Same criteria as A.1.1

148



A.1 – Inclusion Criteria (Observational Studies)

• Diagnosis or clinical history of psychiatric conditions that could prevent the
correct execution of PSG,

• Ongoing pharmacological treatment with benzodiazepines.

As regards the healthy cohort, inclusion criteria envisaged:

• Absence of family history for neurodegenerative disorders,

• Absence of diagnosed sleep disorders,

• Absence of reported sleep disorders.

A.1.4 REMALS Database
For this study, inclusion criteria for the ALS cohort were:

• Clinical diagnosis of Amyotrophic Lateral Sclerosis,

• Polysomnographic evidence of REM Sleep Without Atonia.

Exclusion criteria for the PD cohort were:

• Dementia,

• Diagnosis or clinical history of psychiatric conditions that could prevent the
correct execution of PSG,

• Physical inability to undergo polysomnography.

As regards the healthy cohort, inclusion criteria envisaged:

• Absence of family history for neurodegenerative disorders,

• Absence of diagnosed sleep disorders,

• Absence of REM Sleep Without Atonia,

• Absence of reported sleep disorders.
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A.2 Design of the Dissociation Index
In Section 6.3.2, the rationale behind the design of the Dissociation Index is

presented. This metric relies on two main concepts:

• A reference ("healthy") model (S),

• A neighbourhood (R), virtually mirroring the search range.

Various configurations were explored before applying the final one, and are
described in the following paragraphs.

Specifically, considering that no clinically validated model of RBD progression
is currently available, the concept the neighbourhood was tentatively expressed in
two manners:

1. Radius R1: where R expresses the ED between the HS with the best atonia
score (i.e., highest RAI) and the RBD subject with the worst atonia score
(i.e., lowest RAI). This virtually depicts a range between the "best" and the
"worst" feature arrays in the dataset.

2. Radius R2: where R expresses the ED between two points in a plane, cor-
responding to the whole HS and RBD groups, respectively. The two points
are, in turn, obtained as the intra-group ED.

The second definition provides a more comprehensive neighbourhood, as the
radius is defined by encompassing the intrinsic characteristics of each group. The
values were computed on the CAP Sleep Database, as it encompassed both healthy
and RBD subjects, ensuring balance. The obtained values were 6.2 and 5.92 for R1
and R2, respectively.

Accordingly, two reference models were explored:

1. Reference S1: the feature array of the subject in the HS group with the best
atonia score (i.e., highest RAI).

2. Reference S2: The sample mean of all feature arrays in the healthy cohort.
As seen in R2, this provides a comprehensive measure to describe the intra-
group variability.

Afterwards, the ED of each subject (expressed as feature array) from the se-
lected reference were computed, obtaining distances Hi, and mapped to the DI as
described in Section 6.3.2.

The following combinations were investigated: (1) R1/S1, (2) R2/S1, (3) R2/S2;
Table A.1 displays the results, in terms of distance and included subjects.

Neighbourhood radius R2 appeared to be more restrictive; finally, combination
(3) appeared to be the most robust measure to evaluate the extent of similarity to
an estimated healthy model, and was employed in the subsequent assessment of DI.
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R1/S1 R2/S1 R2/S2

Euclidean Distance (µ± σ) 5.35 ± 0.63 5.24 ± 0.59 5.02 ± 0.6
Maximum Distance 6.19 5.80 5.81
Subjects Outside Radius (N) 5 7 6

Table A.1: Combinations of neighbourhood and reference model explored for the
design of the Dissociation Index.

A.3 Sleep in Parkinson’s Disease
This section includes the set of questions of the sleep surveys administered in

Paper [140] to assess sleep quality and circadian habits, and the text used for vocal
samples.

A.3.1 Shortened Pittsburgh Sleep Quality Index
The following questions were proposed in the shortened version of the Pittsburgh

Sleep Quality Index [55], and relate to usual sleep habits adopted in the month prior
to the examination.

1. During the past month, when have you usually gone to bed?

2. During the past month, how long (in minutes) has it taken you to fall asleep
each night?

3. During the past month, when have you usually gotten up in the morning?

4. During the past month, how many actual hours of sleep did you get at night?
(This may be different than the number of hours you spend in bed.)

