
09 March 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards Quantum Circuit Emulation on Low-Tier FPGAs / Conti, Christian; Volpe, Deborah; Cirillo, Giovanni Amedeo;
Graziano, Mariagrazia; Zamboni, Maurizio; Turvani, Giovanna. - 3:(2025), pp. 512-513. (Intervento presentato al
convegno 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) tenutosi a Montreal
(Can) nel 15-20 September 2024) [10.1109/qce60285.2024.10381].

Original

Towards Quantum Circuit Emulation on Low-Tier FPGAs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/qce60285.2024.10381

Terms of use:

Publisher copyright

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2996530 since: 2025-01-12T09:41:34Z

IEEE

Towards Quantum Circuit Emulation on
Low-Tier FPGAs

Christian Conti∗, Deborah Volpe ∗, Giovanni Amedeo Cirillo∗

, Mariagrazia Graziano†, Maurizio Zamboni∗, and Giovanna Turvani∗
∗Department of Electronics and Telecommunications, Politecnico di Torino Italy
†Department of Applied Science and Technology, Politecnico di Torino Italy

{christian.conti, deborah.volpe, giovanni cirillo, mariagrazia.graziano, maurizio.zamboni, giovanna.turvani}@polito.it

Abstract—Researchers and industries are increasingly drawn
to quantum computing for its computational potential. However,
validating new quantum algorithms is challenging due to current
quantum device limitations. Software simulators are time and
memory-intensive, making hardware emulators an attractive
alternative.

This article introduces a digital architecture, designed to
emulate quantum computing on low-tier Field-Programmable
Gate Arrays (FPGAs), supporting Clifford+T and rotational gate
sets. It simplifies and accelerates quantum algorithm verification
using a RISC-like structure and efficiently handling sparse
quantum gates. A dedicated compiler translates OpenQASM 2.0
into RISC-like instructions. The architecture is validated against
the Qiskit state vector simulator, successfully emulating sixteen
qubits on a Xilinx Kria KV260 SoM.

Index Terms—Quantum Computing Emulation, Field Pro-
grammable Gate Array, Quantum Algorithm Verification, Quan-
tum Computing Simulation,

I. INTRODUCTION
Interest in quantum computing (QC) has grown in recent

years. However, current quantum devices face limitations due
to ideal phenomena as decoherence and relaxation, that affect
the execution of a quantum application. This implies that it
would be better to perform a preliminary less-scaled validation
of a quantum algorithm on noiseless classical simulators,
capable of providing insights into the inner qubits states.
This classical validation can be done either through software
simulation or hardware emulation, with hardware emulation
offering significant advantages in speed and resource effi-
ciency.
This work describes a quantum circuits emulator for low-tier
Field Programmable Gate Arrays (FPGAs), interfaceable with
existing quantum computing frameworks through an Open
QASM 2.0 parser.

II. METHODOLOGY AND IMPLEMENTATION

The proposed architecture for quantum computing emula-
tion on FPGA platforms supports Clifford+T and rotational
gate sets. It is portable across any modern Field Programmable
Gate Arrays (FPGAs) by modifying the communication inter-
face, shown in Figure 2, since the design uses only commonly-
available embedded blocks like Random Access Memories
(RAMs) and Digital Signal Processing (DSP) block. The
architecture strategically reduces computational complexity by
employing a butterfly-like mechanism [1], which reduces
unnecessary operations by exploiting the sparse nature of gate
matrices. In particular, it isolates interacting probability ampli-
tudes essential for obtaining the output state vector, as shown

in Figure 1. The two-qubit control gates are implemented
by selectively filtering interacting couples associated with the
basis state where the control qubit is equal to one.

Fig. 1: The butterfly-like mechanism for selecting interacting
couples of probability amplitudes in a two-qubit system,
considering the Bell state generator circuit.

To reduce the area and complexity of arithmetic operators,
a 20-bit fixed-point number representation (2 bits for the
integer part and 18 bits for the fractional part) with a nearest-
even rounding mechanism is chosen instead of floating-point
representation. This approach also offers significant benefits
in terms of memory requirements. The impact of fixed-point
representation on result accuracy has been evaluated in [2],
demonstrating that the approximation does not significantly
affect the accuracy.
The architecture is integrated into an environment that pri-
oritizes user-friendliness, enabling users to describe quantum
circuits using major quantum frameworks such as Qiskit (Fig-
ure 2). These frameworks generate OpenQASM 2.0, which is
then processed by the compiler to translate the gates into a set
of supported instructions transmitted to the emulator. Users
receive the probability amplitudes of the final state vector.
The architecture follows a RISC-like structure (Figure 2) and
includes several key components:

• a register file (Quantum State Register File) for storing
the real and imaginary parts of the state vector operating
with two-output and one-input ports clocked at double the
architecture’s operating frequency to use a single input
port as two write port;

• a Quantum Arithmetic Unit (QAU) for computing the
impact of gates on probability amplitude interacting pairs;

• a Quantum State Selector (QSS), which implements the
butterfly selection mechanism;

• a Trigonometric Unit (TU) for computing sine and
cosine values exploiting the architecture presented in [3];

• a control unit (Quantum Emulator Control Unit);

QUANTUM
STATE

REGISTER
FILE (QSRF)

QUANTUM
STATES

SELECTOR
(QSS)

QUANTUM
EMULATOR

CONTROL UNIT
(QECU)

QUANTUM
ARITHMETIC
UNIT (QAU)

DATAPATH
CONTROL
UNIT (DCU)

TRIGONOMETRIC
UNIT (TU)

RX FIFO

TX FIFO

QUANTUM
STATE

REGISTER
FILE (QSRF)

QUANTUM
STATES

SELECTOR
(QSS)

COMMUNICATION
INTERFACE

 CONTROL
UNIT

State Vector

.qasm

State
vector

User

Programmable logic
Emulator

Compiler

RISC-like
instruction computing unit

0

1

2

3

0

1

2

3

QUANTUM ARITHMETIC UNIT (QAU)

computing
unit

computing
unit

computing
unit

computing
unit

rounding

Fig. 2: Architecture: comprising a register for state vector elements, a state selector executing the butterfly algorithm, a
computing unit (QAU), a Trigonometric Unit (TU), and a central control unit (QECU).

