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Modeling Junctions in Sharp Edge Conducting
Structures with Higher Order Method of Moments

Guido Lombardi, Senior Member, IEEE, Roberto D. Graglia, Fellow, IEEE

Abstract—Scattering targets are often made by complex struc-
tures constituted by thin metallic plates as wings, fins, winglets.
When thin plates are connected together, they define surface
junctions with the possible presence of sharp edges.

In this paper we describe a complete procedure to handle
junctions in presence of sharp edges in surface integral equation
methods by defining the required basis functions and unknowns.
This approach is based on the use of divergence-conforming
higher order interpolatory vector basis functions, singular vector
basis functions and on Kirchhoff’s Current Law. The paper
presents several numerical test cases that show the instability
of solutions using classical methods and the full convergence of
the proposed numerical scheme.

Index Terms—Integral equations, method of moments (MoM),
electromagnetic diffraction, edges, junctions, singular vector
functions, higher order modeling, Kirchhoff’s Current Law.

I. INTRODUCTION

S IMPLE sharp edge structures have been studied in the
past by using the method of moments (MoM) with addi-

tive high-order interpolatory [1] and singular [2] divergence-
conforming triangular basis functions [2]-[7]. However, high-
order bases have not yet been used to model junction prob-
lems where plates are attached to piecewise-planar or curved
surfaces. Until now, junctions were typically modeled by
using classical low-order MoM schemes [8]-[13] with ad hoc
modifications of the so called Rao-Wilton-Glisson (RWG)
basis functions [14]. Unfortunately, low-order schemes are
unable to model the singular behavior of the charge and current
densities on sharp-edges [15], [16], with field singularities
that might be present in the neighborhood of the edges of
two or more wedges attached together. To improve on these
models, in this paper we approach the junction problem by
using the high-order singular divergence-conforming vector
bases of additive kind developed for triangular cells in [5],
because these bases are able to model the electromagnetic
singularities in the neighborhood of sharp edges. Our aim is
to model the junction and avoid unphysical oscillations in the
numerical solution.

The high-order singular bases are formed by the union of
two sub-sets: a vector sub-set of interpolatory basis functions
that is complete to an arbitrarily high order p plus a Meixner
sub-set formed by singular vector basis functions. In turn, the
Meixner subset is obtained by multiplying the lowest order
singular basis functions of [5, Table I] times an s-th order
complete interpolatory polynomial set [5]. Recall that the
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Fig. 1. (a) Plate-to-plate junction; (b) plate-to-surface junction.

additive scheme in [5] augments the number of the degrees of
freedom of each triangular element attached to a sharp edge;
these are either edge- or vertex-singular elements (see [5, Fig.
1]) on which, for example, the triangular lowest-order singular
basis functions of [5, Table I] are defined.

As discussed below, the use of interpolatory basis functions
simplifies the junction model because only one basis function
per triangle does not vanish on a given interpolation point
lying on an edge in common to several triangular cells.

For the sake of brevity, in the following we limit our
investigation to knife-edge singularities where one is faced
with the two different problems:

a) plate-to-plate junctions;
b) plate-to-surface junctions;

that are illustrated in Fig. 1. We do this without loss of gen-
erality because, in spite of their strikingly simple geometries,
both the junctions of Fig. 1 contain a corner-point. In fact,
more precisely, one of the major numerical difficulties is in
modeling the current density at the corner-point where one
cannot resort to any analytical method to predict the current
density behavior. On the (infinitely thin) plates shown in
Fig. 1, the component J t of the current density tangent to
the edge-profiles could be unbounded (infinite) at the edges,
and be unbounded also at the corner-point indicated in the
figure. It is clear that to guarantee the current continuity in
the neighborhood of the corner-point in case of plate-to-plate
junctions (Fig. 1a) one needs a different approach from the one
used to deal with plate-to-surface junctions, where the infinite
current density running along the edge has to flow out on a
locally flat surface at the corner-point.

