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General Tail Bounds for Non-Smooth Stochastic Mirror Descent

Khaled Eldowa Andrea Paudice
Università degli Studi di Milano, Milan, Italy

Abstract

In this paper, we provide novel tail bounds on
the optimization error of Stochastic Mirror
Descent for convex and Lipschitz objectives.
Our analysis extends the existing tail bounds
from the classical light-tailed Sub-Gaussian
noise case to heavier-tailed noise regimes. We
study the optimization error of the last it-
erate as well as the average of the iterates.
We instantiate our results in two important
cases: a class of noise with exponential tails
and one with polynomial tails. A remark-
able feature of our results is that they do not
require an upper bound on the diameter of
the domain. Finally, we support our theory
with illustrative experiments that compare
the behavior of the average of the iterates
with that of the last iterate in heavy-tailed
noise regimes.

1 INTRODUCTION

Stochastic Mirror Descent (SMD) and its more pop-
ular Euclidean counterpart Stochastic (sub-)Gradient
Descent (SGD) are at the core of modern machine
learning. For example, they are widely used for per-
forming large-scale optimization tasks, as in the case
of empirical (or regularized) risk minimization, and for
minimizing the statistical risk in kernel methods. In
this paper, we study the performance of SMD in the
general problem of minimizing a (non-smooth) convex
and Lipschitz function given only noisy oracle access
to its (sub-)gradients. SGD was first introduced by Er-
mol’ev (1969), who studied the convergence of the iter-
ates for convex Lipschitz objectives. Subsequent stud-
ies focused on deriving in-expectation bounds on the
optimization error of the average of the iterates. De-
noting with T the number of iterations, these bounds
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are of the order of 1/
√
T . In their seminal work, (Ne-

mirovski et al., 2009) introduced SMD as a non Eu-
clidean generalization of SGD and showed that it en-
joys the same 1/

√
T bound. The shortcoming of in-

expectation bounds is that they do not offer guarantees
on individual runs of the algorithm. This is especially
limiting when multiple runs of the algorithm are not
possible, as in large scale problems, or when the data
arrives in a stream. Tail bounds offer stronger guar-
antees that apply to individual runs of the algorithms.
For a fixed confidence level δ ∈ (0, 1), a straightfor-
ward application of Markov’s inequality, gives a bound
of the order 1/(δ

√
T ) that holds with probability at

least 1 − δ. This bound is much worse than its in-
expectation counterpart, even for moderately small δ.
Tighter tail bounds with only an overhead of order√

log(1/δ) have been obtained under a sub-Gaussian
assumption on the noise (Liu et al., 2023).

Recent works (Zhang et al., 2020) show that in some
settings, the sub-Gaussian assumption is not appro-
priate, and the noise is better modelled by heavier
tailed distributions. Most works studying tail bounds
for SMD (SGD) under heavy-tailed noise consider the
extreme cases where the noise is only assumed to have
finite variance or lower order moments (e.g., Gorbunov
et al. (2020); Nguyen et al. (2023)). Under these as-
sumptions, it is necessary to employ some form of
truncation of the (sub-)gradients to obtain a poly-
logarithmic dependence on 1/δ. Instead, we consider
less-studied intermediate regimes for the noise, in-
cluding two classes of sub-Weibull and polynomially
tailed distributions. The former is a class of ran-
dom variables with exponentially decaying tails (in-
cluding sub-Gaussian and sub-exponential distribu-
tions), which has been shown to be relevant in practi-
cal applications (Vladimirova et al., 2020), and has
been studied in various machine learning and opti-
mization problems (Madden et al., 2021; Kim et al.,
2022; Li and Liu, 2022; Li and Jordan, 2023; Wood
and Dall’Anese, 2023). The latter class, which includes
some Pareto and power law distributions, has also re-
cently captured interest in the machine learning com-
munity (Bakhshizadeh et al., 2023; Lou et al., 2022).
Moreover, we study the performance of SMD in its
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plain form (i.e., without truncation), which, in prac-
tice, is the more widely used approach. Also, trun-
cation introduces at least one additional parameter,
the truncation level, further complicating the tuning
of the algorithm in practice. Ideally then, one would
like to avoid truncation unless the noise is extremely
heavy-tailed.

On a different thread, we notice that most results in
the non-smooth case concern the average of the iter-
ates generated by SMD during its execution. However,
in practice, taking as solution just the last iterate is
by far the preferred heuristic. Consequently, more re-
cent works (Shamir and Zhang, 2013; Harvey et al.,
2019; Jain et al., 2021) have focused on developing an
understanding of the theoretical performance of this
approach. In this case, state-of-the-art tails bounds
are of almost (up to log(T ) factors) the same order as
for the average of the iterates, though the analyses are
still restricted to the sub-Gaussian noise regime.