5. During the past month, how often have you had trouble sleeping because
you. . .

(a) Cannot get to sleep within 30 minutes
i. Not during the past month
ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

(a) Wake up in the middle of the night or early morning
i. Not during the past month

151



Supplementary Material

ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

(a) Cannot breathe comfortably
i. Not during the past month
ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

(a) Cough or snore loudly
i. Not during the past month
ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

(a) Feel too hot
i. Not during the past month
ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

(a) Have bad dreams
i. Not during the past month
ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

(a) Have pain
i. Not during the past month
ii. Less than once a week
iii. Once or twice a week
iv. Three or more times a week

6. During the past month, how often have you had trouble staying awake while
driving, eating meals, or engaging in social activity?

(a) Not during the past month
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(b) Less than once a week
(c) Once or twice a week
(d) Three or more times a week

7. During the past month, how much of a problem has it been for you to keep
up enthusiasm to get things done?

(a) Not during the past month
(b) Less than once a week
(c) Once or twice a week
(d) Three or more times a week

Scoring Instructions

The scoring instructions, provided in [55] follow.
Component 1: sleep latency
C1 —
Score of #2 (<15 (0), 16–30 min (1), 31–60 min (2), >60 min (3)) + Score of

#5a (if sum is equal 0 = 0; 1-2 = 1; 3-4 = 2; 5-6 = 3)
Component 2: sleep duration
C2 —
Score of #4 (>7 (0), 6-7 (1), 5-6 (2), <5 (3))
Component 3: sleep efficiency
C3 —
(total # of hours asleep)/(total # of hours in bed) × 100; >85% = 0, 75–84%

= 1, 65–74% = 2, <65% = 3
Component 4: sleep disturbances
C4 —
Examine questions 5b to 5g and assign scores for each questions as follows:
Response: Score

• Not during the past month: 0

• Less than once a week: 1

• Once or twice a week: 2

• Three or more times a week: 3

Get the sum of scores 5b to 5g (0 = 0, ≥1 ≤6 = 1; >6 ≤12 = 2; >12 = 3)
Component 5: daytime dysfunction
C5 —
Score of #6 + Score of #7 (0 = 0; 1-2 = 1; 3-4 = 2; 5-6 = 3)
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A.3.2 SLEEPS Questionnaire
This Section includes the original set of questions included in the SLEEPS Question-

naire, proposed by our group in [3]. The items and questions were drafted in cooperation
with sleep neurologists.

1. General Data

1. Diagnosis of COVID-19

(a) Present diagnosis
(b) Past diagnosis
(c) Never diagnosed

2. Diagnosis of obstructive sleep apnea

(a) Yes
(b) Casual occurrence of sleep apnea
(c) Never diagnosed

3. Presence of insomnia

(a) Yes
(b) Seldom
(c) No

4. Presently enrolled at university

(a) Yes
(b) No
(c) Not Applicable

5. Presently employed

(a) Yes
(b) Shift-Worker
(c) No

2. Work and Study Routine

1. Presently attending remote class, or working from home

(a) Yes
(b) No
(c) Not Applicable
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2. Hours of screen time

(a) Present diagnosis
(b) Past diagnosis
(c) Never diagnosed

3. Time of night indicating end of use of electronic devices (–)

4. Use of a blue light filter (Y/N)

3. Leisure Time Habits

1. Time spent outside over the working week

(a) 0–2 hours
(b) 3–5 hours
(c) 6–8 hours
(d) 9+ hours

2. Average time per day spent outdoors in the weekend

(a) 0–2 hours
(b) 3–5 hours
(c) 6–8 hours
(d) 9+ hours

3. Average time per week spent training outdoors

(a) 0–2 hours
(b) 3–5 hours
(c) 6–8 hours
(d) 9+ hours

4. Average time per week spent training indoors

(a) 0–2 hours
(b) 3–5 hours
(c) 6–8 hours
(d) 9+ hours

5. Average time per week dedicated to hobbies

(a) 0–2 hours
(b) 3–5 hours
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(c) 6–8 hours
(d) 9+ hours