The procedure to numerically impose the current continuity
at a junction when using high-order singular triangular ele-
ments is described in Section II, and then validated by the
results obtained for the plate-to-plate and the plate-to-surface
junction reported in Section III and IV, respectively. These two
Sections consider canonical T-shape surface junctions (Fig.
1a, b) and provide a physical interpretation of the numerical
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Fig. 2. Three triangular cells (T1, T2, and T3) with a common edge along
the line of junction. (a) The common edge has global edge number e and
local edge number indicated by the dummy index i, j and k for the triangle
T1, T2 and T3, respectively. (b) ĥ

T2
j is the outward unit normal to the j-th

edge of T2 evaluated at the interpolation point rinterp in common to the three
triangles.

results obtained for the current density by using high-precision
numerical tools [17], [18]. Conclusions are reported in Section
V. Readers may find it helpful to review [1], [2], [5] and
references therein for background information.

II. CURRENT CONTINUITY AT A JUNCTION

The procedure to impose the continuity of the current den-
sity at a junction when using high-order vector basis functions
is better discussed by considering the simple example shown
in Fig. 2, where three triangular cells (T1, T2, and T3) share a
common edge along the “line of junction” departing from the
corner-point of Fig. 1. The cell edges are globally numbered
from 1 to ne (ne=7 in Fig. 2) and locally numbered from
1 to 3 on each given cell. The common edge of Fig. 2 has
global edge number e and local edge number indicated by
the dummy index i, j and k for the triangle T1, T2 and T3,
respectively. Recall also that on each point of a triangular cell
we define three (local) height unit vectors (ĥ1, ĥ2, ĥ3), each
one associated with a different edge bounding the cell (that is,
edge 1, 2 or 3, respectively) [1]. The height vectors are tangent
to the cell surface and, on the `–th edge, ĥ` is the outward
unit normal to the element [1]. For example, with reference
to Fig 2, ĥ

T2

j is the outward unit normal to the j-th edge of
T2 (the e–th global edge) evaluated at the interpolation point
rinterp in common to the three triangles of Fig. 2. Similarly,
at the same interpolation point of the e–th global edge, ĥ

T1

i is
the outward unit normal to the i-th edge of T1 and ĥ

T3

k is the
outward unit normal to the k-th edge of T3.

Charge accumulation along the edge in common to T1, T2
and T3 is simply avoided by imposing the Kirchhoff Current
Law (KCL) in terms of the current density J and of the MoM
degrees of freedom (DoF) [14]. This is conveniently done by
separating the current density

J = J poly + Jmeix (1)

into its polynomial (J poly) and singular Meixner part (Jmeix),
and by recalling that along the common edge there are (p+1)
interpolation points associated with the vector polynomial
subset of order p, and (s+ 1) interpolatory points associated
with the singular Meixner subset of order s. On each interpo-
lation point along the common edge, the edge-normal current
component is always finite because all the edge-interpolation

Fig. 3. Junction cross-sectional view. The interpolatory point (O) is in
common to N triangular patches that share a common edge along a line
(locally) normal to the plane of the sheet (that is, the line of junction). (a)
The arrows show, for each patch and at the interpolation point, the component
of the current density Jk normal to the line of junction. (b, c) Two different
ways to select independent DOFs at the interpolation point (see also [8]-[12]).