Motivated by these facts, we derive novel and general
tail bounds for both the average of the iterates (Sec-
tion 4) and the last iterate (Section 5). In their most
general form, our results require controlling the tails of
certain martingales depending only on the noise. We
then show how to instantiate these bounds in the two
considered noise models. Unlike most tail bounds in
the (non-smooth) convex and Lipschitz setting, our re-
sults do not require a bound on the diameter of the do-
main. On the technical side, we extend existing anal-
ysis techniques and concentration results to cope with
the challenges posed by our more general problem set-
ting. In particular, the combination of the heavy-tailed
noise with the unbounded domain and the peculiar re-
currences arising in the analysis of the last iterate. Fi-
nally, some of our results for the average of the iterates
show an intriguing two-regime phenomenon (also ob-
served in (Lou et al., 2022) in a different and more
specific setting), where the terms accounting for the
heavy-tailed behavior of the noise decay more quickly
with the horizon T . As our results for the last iterate
do not exhibit this behavior, we investigate further this
separation in the experiments (Section 6).

2 RELATED WORKS

In the case of sub-Gaussian noise, the performance of
SGD and SMD has been analyzed in (Harvey et al.,
2019; Jain et al., 2021) and (Liu et al., 2023) respec-
tively. In (Harvey et al., 2019), the authors consider
the setting with a bounded domain. They provide tail
bounds for the average of the iterates and the last iter-
ate of the order

√
log(1/δ)/T and

√
log(1/δ)/T ·log(T )

respectively. Jain et al. (2021) show that when the
time horizon is known in advance, the last iterate en-

joys the same tail bound as the average of the iterates
as long as a carefully designed step-size schedule is
used. Notably, this result does hold for unbounded
domains. Liu et al. (2023) consider the more gen-
eral framework of SMD with unbounded domains, and
analyze the performance of the average of the iter-
ates. The authors prove tail bounds of the order of√

log(1/δ)/T and
√
log(1/δ)/T · log(T ) for the case of

known and unknown T respectively.

On the other extreme of the spectrum, another re-
search line considers very general models where the
noise is only assumed to posses moments of order
at most p ∈ (1, 2]. In this setting, the optimal in-
expectation rates are of the order T (1−p)/p, see (Vu-
ral et al., 2022). To obtain high-probability analogues
with only a log(1/δ) overhead, existing works consider
modifications of the standard SMD algorithm where
the oracle answers are pre-processed via some form of
truncation. For p = 2, Parletta et al. (2022) provide
tail bounds for several averaging schemes under the as-
sumption of a bounded domain, where both the cases of
known and unknown T are considered. The unbounded
domain setting is analyzed in (Gorbunov et al., 2021),
although only in the case when T is known. Similar re-
sults have been obtained for smooth convex objectives
(Nazin et al., 2019; Gorbunov et al., 2020; Holland,
2022; Nguyen et al., 2023), where both bounded and
unbounded domains have been considered. Our work
is conceptually close to that of Lou et al. (2022), which
explores the limits of plain SGD in the specific prob-
lem of least-squares regression with linear models. In
that paper, the authors derive tails bounds for the av-
erage of the iterates under polynomially-tailed noise.
We recover similar results in our more general problem
setting, including the two-regime behavior highlighted
therein.

3 PROBLEM SETTING

We consider the problem of minimizing a convex func-
tion f :X → R, where the domain X ⊆ Rd is a non-
empty, closed, and convex set over which f admits a
minimum. For any x ∈ X , let ∂f(x) denote the sub
differential at x. Access to the function f is provided
through a noisy first-order oracle. At each step t, the
learner queries the oracle with a point xt ∈ X and re-
ceives ĝt ∈ Rd such that ĝt = gt−ξt, where gt ∈ ∂f(xt)
and E[ξt | ξ1, . . . , ξt−1] = 0.