4. Sleep Habits

1. Presence of arousals

(a) Up to once every night
(b) More than once every night
(c) Never occurred

2. Frequency of getting out of bed during the night

(a) Up to once every night
(b) More than once every night
(c) Never occurred

3. Difficulty of getting up in the morning

(a) Less than twice a week
(b) More than twice a week
(c) Never occurred

4. Morning tiredness

(a) Less than twice a week
(b) More than twice a week
(c) Never occurred

5. Daytime fatigue

(a) Less than twice a week
(b) More than twice a week
(c) Never occurred

6. Difficulty in falling asleep, although being tired

(a) Less than twice a week
(b) More than twice a week
(c) Never occurred

7. On a scale from 0 to 4, how would define the quality of your sleep?

The preliminary analysis conducted in [3] highlighted questions (1.3), (2.3), (4.1),
(4.3), (4.4), (4.5), (4.6) to be the most relevant in correlation with perceived sleep
quality. Upon this premise, only this subset of questions was administered to the study
participants. Scoring instructions follow.
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Scoring Instructions

The final SLEEPS score is computed by summing the item-wise scores as follows.
For question (1.3): 2 if (a), 1 if (b), 0 if (c).
For question (4.1): 1 if (a), 2 if (b), 0 if (c).
Sum of scores for (4.3) and (4.4), as:

• For question (4.3): For question (4.1): 1 if (a), 2 if (b), 0 if (c).

• For question (4.4): For question (4.1): 1 if (a), 2 if (b), 0 if (c).

Then, if the sub-score ≥ 3: 2, if sub-score equals 2: 1, if sub-score ≤ 1: 0

Sum of scores for (4.5) and (4.6), as:

• For question (4.5): For question (4.1): 1 if (a), 2 if (b), 0 if (c).

• For question (4.6): For question (4.1): 1 if (a), 2 if (b), 0 if (c).

Then, if the sub-score ≥ 3: 2, if sub-score equals 2: 1, if sub-score ≤ 1: 0

A.3.3 Vocal Sample Recordings
For future investigations, the participants were asked to record through a smartphone

a phonemically balanced test, as proposed in a previous investigation [3]. The text, in
Italian language, was proposed in [48] and is reported below.

Il Ramarro Della Zia

Il papà (o il babbo come dice il piccolo Dado) era sul letto. Sotto di lui, accanto al
lago, sedeva Gigi, detto Ciccio, cocco della mamma e della nonna. Vicino ad un sasso
c’era una rosa rosso vivo e lo sciocco, vedendola, la volle per la zia. La zia Lulù cercava
zanzare per il suo ramarro, ma dato che era giugno (o luglio non so bene) non ne trovava.
Trovò invece una rana che saltando dalla strada finì nel lago con un grande spruzzo.
Sai che fifa, la zia! Lo schizzo bagnò il suo completo rosa che divenne giallo come un
taxi. Passava di lì un signore cosmopolita di nome Sardanapalo Nabucodonosor che si
innamorò della zia e la portò con sé in Afghanistan.
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A.4 Other Works

NeAdEx: Neuroadaptive Exergame for Telereha-
bilitation Purposes

With the rapid advancements in wireless technologies and video-processing tech-
niques, Telehealth applications have rapidly grown due to their versatility, portability
and accessibility. These strategies allow patients living in rural or remote areas to benefit
from continuity of care, while significantly reducing healthcare costs. Motor and cognitive
rehabilitation is usually carried out in hospitals, gyms or clinical facilities, but techno-
logical devices in this field offer more flexibility (i.e., the same task can be adapted to
different applications and needs), high interactivity and the possibility of more immer-
sive tasks. Moreover, these technologies offer both qualitative and quantitative feedback,
available as soon as the cognitive task is completed.

As regards motor-cognitive telerehabilitation, a possible solution is offered by the so-
called Exergames, that exploit new generation devices such as RGB-Depth cameras (e.g.,
Kinect) [4], balance boards (e.g., WII balance board), and virtual-reality headsets. The
users can control the game through their own body and carry out goal-oriented tasks,
which aim at stimulating specific motor and cognitive skills.