Fig. 4. Plate-to-surface junction. The triangle T3 lies on a plane different
from the one containing T1 and T2.

points are located in the edge interior [1], [5]. In this manner,
KCL yields the following (p+ s+ 2) conditions

J T1
poly · ĥ

T1

i + J T2
poly · ĥ

T2

j + J T3
poly · ĥ

T3

k = 0 (2)

J T1
meix · ĥ

T1

i + J T2
meix · ĥ

T2

j + J T3
meix · ĥ

T3

k = 0 (3)

with (2) holding on (p+ 1) interpolation points of the vector
polynomial subset and (3) on (s + 1) interpolation points
associated with the singular Meixner subset. Conditions (2)
and (3) reduce the number of degrees of freedom of the
problem. As explained in [1], the high-order interpolatory
vector basis functions Λ` used to expand on each triangle T the
polynomial part of the current J T

poly are normalized to ensure
that the component of Λ` along ĥ` at the interpolation point
is unity. Because of the used normalization, it is clear that, at
each interpolation point on the line of junction of Fig. 2, (2)
simply relates three unknown expansion coefficients to each
other. The same holds for (3), although the Meixner vector
basis functions are normalized in a different manner and the
interpolation points of the Meixner part could be different
from those of the regular (polynomial) part. The results of
the previous example are readily extended to more complex
situations, since the number of terms adding up on the left-
hand side of (2, 3) is equal to the number of cells that share
the same common edge. As schematically depicted in Fig. 3,
several different ways based on (2) can be used to impose the
current continuity at junctions when using low-order RWG
basis functions, see also [8]-[12].

To the best of our knowledge, a closed-form solution for
the current density at the corner point of junctions of the kind
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Fig. 5. T-shape surface formed by joining three zero-thickness rectangular
plates of size 0.1m × 0.3m. The structured mesh S shown in the figure con-
sists of 168 right-angled triangles of equal size. 0 is the origin of the Cartesian
reference frame; A = (−0.3, 0, 0), B = (0.3, 0, 0), C = (0,−0.3, 0) [m].

Fig. 6. Each cell of the original S-mesh is subdivided into 4 and 9 triangular
cells to define the denser D- and T-mesh.

shown in Fig. 1a,b is not available in the literature; thus we
focus our attention on how to model the current density on
the line of junction constituted by knife-edges. The geometry
of the plate-to-plate junction of Fig. 1a is however similar to
that of Fig. 2; in this case, the triangular elements attached to
the corner point of Fig. 1a can be defined as in Fig. 2.

Conversely, for plate-to-surface junctions (Fig. 1b), different
heuristic approaches based on the additive nature of our basis
functions can be used. Once again, these are better illustrated
using a simple example, shown in Fig. 4. In this case the
“corner point” is the common node of several triangular cells
of the (locally flat) surface that drains the infinite current
density coming from the sharp edge. The edge in common
to the triangle T1 and T2 is along the “line of junction” and
there is a third triangle T3 (not shown in the figure) that lies
on a plane different from the one containing T1 and T2 and
that shares the same common edge. The sharp edge is attached
to the corner point and lies on the plane of T3; T3 is a singular
element.

In Fig. 4 the cells T1, T2, T4, T5, and T6 have a vertex
in common at the corner point and, on the surface defined by
these cells, the current density can be singular at the corner
point. On the locally flat surface, the current density can be
modeled
• by partially reducing the singular Meixner basis function

subsets [5] used on the singular cell T3 to model the
junction only with regular bases (in this case, all the
elements from T1 to T6 are regular elements while T3 is
a lacunary edge-singular element);

Fig. 7. (a) Three edge singular elements connected to the line of junction
(dotted-gray), three regular elements connected to the line of junction (blue),
(b) three singular elements connected to the line of junction (edge singular
elements in dotted-gray, vertex singular element in yellow).

• or by partially increasing with vertex singular Meixner
basis functions the polynomial sub-sets used in the T1
and T2 cells attached to the line of junction, (in this case,
T4, T5, and T6 are regular elements, and T3 is an edge-
singular element).

The latter approach is the one proposed in this paper for plate-
to-surface junctions and the elements (T1 and T2) obtained
in this manner are defined lacunary vertex singular elements.
This choice is justified by the fact that our aim is to model how
a knife-edge merges into a regular surface. This approach is
validated in Section IV by several numerical results relative to
a test-case problem already considered in [9]; the convergence
of our numerical procedure is assessed by physical interpreta-
tion of the results.