In the following, we use ∥·∥ to refer to a fixed arbitrary
norm in Rd. Let ψ :Rd → (−∞,+∞] be a convex func-
tion, and define dom(ψ) := {x ∈ Rd : ψ(x) < +∞}.
For any y ∈ dom(ψ) at which ψ is differentiable, the
Bregman divergence at y induced by ψ is defined as

Bψ(x, y) = ψ(x)− ψ(y)− ⟨x− y,∇ψ(y)⟩ ,
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Algorithm 1 Stochastic Mirror Descent
input: regularizer ψ satisfying Assumption 1, non-
increasing sequence of positive learning rates (ηt)t
initialization: choose x1 ∈ int(dom(ψ))
for t = 1, . . . do

output xt and receive ĝt
set xt+1 ← argminx∈X ⟨ĝt, x⟩+ 1

ηt
Bψ(x, xt)

end for

for any x ∈ dom(ψ). For some λ ≥ 0, ψ is said to
be λ-strongly convex with respect to ∥·∥ if ψ(x) ≥
ψ(y)+⟨x−y, g⟩+(λ/2)∥x−y∥2 for any x, y ∈ dom(ψ)
and g ∈ ∂ψ(y). This directly implies that Bψ(x, y) ≥
(λ/2)∥x − y∥2 if ψ is differentiable at y. To specify
an instance of the mirror descent framework (see Al-
gorithm 1), one needs to select a regularizer function
ψ, which we will assume to satisfy the following:1

Assumption 1. The regularizer function ψ : Rd →
(−∞,+∞] is closed, differentiable on int(dom(ψ)),
1-strongly convex with respect to ∥·∥, and satisfies
X ⊆ dom(ψ) and int(dom(ψ)) ̸= {}. More-
over, it satisfies at least one of the following: (i)
limt→∞∥∇ψ(xt)∥2→ ∞, for any sequence (xt)t in
int(dom(ψ)) with limt→∞ xt → x ∈ ∂ dom(ψ); (ii)
X ⊆ int(dom(ψ)).

This is a standard assumption (see (Beck and Teboulle,
2003) or (Orabona, 2023, Section 6.4)) that serves to
insure that the iterates (xt)t returned by the mirror
descent algorithm are well-defined. Denote by ∥·∥∗ the
dual norm of ∥·∥, that is ∥·∥∗:= sup∥w∥≤1⟨·, w⟩. The
following assumption implies that f is Lipschitz with
respect to ∥·∥.
Assumption 2. There exists a constant G > 0 such
that for all x ∈ X and g ∈ ∂f(x), ∥g∥∗≤ G.

Let f∗ = minx∈X f(x) and x∗ ∈ argminx∈X f(x).
For any x ∈ X , we define the optimization error at
x as f(x) − f∗. For some time horizon T , our goal
in this work is to prove high probability bounds on
the optimization error of the average iterate x̄T =
(1/T )

∑T
t=1 xt and the last iterate xT produced by Al-

gorithm 1. Towards that end, we impose some restric-
tions on the noise vectors (ξt)t. For what follows, let
Ft be the sigma algebra generated by (ξ1, . . . , ξt−1).
Moreover, we will use Et[·] to denote E[· | Ft−1]. The
following assumption provides a bound on the condi-
tional second moment of ∥ξt∥∗.
Assumption 3. There exists a constant σ > 0 such
that for every step t ≥ 1, it holds that Et[∥ξt∥2∗] ≤ σ2.

This assumption is sufficient for proving in-expectation
1For a set S ⊆ R, int(S) and ∂S refer to its interior and

boundary respectively.

bounds, and tail bounds, but only of the order
1/(δ
√
T ). We only use this as a base assumption when

stating general facts. Instead, we will instantiate our
results under two different (stronger) assumptions on
the noise terms (ξt)t. The first assumption involves the
class of sub-Weibull random variables (Vladimirova
et al., 2020; Kuchibhotla and Chakrabortty, 2022),
which generalizes the notions of sub-Gaussian and sub-
exponential random variables. For θ > 0 and ϕ > 0,
we say that a random variable X is sub-Weibull(θ, ϕ)
if it satisfies E[exp((|X|/ϕ)1/θ)] ≤ 2 . At θ = 1/2,
we recover the definition of a sub-Gaussian random
variable, and at θ = 1, we recover that of a sub-
exponential random variable (Vershynin, 2018, Chap-
ter 2). Via Markov’s inequality, one can show that
X being sub-Weibull(θ, ϕ) implies that for t ≥ 0,
P (|X|≥ t) ≤ 2 exp(− (t/ϕ)

1/θ
) . In this work, our focus

is on the heavy-tailed regime where θ ≥ 1, though we
also consider the canonical case of θ = 1/2 for com-
parison. In particular, we will consider the following
assumption:
Assumption 4. For some θ ≥ 1, there exists a con-
stant ϕ > 0 such that for every step t ≥ 1, ∥ξt∥∗ is
sub-Weibull(θ, ϕ) conditioned on Ft−1; that is,

E
[
exp
(
(∥ξt∥∗/ϕ)1/θ

)
| Ft−1

]
≤ 2 .