Within this framework, efforts have been dedicated towards the development of an
interactive telerehabilitation framework, that could adapt to the subjects’ needs. The
project (Neuroadaptive Exergame, NeAdEx) envisaged the development of an exergame
with a series of tasks mimicking exercises for the rehabilitation of the upper limbs, and the
simultaneous recording of biosignals (EEG and electrodermal activity) through research-
grade wearable devices. Specifically, the Dreem2 headset (Beacon Biosignals, Inc., USA,
https://beacon.bio/) was employed to collect EEG data, and the Empatica E4 (Em-
patica Inc., USA, https://www.empatica.com/en-eu/) to record electrodermal activity
(EDA) and inertial measures.

The project aimed at:

• Characterising subject’s engagement through simple EEG-derived metrics [5],

• Assessing the stress level of participants during game-play [111].

• Investigate the effect of baseline stress on the performance.

The results of the first explorations are included in [5] and [111], and in one conference
paper accepted for presentation at the 46th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC2024).

The experimental investigation is currently ongoing, and including healthy cohorts,
subjects with PD, and subjects affected by metabolic disorders. The exploration of elec-
trophysiological trends during Telerehabilitation would provide insights into the subjects’
behaviours and identify trends in the response to the exergame. Ultimately, the investi-
gation of these physiological parameters could support the development would allow for
the development of adaptive telerehabilitation strategies without the need for expensive
and invasive equipment, with beneficial effects on the quality of care.
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Appendix B

Included Contributions

B.1 Automatic Sleep Staging
Title: Single-channel EEG classification of sleep stages based on REM microstructure
Published in: Healthcare Technology Letters, John Wiley & Sons, Ltd., (2021)
Authors: Irene Rechichi, Maurizio Zibetti, Luigi Borzì, Gabriella Olmo, Leonardo

Lopiano.

Abstract: Rapid-eye movement (REM) sleep, or paradoxical sleep, accounts for 20–25%
of total night-time sleep in healthy adults and may be related, in pathological cases,
to parasomnias. A large percentage of Parkinson’s disease patients suffer from sleep
disorders, including REM sleep behaviour disorder and hypokinesia; monitoring their
sleep cycle and related activities would help to improve their quality of life. There is a
need to accurately classify REM and the other stages of sleep in order to properly identify
and monitor parasomnias. This study proposes a method for the identification of REM
sleep from raw single-channel electroencephalogram data, employing novel features based
on REM microstructures. Sleep stage classification was performed by means of random
forest (RF) classifier, K-nearest neighbour (K-NN) classifier and random Under sampling
boosted trees (RUSBoost); the classifiers were trained using a set of published and novel
features. REM detection accuracy ranges from 89% to 92.7%, and the classifiers achieved
a F-1 score (REM class) of about 0.83 (RF), 0.80 (K-NN), and 0.70 (RUSBoost). These
methods provide encouraging outcomes in automatic sleep scoring and REM detection
based on raw single-channel electroencephalogram, assessing the feasibility of a home
sleep monitoring device with fewer channels.

DOI: https://doi.org/10.1049/htl2.12007
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B.2 Automatic Detection of Artefacts
Title: Towards fully automatic quantification of REM sleep without atonia according

to the Sleep Innsbruck Barcelona (SINBAR) scoring method
Published in: Abstracts from the 17th World Sleep Congress, Sleep Medicine (Sup-

plements), Elsevier, (2023)
Authors: Irene Rechichi, Gabriella Olmo, Ambra Stefani, Anna Heidbreder, Evi

Holzknecht, Melanie Bergmann, Abubaker Ibrahim, Elisabeth Brandauer, Birgit Högl,
Matteo Cesari