III. PLATE-TO-PLATE JUNCTION STRUCTURES

To illustrate the effectiveness of the modeling scheme of
Section II we first consider the test-case shown in Fig. 5
that in [9] has been studied by using (low-order) RWG basis
functions. Extension to more general cases is straightforward.
The T-shape surface of Fig. 5 is the union, along the line
of junction {x = 0, y = 0,−0.05 < z < 0.05)}, of three zero-
thickness rectangular plates 0.1m × 0.3m in size. The T-shape
surface is discretized in Fig. 5 with 168 right-angled triangular
cells of the same size (mesh S). By subdividing each cell of
the S-mesh into 4 and 9 triangular cells, as shown in Fig. 6,
we easily define a denser D- and T-mesh, consisting of 672
and 1512 cells, respectively.

Notice that along the line of junction one encounters sev-
eral combinations of regular/singular elements. Fig. 7 shows
triplets of elements with a common edge along the line of
junction. In particular, Fig. 7a highlights three edge singular
elements (dotted-gray) and three regular elements (in blue)
attached to the line of junction, while Fig. 7b shows two
edge-singular elements (dotted-gray) and one vertex-singular
element (yellow) attached to the line of junction.

In the rest of this Section we present several numerical
results obtained by solving in frequency domain the electric
field integral equation (EFIE) with the method of moments
and the Galerkin approach. With reference to [9], the T-shape
structure is excited in free space by a linearly polarized plane
wave

Einc = E0 exp (jkok̂
i
· r) exp (−jωt) (4)
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Fig. 8. Purely polynomial bases results. Magnitude and phase of the current
density Jz along the line A→ B and 0→ C shown in Fig. 5. The contour
points at 0m, 0.3m, 0.6m and 0.9m correspond to point A, 0, B and C of Fig.
5 respectively. The ellipses highlight the spurious oscillations near point B.
Similar oscillations occur near A and C. The current is induced by a 300MHz
plane wave with θi = 45◦, ϕi = 45◦, and E0 = 1θ̂ [V/m]. The figure
compares four results obtained by using different meshes and element order:
mesh S with regular elements of order p = 0, p = 1, p = 2 and mesh T
with regular elements of order p = 1.
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Fig. 9. Singular element results for the test case considered in Fig. 8 obtained
by using different meshes and element orders: Mesh S with singular elements
of order p = 0, s = 0, p = 1, s = 0, p = 2, s = 0, Mesh D with singular
elements of order p = 1, s = 0 and Mesh T with regular elements of order
p = 1.

with

k̂
i
= −

(
x̂ cosϕi sin θi + ŷ sinϕi sin θi + ẑ cos θi

)
(5)

and r = [x, y, z] = r[sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)].
To highlight the singular behavior of the electromagnetic

field and current, we first analyze the structure at a low
frequency f = 300MHz, where each plate of the T-structure
is 0.3λ× 0.1λ in size.

The structure is illuminated by the same plane wave con-
sidered in [9], with parameters θi = 45◦, ϕi = 45◦, and

Fig. 10. L2-norm of the current density J induced on the T-shape structure by
a plane wave with θi = 45◦, ϕi = −75◦ and E0 = 1θ̂ [V/m] @300MHz
when singular basis functions of order p = 2, s = 0, junction modeling
and mesh D are used. Color version of this figure is available online at
http://ieeexplore.ieee.org.
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Fig. 11. T-shape structure at 300MHz. Magnitude of current density compo-
nent tangent to the contour lines A′ → B′ and E → C′ and sampled at a
distance of λ/1000 in z direction from the border of the structure, see also
Fig. 5. Simulations obtained with regular elements and different meshes are
compared with the reference simulation obtained with mesh D and singular
basis functions of order p = 2, s = 0.