Alternatively, we also consider the following assump-
tion.
Assumption 5. For some p > 4, there exists a con-
stant ϕ > 0 such that for every step t ≥ 1,

E
[
(∥ξt∥∗/ϕ)p | Ft−1

]
≤ 1 .

The above implies, via Markov’s inequality, that
X satisifies the following polynomially decaying tail
bound: P (|X|≥ t) ≤ (ϕ/t)p for any t > 0. We only
consider p > 4 as the analyses in the sequel require
studying the concentration properties of terms involv-
ing ∥ξt∥2∗.

4 AVERAGE ITERATE ANALYSIS

When one’s concern is studying the error of the average
of the iterates x̄T at some time horizon T , a fairly
standard analysis under Assumptions 1–3 yields that

f(x̄T )− f∗ ≤
1

ηTT

(
Bψ(x

∗, x1) +

T∑
t=1

η2t (G
2 + σ2)

+

T∑
t=1

ηt⟨ξt, xt − x∗⟩︸ ︷︷ ︸
:=U

+

T∑
t=1

η2t (∥ξt∥2∗−Et∥ξt∥2∗)︸ ︷︷ ︸
:=V

)
.
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It is easy to verify that EU = EV = 0, which im-
mediately yields a bound on the error in expectation.
Proving a high-probability bound, on the other hand,
requires controlling both terms in high probability. For
V , this solely depends on the assumed statistical prop-
erties of ∥ξt∥∗. Whereas for U , one also needs to con-
trol the terms ∥xt − x∗∥. This presents a major ob-
stacle if one would like to avoid scaling with a bound
on the diameter of the domain in terms of ∥·∥, which
might not exist in some cases. In the recent work of
Liu et al. (2023), a more careful analysis distills this
problem, roughly speaking, to bounding a term of the
form ∑T

t=1
wtηt⟨ξt, xt − x∗⟩ − vt∥xt − x∗∥2,

where (wt)t and (vt)t are two carefully chosen se-
quences of weights. Assuming that the terms ∥ξt∥∗
are conditionally sub-Gaussian, as done in (Liu et al.,
2023), and applying the standard Chernoff method to
bound this term in high probability, this refinement
has the effect of normalizing the vectors xt − x∗. Un-
fortunately, this “white-box” approach does not read-
ily extend beyond the light-tailed case. For instance, if
the noise terms are sub-exponential, it is not clear how
to deal with the additional hurdle that the moment-
generating function of ⟨ξt, xt − x∗⟩ is only bounded in
a constrained range, whose diameter is inversely pro-
portional to ∥xt − x∗∥.

In the more recent work of Nguyen et al. (2023), a dif-
ferent weighting scheme is proposed for the purpose
of analyzing a clipped version of SMD in a setting
where it is only assumed that the p-th moment of the
noise is bounded for p ∈ (1, 2]. However, as presented,
their analysis is still a “white-box” one, which lever-
ages the properties of the clipped gradient estimate.
In what follows, we demonstrate that a similar weight-
ing scheme can be utilized in our setting to isolate the
effect of the vectors xt − x∗ in a “black-box” manner,
independently of the assumed statistical properties of
the noise. For t ≥ 1, let

Dt = max
{
γ,
√
Bψ(x∗, x1), . . . ,

√
Bψ(x∗, xt)

}
, (1)

where γ > 0 is a constant that will be dictated by the
analysis. Normalizing per-iterate quantities with (Dt)t
is a natural choice as it is a non-decreasing sequence,
predictable with respect to (Ft)t, and most notably, it
holds that

√
2Dt ≥

√
2Bψ(x∗, xt) ≥ ∥xt − x∗∥. The

following theorem provides a high probability bound
on the error of the average of the iterates without re-
quiring an upper bound on the diameter of the domain,
as long as one can control the tails of two martingales
essentially depending only on the noise.

Theorem 1. Let Y1, Y2 : (0, 1)× [0,∞)T → (0,∞) be

two functions such that for any δ ∈ (0, 1),

P

(
max
s≤T

∑s

t=1
ηt

〈
ξt,

xt − x∗√
2Dt

〉
> Y1(δ, (ηt)

T
t=1)

)
≤ δ

and

P

(∑T

t=1
η2t (∥ξt∥2∗−Et∥ξt∥2∗) > Y2(δ, (ηt)

T
t=1)

)
≤ δ ,

where Dt is as defined in (1) with γ chosen as√
Y2(δ/2, (ηt)Tt=1) +

∑T
t=1 η

2
t (G

2 + σ2). Then, under
Assumptions 1–3, Algorithm 1 satisfies the following
with probability at least 1− δ:

f(x̄T )− f∗ ≤
3

ηTT

(
Bψ(x

∗, x1) +

T∑
t=1

η2t (G
2 + σ2)

+ 2Y1(δ/2, (ηt)
T
t=1)

2
+ Y2(δ/2, (ηt)

T
t=1)

)
.