Abstract:
Introduction: Rapid eye movement (REM) sleep without atonia (RWA) is the

polysomnographic hallmark of REM Sleep Behavior Disorder (RBD). The state-of-the-art
methods to score RWA are visual-based. Recent international guidelines recommended
the Sleep Innsbruck Barcelona (SINBAR) method for scoring RWA in 3-s mini-epochs.
This method calls for scoring phasic EMG activity in the flexor digitorum superficialis
(FDS) and “any” (i.e., tonic and/or phasic) EMG activity in the mentalis muscle. A
semi-automatic algorithm scoring RWA according to this method is currently available
in a commercial polysomnographic system (BrainRT, OSG, Belgium), however it still
requires manual removal of EMG artifacts from expert scorers. This work proposes a
novel method that, based on morphological aspects of EMG activity and machine learn-
ing (ML), discriminates activity from artifacts in the evaluation of RWA, thus allowing
automatization for artifact correction.

Materials and Methods: We included video-polysomnography studies of 25 par-
ticipants (8 RBD, 17 controls, aged 57.2 ± 14.9 years). An expert scorer selected 3-s
mini-epochs for RWA scoring (956 ± 70) and the BrainRT for scoring phasic and “any”
EMG activity was applied. Four independent expert scorers manually removed artifacts;
probabilistic consensus of the four scorers was obtained.

The algorithm for automatic removal of artifacts consisted in the following. First,
wavelet transform (biorthogonal mother wavelet, matching EMG activity waveform) was
applied to the selected 3-s mini-epochs in the mentalis and FDS EMG signals. Sec-
ond, the coefficients at the third level of decomposition were employed in the signal
reconstruction process. Third, an index of correlation, expressed as ratio between the
wavelet-reconstructed signal and the original signal, was computed. Fourth, an energy-
based metric, expressed as the 90th percentile of the EMG activity, was computed. The
correlation index and the energy-based metric were subsequently employed as features in
a binary classification task, to automatically differentiate artifacts from the phasic and
“any” activity; gold standard was the consensus scoring. Supervised ML models (support
vector machine, K-nearest neighbour, linear discriminant analysis, and adaptive boost-
ing) were explored. Seventeen participants were included in the training set and eight
in the test set. The models’ performances were evaluated with accuracy and F1-score.
Finally, RWA metrics – i.e., phasic mentalis, phasic FDS, any mentalis, SINBAR (i.e.,
any mentalis and/or phasic FDS – were computed on the automatically corrected EMG
signals and compared with Pearson’s correlation to the ones obtained by the consensus
manually scoring.
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Results: The explored ML models scored fairly good results. The best models yielded
a F-1 score of 89.59% for phasic activity (mentalis and FDS muscles combined) and
76,56% for any. Finally, score agreement between manually and automatically corrected
data had Pearson’s rho of 0.96, 0.82, 0.76 and 0.71 for phasic mentalis, phasic FDS, any
mentalis and SINBAR indices on the test subjects, respectively.

Conclusions: The proposed method, based on EMG activity morphology and ML,
showed promising results in discriminating artifacts from real phasic and any EMG activ-
ity for RWA quantification. This method promises fully automatic RWA quantification
according to the SINBAR method.

DOI: https://doi.org/10.1016/j.sleep.2023.11.834
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B.3 Automatic Detection of RBD
B.3.1 EMG-Based RBD Detection

Title: Assessing rem sleep behaviour disorder: From machine learning classification
to the definition of a continuous dissociation index

Published in: International Journal of Environmental Research and Public Health,
MDPI, (2021)

Authors: Irene Rechichi, Antonella Iadarola, Maurizio Zibetti, Alessandro Cicolin,
Gabriella Olmo.

Abstract:
Objectives: Rapid Eye Movement Sleep Behaviour Disorder (RBD) is regarded as a

prodrome of neurodegeneration, with a high conversion rate to α-synucleinopathies such
as Parkinson’s Disease (PD). The clinical diagnosis of RBD co–exists with evidence of
REM Sleep Without Atonia (RSWA), a parasomnia that features loss of physiological
muscular atonia during REM sleep. The objectives of this study are to implement an
automatic detection of RSWA from polysomnographic traces, and to propose a continuous
index (the Dissociation Index) to assess the level of dissociation between REM sleep
stage and atonia. This is performed using Euclidean distance in proper vector spaces.
Each subject is assigned a dissociation degree based on their distance from a reference,
encompassing healthy subjects and clinically diagnosed RBD patients at the two extremes.