E0 = 1θ̂ [V/m]. Fig. 8 and 9 show the magnitude and phase
of the current component Jz along the contour line A → B
and 0→ C shown in Fig. 5. The contour points at 0m, 0.3m,
0.6m and 0.9m correspond respectively to point A, 0, B and
C of Fig. 5. Various results obtained by using only regular
(polynomial) elements are compared in Fig. 8 while Fig. 9
shows the solutions obtained by using singular elements. As
expected, the results of Fig. 8 obtained with regular bases show
spurious oscillations of magnitude and phase in the region near
the sharp edge profile [5]. The reference (best) solution is the
one shown in Fig. 9, obtained with mesh D and singular basis
functions of order (p = 1, s = 0). Notice that on the y = 0
plane, the current density Jz is continuous from the first to
the second plate and equal to zero on the 3rd plate at x = 0.

The results that follow are relative to the same structure of
Fig. 5 illuminated by a 300MHz plane wave with a different
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Fig. 12. Study of convergence of the magnitude of current density component
defined in Fig. 11 using singular basis functions and different meshes.

Fig. 13. Study of convergence of the magnitude of the current density
component defined in Fig. 11 using regular and singular basis functions
together with the structured mesh D and the unstructured mesh N (shown
in the inset) consisting of 329 elements.

incident direction (θi = 45◦, ϕi = −75◦, E0 = 1θ̂). For this
incidence, the current density at the junction is different from
zero on all the three plates. Fig. 10 shows the L2-norm of the
current density J computed with mesh D and singular basis
functions of order (p = 2, s = 0). The solution is shown by
using small colored circles and by sampling the results on a
grid of points, without using any post-processing visualization
artifact that could artificially improve the data rendering. A 64
color-scale (dark blue=1st level, dark red=last level) is adopted
with saturation level set to 0.035A/m2. The maximum value of
the sampled data is 0.0695A/m2 which is over the saturation
value. The values above saturation are reported in black. The
number of sampling points per cell is 21 and they are chosen
never to lie on edges or vertexes of the triangular cells, where
the numerical solution could be discontinuous (across elements
boundaries) or unbounded, as it happens on the plate edges

Fig. 14. T-shape structure at 6GHz. Magnitude and phase of the current
density Jz along the contour line A → B and 0 → C shown in Fig. 5.
Simulation is performed using singular elements of order p = 2, s = 0 and
mesh D.

when using singular elements.
Figs. 11 and 12 show the current density component tangent

to the contour lines A′ → B′ and E → C ′ (Fig. 5) and
sampled at a distance of λ/1000 in the z direction from the
border of the structure. This component is strongly affected
by the bifurcation of the structure, being normal to the line
of junction. Fig. 11 shows that the use of regular basis
functions with junction condition enforcement is unable to
model the physics of the problem, since it provides unstable
solutions with a lot of unphysical oscillations and with a wrong
scale of magnitude. Conversely, Fig. 12 shows that by using
singular bases together with junction modeling one gets stable
convergent solutions.

Fig. 13 shows that convergence is preserved also by using
unstructured meshes (this figure shows in the inset the used
mesh N, with 329 elements).

Moreover, good physical solutions are obtained also for
larger structures (in terms of wavelength). For example, the
results of Fig. 14 are relative to the T-shape structure shown
in Fig. 5 illuminated by a 6GHz incident plane wave with
θi = 45◦, ϕi = −75◦ and E0 = 1θ̂ [V/m]. In this case
each rectangular plate is 2λ×6λ. The problem is numerically
studied with mesh D and singular basis functions of order
(p = 2, s = 0). Fig. 14 reports the Jz magnitude along the
contour line A→ B and 0→ C (see Fig. 5).

Table I reports details on the number of DOFs for all the
simulations reported in this Section (in agreement with the
discussion reported in Section II).