Proof. Lemma 5 in Appendix A with z = x∗ and wt =
1/Dt yields that for any s ∈ [T ]

Bψ(x
∗, xs+1)

Ds
+

s∑
t=1

ηt
Dt

(f(xt)− f∗)

≤ Bψ(x
∗, x1)

D1
+

s∑
t=1

η2t
2Dt
∥ĝt∥2∗+

s∑
t=1

ηt

〈
ξt,

xt − x∗

Dt

〉
.

For brevity, define dt =
√
Bψ(x∗, xt). Taking the pre-

vious inequality further, we have that

d2s+1

Ds
+

s∑
t=1

ηt
Dt

(f(xt)−f∗) ≤ d1+γ∨

(
1

γ

T∑
t=1

η2t
2
∥ĝt∥2∗

)

+
√
2

(
max
s≤T

s∑
t=1

ηt

〈
ξt,

xt − x∗√
2Dt

〉)
+

, (2)

where x ∨ y = max{x, y} and x+ = max{0, x}. Define
BT as the right-hand side of the last inequality. Con-
sequently, we have that d2s+1 ≤ DsBT , and thanks to
the non-negativity of the last term in the right-hand
side of (2), we have that D1 = max{d1, γ} ≤ BT .
Moreover, if Ds ≤ BT for some s ∈ [T ], then

Ds+1 = max{Ds, ds+1} ≤ max{Ds,
√
DsBT } ≤ BT .

Thus, via induction, Ds ≤ BT for all s ∈ [T ]. Since
(ηt)t and (Dt)t are non-increasing and non-decreasing
respectively, we can conclude from (2) and the convex-
ity of f that

f(x̄T )− f∗ ≤
1

T

T∑
t=1

(f(xt)− f∗) ≤
DTBT
ηTT

≤ B2
T

ηTT
.

(3)



Khaled Eldowa, Andrea Paudice

Utilizing Assumptions 2 and 3, we have that

T∑
t=1

η2t
2
∥ĝt∥2∗=

T∑
t=1

η2t
2
∥gt − ξt∥2∗≤

T∑
t=1

η2t (∥gt∥2∗+∥ξt∥2∗)

=

T∑
t=1

η2t (∥gt∥2∗+Et∥ξt∥2∗) +
T∑
t=1

η2t (∥ξt∥2∗−Et∥ξt∥2∗)

≤
T∑
t=1

η2t (G
2 + σ2) +

T∑
t=1

η2t (∥ξt∥2∗−Et∥ξt∥2∗) .

Combining this with the assumed tail bounds and
plugging in the value of γ yields that

BT ≤ d1 +
√
Y2(δ/2, (ηt)Tt=1) +

∑T

t=1
η2t (G

2 + σ2)

+
√
2Y1(δ/2, (ηt)

T
t=1) ,

with probability at least 1 − δ, which, combined with
(3), allows us to conclude the proof after simple calcu-
lations.

Theorem 1 provides a modular bound, turning which
into a concrete convergence rate requires applying suit-
able martingale concentration results, depending on
the adopted noise model. Starting with the sub-
Weibull case, Proposition 2 in Appendix E, a more
versatile version of a result in Proposition 11 in (Mad-
den et al., 2021), provides a maximal concentra-
tion inequality for martingales with conditionally sub-
Weibull increments. Utilizing this results leads to the
following corollary.

Corollary 1. For any δ ∈ (0, 1) and η > 0, Algo-
rithm 1, under Assumptions 1, 2 and 4, satisfies the
following with probability at least 1− δ.

(i) If ηt = η, f(x̄T )− f∗ is bounded by

C

T

(
Bψ(x

∗, x1)

η
+ η(G2 + ϕ2 log(e/δ))T

+ ηϕ2 log2θ(eT/δ)

)
(ii)If ηt = η√

t
, f(x̄T )− f∗ is bounded by

C log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η

(
G2 + ϕ2 log2θ(e/δ)

))
where C is a constant depending only on θ.