Methods: Machine Learning models were employed to perform automatic identifi-
cation of patients with RSWA through clinical polysomnographic scores, together with
variables derived from electromyography. Proper distance metrics are proposed and tested
to achieve a dissociation measure.

Results: The method proved efficient in classifying RSWA vs. not-RSWA subjects,
achieving an overall accuracy, sensitivity and precision of 87%, 93% and 87.5%, respec-
tively. On its part, the Dissociation Index proved to be promising in measuring the
impairment level of patients.

Conclusions: The proposed method moves a step forward in the direction of au-
tomatically identifying REM sleep disorders and evaluating the impairment degree. We
believe that this index may be correlated with the patients’ neurodegeneration process;
this assumption will undergo a robust clinical validation process involving healthy, RSWA,
RBD and PD subjects.

DOI: https://doi.org/10.3390/ijerph19010248
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B.3.2 EEG-Based RBD Detection
Title: Single-Channel EEG Detection of REM Sleep Behaviour Disorder: The Influ-

ence of REM and Slow Wave Sleep
Part of : International Work-Conference on Bioinformatics and Biomedical Engineer-

ing, IWBBIO 2022, Lecture Notes in Computer Science (Part I), Springer, (2022)
Authors: Irene Rechichi, Federica Amato, Alessandro Cicolin, Gabriella Olmo.

Abstract: Sleep Disorders have received much attention in recent years, as they are
related to the risk and pathogenesis of neurodegenerative diseases. Notably, REM Sleep
Behaviour Disorder (RBD) is considered an early symptom of -synucleinopathies, with a
conversion rate to Parkinson’s Disease (PD) up to 90%. Recent studies also highlighted
the role of disturbed Non-REM Slow Wave Sleep (SWS) in neurodegenerative diseases
pathogenesis and its link to cognitive outcomes in PD and Dementia. However, the
diagnosis of sleep disorders is a long and cumbersome process. This study proposes a
method for automatically detecting RBD from single-channel EEG data, by analysing
segments recorded during both REM sleep and SWS. This paper inspects the underlying
microstructure of the two stages and includes a comparison of their performance to discuss
their potential as markers for RBD. Machine Learning models were employed in the
binary classification between healthy and RBD subjects, with an 86% averaged accuracy
on a 5-fold cross-validation when considering both stages. Besides, SWS features alone
proved promising in detecting RBD, scoring a 91% sensitivity (RBD class). These findings
suggest the applicability of an EEG-based, low-cost, automatic detection of RBD, leading
to potential use in the early diagnosis of neurodegeneration, thus allowing for disease-
modifying interventions.

DOI https://doi.org/10.1007/978-3-031-07704-3, pages 381–394.
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B.4 Monitoring Sleep Disorders in PD
Title: Home Monitoring of Sleep Disturbances in Parkinson’s Disease: A Wearable

Solution
Published in: 2024 IEEE International Conference on Pervasive Computing and

Communications Workshops and other Affiliated Events (PerCom Workshops), (2024)
Authors: Irene Rechichi, Luca Di Gangi, Maurizio Zibetti, Gabriella Olmo.

Abstract: Sleep Disorders are the most common and disabling non-motor manifesta-
tions of Parkinson’s Disease (PD), significantly impairing the quality of life. Monitoring
sleep disturbances in PD is a complex task, given the lack of objective metrics and the
infrequent neurological assessments. This study proposes a framework for the detection
of PD sleep patterns from data collected from 40 subjects (12 PD) through a wearable in-
ertial measurement unit (IMU) during sleep, as well as the automatic assessment of sleep
quality. Several features describing overnight motility are proposed and employed in Ma-
chine Learning (ML) models to carry out the classification. The best model achieved a
96.2% Accuracy and 93.4% F-1 score in detecting PD subjects from controls, in a Leave-
One-Subject-Out cross-validation approach. Sleep quality was assessed with an average
accuracy of 79.7% ± 4.4 across the three tested classifiers, and 75% ± 5.25 F-1 score.
This suggests the feasibility of characterising overnight motility in PD and effectively
monitoring the symptoms’ progression through lightweight technology, in a pervasive,
e-Health scenario.