IV. PLATE-TO-SURFACE JUNCTION STRUCTURES

To illustrate the modeling procedure for plate-to-surface
junctions we consider a convenient test-case, as already done
in the previous section. The structure shown in Fig. 15 is a
modified version of the T-shape junction described in Section
III: only the width of one of the rectangular plates is modified
from 0.1m to 0.05m. Fig. 15 shows mesh S constituted by
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TABLE I
NUMBER OF DOFS IN SIMULATIONS OF SECTION III

Bases and Mesh DOFs Figure
p=0, mesh S 227 Fig. 8
p=1, mesh S 790 Figs. 8,11
p=2, mesh S 1689 Figs. 8,11
p=1, mesh D 3260 Fig. 11
p=2, mesh D 6906 Fig. 11
p=0, mesh T 2193 Fig. 11
p=1, mesh T 7410 Figs. 8,9,11

p=0,s=0, mesh S 365 Fig. 9
p=1,s=0, mesh S 929 Figs. 9,12
p=2,s=0, mesh S 1828 Figs. 9,12
p=1,s=0, mesh D 3561 Figs. 9,12
p=2,s=0, mesh D 7207 Figs. 10-14

p=1, mesh N 1566 Fig. 13
p=1,s=0, mesh N 1805 Fig. 13

Fig. 15. Modified T-shape surface discretized with the structured mesh S
consisting of 140 right-angled triangular cells of equal size. 0 is the origin
of the Cartesian reference frame; A = (−0.3, 0, 0), B = (0.3, 0, 0),
C = (0,−0.3, 0), A” = (−0.3, 0,−0.025), B” = (0.3, 0,−0.025),
C” = (0,−0.3,−0.025) [m].

140 right-angled triangular cells of the same size. We also
define denser D- and T-mesh, where each triangle of S-mesh is
subdivided respectively into 4 and 9 cells (see Fig. 6), thereby
obtaining a mesh with 560 and 1260 elements.

As stated at the end of Section II, in order to correctly model
the behavior of the current density in the region near the corner
point of a plate-to-surface junction, we can either partially add
singular bases to regular elements or partially remove singular
bases from singular elements in cells connected to the corner
point (see Fig. 4).

Since no closed-form solution is available for this problem,
we have done several numerical attempts to correctly solve it.
These attempts are based on the definition of special singular
elements that exploit some of the properties of classical
singular elements defined in [5] (see Table I, Section III and
IV). In particular, with reference to Fig. 15, we tried several
schemes based on lacunary singular elements:

i) half-edge (he) singular element in sheet 2 connected to
regular elements in sheets 1 and 3;

ii) edge-singular element in sheet 2 connected to edge-
aligned weak half-vertex (whv) singular elements in
sheets 1 and 3;

iii) edge-singular element in sheet 2 connected to edge-

Fig. 16. Classical and lacunary singular elements to model plate-to-surface
junctions. The circles highlight the edge dummy indexes on which are based
the singular functions that need to be included to define: an edge (e) singular
element (Fig. 16a), a vertex (v) singular element (Fig. 16b), a half-edge (he)
singular element (Fig. 16c), a weak half-vertex (whv) singular element (Fig.
16d), a strong half-vertex (shv) singular element (Fig. 16e).

aligned strong half-vertex (shv) singular elements in
sheets 1 and 3;

iv) same as iii) but with non-edge-aligned strong half-vertex
(shv) singular elements in sheets 1 and 3.

The lacunary singular elements are formed by the union
of a vector subset of regular basis functions of order p plus:
an incomplete vector subset of edge singular basis functions
of order s for (he) element; an incomplete vector subset of
vertex singular basis functions of order s for (whv) and (shv)
elements. In Fig. 16 we highlight with circles the edge dummy
indexes on which are based the singular functions that need
to be included to define: an edge (e) singular element (Fig.
16a), a vertex (v) singular element (Fig. 16b), a half-edge (he)
singular element (Fig. 16c), a weak half-vertex (whv) singular
element (Fig. 16d), a strong half-vertex (shv) singular element
(Fig. 16e).