A proof is provided in Appendix B. Firstly, we remark
that these bounds can also be shown to hold in the
sub-Gaussian setting (with θ = 1/2), where they re-
cover the corresponding results in (Liu et al., 2023).
Also notice that, regardless of θ, as ϕ goes to zero,
we recover the standard bounds for the deterministic

setting. In the case when ηt = η (the known time hori-
zon setting), the bound exhibits what we will refer to
as a two-regime behaviour. To better illustrate this,
consider that an optimal tuning of η yields a bound of
order√
Bψ(x∗, x1)

(√
G2 + ϕ2 log(e/δ)

T
+
ϕ logθ(eT/δ)

T

)
.

The first term in the brackets is the standard sub-
Gaussian rate, while the second depends on the as-
sumed shape of the noise. The key observation here
is that as the horizon grows longer, the sub-Gaussian
term will eventually come to dominate, masking the
heavy-tailed behaviour of the noise. This turning point
depends, most importantly, on the required confidence
level 1− δ and the shape parameter θ. Specifically, it
can be shown to be O(22θ log2θ((2θ)2θe/δ)). It is also
noteworthy that the second term is primarily the con-
tribution of the noise at a single step, a phenomenon
inherited from the Freedman-style concentration in-
equalities on which this result is based.

In the case when ηt = η/
√
t (the anytime setting), the

bound in Corollary 1 is akin, in form, to results pre-
sented in (Madden et al., 2021; Li and Liu, 2022) in
the non-convex setting under different assumptions.2
However, we avoid the extra dependence on log2θ(T )
featured in these works thanks to the general form
of Proposition 2, which allows one to take advantage
of the fact that the learning rate schedule is imbal-
anced to retain the same dependence on T as in the
light-tailed case. On the other hand, this imbalance
also means that for both martingales featured in The-
orem 1, the effect of the noise in the beginning (when
ηt is large) is, in a sense, comparable to that of the
whole sequence. On the surface, this explains why
the bound we presented in the anytime case does not
exhibit the two-regime behaviour enjoyed by the first
bound. The deeper cause is that the analysis relies
on controlling the maximum of the terms ∥xt − x∗∥
in high probability, which seems to naturally result
in the dominance of the heavy-tailed regime. In fact,
it is not difficult (see Appendix C for the proof of a
stronger statement) to show that under the assump-
tion that maxt

√
Bψ(x∗, xt) ≤ D, one can obtain a

bound of order

1√
T

(
D2

η
+ η

(
G2 + ϕ2

(
log(e/δ) +

log2θ(eT/δ)√
T

)))
.

Even if one cannot generally tune η optimally (as T is
unknown), the message is that as T grows, the bound

2In these works, they consider smooth (possibly) non-
convex objectives and provide rates for the average norm of
the gradients (or the optimization error under an additional
strong Polyak-Lojasiewicz condition).
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approaches its sub-Gaussian counterpart. Deriving a
similar guarantee without assuming a bound on the
diameter remains an interesting problem.

Under Assumption 5, one can use Fuk-Nagaev type
concentration inequalities (see, e.g., Rio (2017)) to
control the tails of the martingales in question. Doing
so, we arrive at the following corollary, whose proof is
provided in Appendix B.
Corollary 2. For any δ ∈ (0, 1) and η > 0, Algo-
rithm 1, under Assumptions 1, 2 and 5, satisfies the
following with probability at least 1− δ.

(i) If ηt = η, f(x̄T )− f∗ is bounded by

C

T

(
Bψ(x

∗, x1)

η
+ η(G2 + ϕ2 log(e/δ))T

+ ηϕ2(T/δ)
2/p

)
(ii) If ηt = η√

t
, f(x̄T )− f∗ is bounded by

C log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η
(
G2 + ϕ2(1/δ)

2/p
))

where C is a constant depending only on p.

The bounds are analogous to the sub-Weibull case, ex-
cept that the terms accounting for the heavy tailed be-
haviour feature a polynomial (instead of logarithmic)
dependence on 1/δ. A suitable tuning of η in the first
case leads to a bound of order√

Bψ(x∗, x1)

(√
G2 + ϕ2 log(e/δ)

T
+
ϕ(1/δ)

1/p

T 1−1/p

)
.

Notice that T 1−1/p > T 3/4; hence, also in this case, the
sub-Gaussian term can dominate if the horizon is long
enough, with the turning point being O((1/δ)2/(p−2)).
A similar bound was reported in Lou et al. (2022)
for the particular setting of a linear regression prob-
lem with the squared loss,3 where the two-regime be-
haviour of the bound was also highlighted.