DOI: 10.1109/PerComWorkshops59983.2024.10502893
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B.5 – REM Sleep Without Atonia in ALS

B.5 REM Sleep Without Atonia in ALS
Title: Predicting Amyotrophic Lateral Sclerosis Progression: an EMG-based Survival

Analysis
Accepted for presentation at: 46th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC 2024)
Authors: Irene Rechichi, Gianluca Amprimo, Alessandro Cicolin, Gabriella Olmo.

Abstract: ALS is a progressive neurodegenerative disease, ultimately leading to muscle
inefficiency and death. A vast majority of people with ALS also suffer from sleep disorders.
Previous studies highlighted the presence of RSWA in an ALS cohort, and suggested its
strong correlation with the disease severity. This study investigates the ability of EMG
parameters recorded during REM sleep to predict disease progress and outcome rapidity
in ALS. Survival models trained on a cohort of 45 ALS patients undergoing a longitudinal
study, revealed a promising predictive power for the proposed EMG-derived metrics (c-
index ≥ 0.65) and encouraging goodness of fit (through c-index and χ2). These results
suggest the possibility of employing the trained model in follow-up procedures, based on
non-invasive, lightweight EMG metrics, which would significantly ease disease monitoring
and help personalized symptomatic care.
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Acronyms

AASM American Academy of Sleep Medicine

Aβ Amyloid-β

AD Alzheimer’s Disease

AHI Apnea-Hypopnea Index

AI Artificial Intelligence

ALS Amyotrophic Lateral Sclerosis

ApEn approximate entropy

AUC Area Under the Curve

CSF cerebrospinal fluid

CPAP continuous positive airway pressure

CV Cross-Validation

CWT Continuous Wavelet Transform

DI Dissociation Index

DL Deep Learning

DBS deep brain stimulation

DT Decision Tree

DWT Discrete Wavelet Transform

ECG electrocardiography

ED Euclidean Distance
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EMG electromyography

EEG electroencephalography

EOG electrooculography

FDS flexor digitorum superficialis

FN False Negative

FP False Positive

FREM phasic REM

ICSD-3 International Classification of Sleep Disorders

IIR infinite-impulse-response

IMU inertial measurement unit

IQR interquartile range

KDE Kernel Density Estimation

KNN K-Nearest Neighbour

LDA Linear Discriminant Analysis

LOO-CV Leave-One-Out CV

LOSO-CV Leave-One-Subject-Out CV

L-dopa Levodopa

MCRF magnocellular reticular formation

MDS-UPDRS Unified Parkinson’s Disease Rating Scale

ML Machine Learning

MAE Mean Average Error

MS motor symptoms

MSE Mean Squared Error

ND neurodegenerative diseases

NMS non-motor symptoms

NREM non-rapid eye movement

PD Parkinson’s Disease
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PDSS Parkinson’s Disease Sleep Scale

PSD power spectral density

PSG polysomnography

PSQI Pittsburgh Sleep Quality Index

RAI REM Atonia Index

RBD REM Sleep Behaviour Disorder

REM rapid eye movement

RF Random Forest

ROC Receiver Operating Characteristic

RSWA REM Sleep Without Atonia

RUSBoost Random Under Sampling Boosting

SD sleep disorders

SE sleep efficiency

SEF spectral edge frequency

SINBAR Sleep Innsbruck Barcelona

SLD sublaterodorsal nucleus

SO slow oscillations

SOL sleep onset latency

SQ sleep quality

STFT Short Time Fourier Transform

SVM Support Vector Machine

SWA slow-wave activity

SWS slow-wave sleep

TA tibialis anterior

TIB time in bed

TKEO Teager-Kaiser energy operator

TLA Three Letter Acronym
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TN True Negative

TP True Positive

TREM tonic REM

TST total sleep time

XGBoost eXtreme Gradient Boosting
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