All the proposed schemes yield a smooth transition for the
current around the line of junction, but only scheme iii) yields
full convergence.

With reference to Fig. 4, in scheme i) T3 is an half-
edge singular element, i.e. lacunary edge-singular element,
where the singular bases interpolating the line of junction are
removed. Cells T1 to T6 (except T3) are regular elements.

With reference to Fig. 4, in scheme ii), iii) and iv) T3
is a singular-edge element, while cells T1 and T2 are half-
vertex singular elements, i.e. lacunary vertex-singular ele-
ments, where vertex singular basis functions interpolating the
line of junction are added to the regular basis subset. Cells
T4, T5, T6 are regular elements.

Schemes iii) and iv) differ from scheme ii) because they
include the edgeless (element-based) vertex singular basis
functions v Λ

i [5] in the singular subsets of the half-vertex
singular elements. For this reason, elements of scheme iii)
and iv) are labeled strong half-vertex singular elements, while
elements of scheme ii) are labeled weak half-vertex singu-
lar elements. Scheme iii) and iv) differ in the topological
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Fig. 17. Junction connection of three elements involving the sharp edge: the
triangular elements with sharp edge is in stripe pattern, the two connected
triangles are in blue. (a) and (b) shows two connected elements that are
respectively not edge-aligned and edge-aligned. (a) and (b) are respectively
partial view of mesh D and mesh MD.
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Fig. 18. Modified T-shape structure illuminated at 300MHz by a plane wave
with θi = 45o, ϕi = −75o and E0 = 1θ̂ [V/m]. Magnitude of current
density component tangent to the contour line A” → B” and E” → C”
and sampled at a distance of λ/1000 in z direction from the border of the
structure, see also Fig. 15. Simulations obtained with regular elements and
different meshes are compared with the reference simulation obtained with
mesh MD and singular set iii) of order p = 2, s = 0.

properties of the geometrical discretization inside the surface.
With reference to Fig. 4, the lacunary half-vertex singular
elements T1 and T2 are said to be edge-aligned if the edge
of T1 and T2 opposite to the corner node is perpendicular to
the height vector of the knife edge of T3, see Fig. 17. This
geometrical property influences the modeling properties of the
vertex singular basis subset, since the singularity is modeled
through the properties of the parent coordinates [5].

Fig. 17a shows mesh D in the transition region where a
triangular element with the sharp edge is in stripe pattern and
the two connected triangles are colored in blue. In this case
the transition regions may be modeled with the singular bases
defined in i) and iv). Fig. 17b shows mesh MD which is a
locally modified version of mesh D in the transition region
where the connected triangles inside the smooth surface are
edge-aligned, thus the transition regions may be modeled with
the singular bases defined in ii) and iii).

In scheme i) or, in general, for triangular elements not
lying on the sharp edge profile, the modeling procedure of
the junction is limited to regular DOFs. For subsets ii), iii),
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Fig. 19. Magnitude of current density component tangent to the contour
lines A” → B” and E” → C” and sampled at a distance of λ/1000 in z
direction from the border of the structure when the structure is illuminated by
a plane wave with θi = 45o, ϕi = −75o and E0 = 1θ̂ [V/m] at 300MHz.
The figure show comparison among numerical results obtained by the four
schemes proposed in Section IV. The reference simulation is the one obtained
with mesh MD and singular set iii) of order p = 2, s = 0.
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Fig. 20. Study of convergence of the reference (best) singular scheme iii) in
terms of magnitude and phase of the current density tangent to the contour
lines A” → B” and E” → C” and sampled at a distance of λ/1000 in z
direction from the border of the structure, see also Fig. 15.

iv) we have to enforce KCL and conformity to singular basis
functions in lacunary singular elements, as stated in Section
II. Conformity among singular basis functions is fully studied
in [5], while KCL involves relations among singular DOFs
defined at interpolation nodes of the line of junction, thus no
constraint is imposed on the edgeless basis functions v Λ

i if
included.