In the anytime setting, similar to the sub-Weibull
case, the bound retains the same dependence on T
as in the sub-Gaussian case, but only exhibits heavy-
tailed behaviour. Analogously to the sub-Weibull case,
when maxt

√
Bψ(x∗, xt) ≤ D, one can prove (see Ap-

pendix C) a bound of order

1√
T

(
D2

η
+ η

(
G2 + ϕ2

(
log(e/δ) +

(1/δ)2/p√
T

)))
The question of deriving a similar bound (for general
convex and Lipschitz functions) without assuming a
bound on the diameter is more pressing in this case,
as the steeper polynomial dependence on 1/δ would
otherwise call for the use of truncation.

3In their setting, it was only assumed that p > 2.

5 LAST ITERATE ANALYSIS

Focusing on the anytime case, a typical last iterate
analysis in the non-smooth setting (Shamir and Zhang,
2013; Harvey et al., 2019) starts with a bound of the
following form:4

Lemma 1. Algorithm 1 with ηt =
η√
t

for some con-
stant η > 0 satisfies

f(xT )−f∗ ≤
2

T

T∑
t=⌈T/2⌉

(f(xt)−f∗)+
T∑

t=⌈T/2⌉

⟨ξt, wt⟩

+
η√
2T

T∑
t=⌈T/2⌉

ρt∥ĝt∥2∗+
√
2

η
√
T

T∑
t=⌈T/2⌉

zt ,

where, for j < T , αj = 1
(T−j)(T−j+1) , and for any

time-step t ≥ ⌈T/2⌉,

wt =

t∧(T−1)∑
j=⌈T/2⌉

αj(xt−xj) , zt =

t∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xt) ,

and ρt =

t∧(T−1)∑
j=⌈T/2⌉

αj .

The first term in the bound can be dealt with using
the techniques of the previous section, the third term
appears in the analysis of the previous section (albeit
with different weights) and can be handled similarly,
while the last term is usually handled using a uni-
form bound on the divergence terms, though this is
not necessary as we will see. It is not difficult then
to show that these three terms decay at a rate of at
most log(T )/

√
T with high probability. The main ob-

stacle in the way of proving a tail bound for the error
is showing that the second (martingale) term enjoys
a similar rate. Naively bounding the norms of the
vectors wt using a diameter bound is not sufficient.
Instead, one needs to exploit the peculiar structure of
this term. For the following, define the martingale se-
quence (Qs)Ts=⌈T/2⌉ where Qs =

∑s
t=⌈T/2⌉ ⟨ξt, wt⟩, and

denote by ⟨Q⟩s its total conditional variance (TCV),
i.e., ⟨Q⟩s =

∑s
t=⌈T/2⌉ Et ⟨ξt, wt⟩

2. Via the convexity
of ∥·∥2 and the fact that ∥xt − xj∥2≤ 2Bψ(xj , xt), it
holds that ∥wt∥2≤ 2ρtzt. Thus, under Assumption 3,
one can verify that ⟨Q⟩s ≤ 2σ2

∑s
t=⌈T/2⌉ ρtzt. The key

observation of Harvey et al. (2019) is that this sum can
be bounded with an affine function of the martingale
itself. Via a generalized version of Freedman’s inequal-
ity, the authors exploit the resulting fact that ⟨Q⟩T is
upper bounded with a suitable affine function of QT to

4Proofs for the results presented in this section can be
found in Appendix D.
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arrive at the desired tail bound. This inequality, how-
ever, is once again specific to the sub-Gaussian noise
setting, beyond which one usually needs finer control
on the individual wt terms, as argued in the previ-
ous section. Hence, once again, we seek an approach
through which we can disentangle the vectors wt from
the noise terms ξt. The following lemma provides a
starting point by showing that z∗ := max⌈T/2⌉≤s≤T zs
can itself be related to (Qs)s.

Lemma 2. In the same setting as Lemma 1, it holds
that

z∗ ≤ 6
√
2η

T
√
T

∑T

t=⌈T/2⌉
(f(xt)− f∗) +

3
√
2η√
T
Qn∗

+
3η2

T

∑T

t=⌈T/2⌉
ρt∥ĝt∥2∗ ,

where n∗ = min{n : n ∈ argmax⌈T/2⌉≤s≤T Qs}.

A nice implication of this lemma is that the last term
in the bound of Lemma 1 can be related to the pre-
ceding terms. However, at this point, this lemma does
not provide a tight (high probability) bound on the zt
(or ∥wt∥) terms due to the dependence on Qn∗ . Thus,
techniques relying on such a bound, like the averaging
scheme of the previous section or extensions of the con-
centration result of Harvey et al. (2019) to sub-Weibull
random variables in (Madden et al., 2021, Proposition
11),5 are not easily utilizable. Instead, the real ad-
vantage of this lemma is that it allows one to relate
not only the TCV but also the total quadratic varia-
tion (TQV) of QT , given by [Q]T =

∑T
t=⌈T/2⌉ ⟨ξt, wt⟩

2,
back to the martingale itself through z∗:

Lemma 3. In the same setting as Lemma 1, it holds
under Assumption 3 that

⟨Q⟩T + [Q]T ≤ 4σ2z∗ log(4T )

+ 2z∗
∑T

t=⌈T/2⌉
ρt(∥ξt∥2∗−Et∥ξt∥2∗) .