• a communication interface responsible for receiving
instructions and managing the state vector.

Unlike other state-of-the-art approaches, our architecture cal-
culates probability amplitudes for each interacting pair of
qubits, minimizing area requirements and increasing the num-
ber of simulable qubits. By introducing five pipeline stages, we
exploit instruction-level parallelism (Figure 3), significantly re-
ducing time penalties due to the absence of data dependencies
between independent interacting pairs. The pipeline reaches
maximum efficiency when the number of interacting pairs is
equal to or greater than the number of pipeline stages, i.e.,
when 2Nq−2 ≥ Npipe → Nq ≥ ⌈log2 (Npipe) + 2⌉ = Nqmin ,
where Nq represents the number of qubits in the circuit and
Npipe denotes the number of pipeline stages (which is 5 in this
context). For circuits with fewer qubits, stalls must be inserted
to ensure correct results.
To save area, we compute updates for Npipe pairs in smaller
circuits but do not store outcomes exceeding 2Nq . This ap-
proach avoids the need for a dedicated stall management unit
while maintaining the same time penalty.
The pipeline can be introduced by standardizing the execution
of supported gates, recognizing that all can be implemented
as follows:

ciout = α sin (θ) + β cos (θ) + i(γ sin (θ) + δ cos (θ))

cjout = ϵ sin (θ) + ζ cos (θ) + i(η sin (θ) + ι cos (θ)) ,

where α, β, γ, δ, ϵ, ζ, η and ι are coefficients determined by
the gate, selecting real or imaginary parts of the input proba-
bility amplitudes. ciout and cjout are the probability amplitudes
associated with the ith and jth basis states in the output state
vector, and θ is the parametric angle for rotational gates or a
fixed angle for other gates. The sine and cosine values change
signs or eliminate factors using trigonometric properties.
Thus, the datapath includes four computing units—one for
each real and imaginary part of the probability amplitudes—
each containing two multipliers and an adder (Figure 2). The
trigonometric unit computes sine and cosine values.

III. RESULTS AND CONCLUSIONS

Synthesizing on the Xilinx Kria KV260 SoM using
Vivado 2023.1 with default directives achieved a qubit
count of sixteen. The architecture’s bottleneck is RAM
availability, reaching 100% utilization. In contrast, the
configurable logic block (CLB) occupancy was only 6.62%,
and the Digital Signal Processing (DSP) resources usage

Fig. 3: Pipelined gate execution.
was 0.88%, excluding the communication block. This
aligns with expectations, as memory utilization scales as
O(Nbit2

Nq), where Nbit is the number of bits used for
number representation. Meanwhile, the TU and QAU scale
as O(Nbit), and the QSS scales as O(Nq). Thus, memory
occupation is the dominant factor.
The architecture was verified using fifty OpenQASM 2.0
quantum circuits from public repositories involving up to
sixteen qubits, comparing the resulting state vector with the
Qiskit state vector simulator output. The comparison used the
Great-circle distance (GCD) in polar coordinates to measure
divergence. The GCD remained consistently below 0.05 in
all tests, meeting the study’s acceptability threshold.
The execution time of the architecture scales as(
2max(Nq,Nqmin)−1Ng(2−α)

2 + (Npipe − 1)

)
Tclock, where

Npipe is the number of pipeline stages (five in this case), α
is the percentage of controlled gates and Tclock is the clock
period. This scales linearly with 2NqNg . The execution time
is orders of magnitude lower than Qiskit software emulators
executed on a single-process Intel(R) Xeon(R) Gold 6134
CPU @ 3.20 GHz opta-core, Model 85, with a memory of
about 103 GB, proving the advantage of hardware emulation,
with benefits increasing with circuit size.

ACKNOWLEDGEMENTS

This work was supported in part by AMD under the AMD
University Program AMD University program

REFERENCES

[1] G. Negovetic, M. Perkowski, M. Lukac, and A. Buller, “Evolving
quantum circuits and an fpga-based quantum computing emulator,” 2002.
https://pdxscholar.library.pdx.edu/ece fac/191/.

[2] M. L.Lagostina, M.Zamboni and G.Turvani, “Aequam, a fast and efficient
quantum emulation toolchain,” 2022. https://webthesis.biblio.polito.it/
25427/.

[3] F. De Dinechin, M. Istoan, and G. Sergent, “Fixed-point trigonomet-
ric functions on fpgas,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 5, pp. 83–88, 2014. https://doi.org/10.1145/2641361.2641375.

https://www.amd.com/en/corporate/university-program.html
https://pdxscholar.library.pdx.edu/ece_fac/191/
https://webthesis.biblio.polito.it/25427/
https://webthesis.biblio.polito.it/25427/
https://doi.org/10.1145/2641361.2641375

	Introduction
	Methodology and Implementation
	Results and Conclusions
	References