To illustrate the effectiveness of the proposed procedure
we present several results obtained in the frequency domain
applying the Galerkin method to the EFIE. We have deeply
investigated the modified T-shape structure (Fig. 15) in free
space illuminated by a linearly polarized plane wave (4) with
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parameters θi = 45o, ϕi = −75o and E0 = 1θ̂ [V/m] at
300MHz (i.e. sheet 1 and 3 is 0.3λ × 0.1λ while sheet 2 is
0.3λ × 0.05λ). Numerical results are obtained with regular
elements and modified singular elements with five different
meshes: mesh S,MS,D,MD,T respectively with 140, 140, 560,
560, and 1260 right-angled triangular elements of the same
size. Mesh MS is a locally modified version of mesh S in the
transition region to get edge-aligned lacunary vertex elements
inside the smooth surface, as done for mesh MD. In the
following, we consider as reference (best) solution the one
obtained for mesh MD and scheme iii) of order (p = 2, s = 0).

Figs. 18, 19 and 20 show the current density component
tangent to the contour line A” → B” and E” → C” and
sampled at a distance of λ/1000 in z direction from the
border of the structure (see Fig. 15 for the contour line).
This component is strongly affected by the bifurcation of
the structure since it is normal to the line of junction. Fig.
18 shows that the solutions obtained by using regular basis
functions with the enforcement of junction condition are not
able to model the problem. The figure shows unstable solutions
with unphysical oscillations of the current density at wrong
scale of magnitude near the sharp edge profile and the junction.
Fig. 19 shows that, the use of schemes i) and ii) yields still
incorrect solutions with unphysical oscillations in the entire
sharp edge region and junction. This means that the solution
is unstable. Fig. 20 demonstrates that scheme iii) converges to
a stable and physical solution. Moreover Fig. 19 shows also
that the use of scheme iv), which is different from iii) only
for geometrical properties, yields a convergent sub-optimal
solution that is locally unsatisfactory along the line of junction.
Table II reports details on the number of DOFs for all the
performed simulations in this Section (in agreement with the
discussion reported in Section II).

Definitely, in order to model properly sharp edge plates
joined to a smooth surface we need lacunary vertex singular
elements inside the smooth surface that are capable of mod-
eling normal-to-edge and tangent-to-edge components of the
current density, i.e. strong half-vertex singular elements.

TABLE II
NUMBER OF DOFS IN SIMULATIONS OF SECTION IV

Bases and Mesh DOFs Figure
p=1, mesh D 2700 Fig. 18
p=2, mesh D 5730 Fig. 18
p=0, mesh T 1815 Fig. 18
p=1, meshT 6150 Fig. 18

set i) p=2,s=0, mesh S 1520 Fig. 19
set ii) p=2,s=0, mesh S 1524 Fig. 19
set iv) p=2,s=0, mesh S 1528 Fig. 19

set iii) p=2,s=0, mesh MS 1528 Fig. 20
set iii) p=1,s=0, mesh MD 2995 Fig. 20
set iii) p=2,s=0, mesh MD 6025 Figs. 18,19,20

V. CONCLUSIONS

A complete procedure to handle junctions in complex
structures constituted by thin metallic plates such as wings,
fins, winglets is proposed in the framework of surface integral
equation methods. The approach is based on the use of

divergence-conforming higher-order interpolatory vector basis
functions, singular vector basis functions and on Kirchhoff’s
Current Law. The additive nature of the bases permits the
definition of lacunary singular elements that model structures
containing sharp edge plates and smooth surfaces. In this paper
we have described the modeling procedure with the definition
of the required basis functions and unknowns. The paper
presents several numerical test cases based on the canonical T-
shape surface junction and its variants that show the instability
of solutions obtained using classical methods and the full
convergence of the proposed numerical procedure.
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