The sum in the second term occurs also when bounding
the third term in the bound of Lemma 1, and has been
encountered in the average iterate analysis. Notice
that, trivially, the left hand side of Lemma 3 is also a
bound for the sum of the TCV and TQV at any step,
particularly at n∗. Being able to bound this sum allows
one to derive powerful concentration results with few
assumptions. In the next proposition, we extend one
such result, Theorem 2.1 in (Bercu and Touati, 2008),
in the spirit of Theorem 3.3 in (Harvey et al., 2019).

Proposition 1. Let (Mt)
n
t=0 be a square integrable

martingale adapted to filtration (Ft)nt=0 with M0 = 0.

5The latter would actually require an almost sure
bound.

Then, for all x, β > 0 and α ≥ 0,

P

(
n⋃
t=1

{Mt ≥ x and ⟨M⟩t + [M ]t ≤ αMt + β}

)

≤ exp

(
−min

{
x2

8β
,
x

6α

})
.

Utilizing this tool, together with the preceding lem-
mas, we arrive at the following general bound for the
last iterate.
Theorem 2. Let Ξ1,Ξ2 : (0, 1)→ (0,∞) be two func-
tions such that for any δ ∈ (0, 1),

P

(
1√
T

∑T

t=1
(f(xt)− f∗) > Ξ1(δ)

)
≤ δ

and

P

(∑T

t=⌈T/2⌉
ρt(∥ξt∥2∗−Et∥ξt∥2∗) > Ξ2(δ)

)
≤ δ .

Then, under Assumptions 1–3, Algorithm 1 with ηt =
η√
t

satisfies the following with probability at least 1−δ:

f(xT )− f∗ ≤
35√
T

(
2Ξ1(δ/3) +

√
2ηG2 log(4T )

+ 9
√
2η
(
Ξ2(δ/3) + 2σ2 log(4T )

)
log(3/δ)

)
.

To obtain a concrete bound, one needs a tail bound
for the error of the average iterate and a similar bound
for a by-now-familiar martingale term. The following
corollary provides concrete bounds for our two noise
models.
Corollary 3. For any δ ∈ (0, 1) and η > 0, Algo-
rithm 1 with ηt = η√

t
satisfies the following with prob-

ability at least 1 − δ, where C1 and C2 are constant
depending solely on, respectively, θ and p.
(i) Under Assumptions 1, 2 and 4, f(xT ) − f∗ is
bounded by

C1 log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η

(
G2 + ϕ2 log2θ+1(e/δ)

))
(ii) Under Assumptions 1, 2 and 5, f(xT ) − f∗ is
bounded by

C2 log(eT )√
T

(
Bψ(x

∗, x1)

η

+ η
(
G2 + ϕ2(1/δ)

2/p
log(e/δ)

))
Firstly, these bounds retain the same decay rate in T
as that in the deterministic case, whose bounds are re-
covered as the noise vanishes. Compared to their coun-
terparts in the average case, both bounds contain an
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(a) (b)

(c) (d)

Figure 1: The performance of the average iterate and the last iterate are reported in the plots on the left and
the right columns respectively. Solid lines show the average of the error across runs and dotted lines show its
99-percentile. The top row refers to the case of η = 1/

√
T , while the bottom row refers to the case of η = 1/

√
t.

The zoomed plots highlight the performance in the last 1k iterations.

extra log(1/δ) factor, an artifact of the general disen-
tanglement technique we adopt. While this means that
the exact sub-Gaussian rate is not recovered, this fac-
tor is arguably negligible for heavier noise. Although
we focused on the anytime learning rates η/

√
t, similar

results can be straightforwardly verified to hold when
using a constant learning rate. Interestingly, for either
schedule, the bounds obtainable from this analysis do
not assume the two-regime form. The main obstacle
for this is encountered as early as the fairly standard
Lemma 1, and is manifested in the third term therein.
This term leads to the dominance of the heavy-tailed
regime, primarily through the contribution of the noise
in the final iterates, where ρt is Θ(1). Beyond the stan-
dard step-size choices, extending the analysis of the
scheme proposed by Jain et al. (2021) to heavy-tailed
noise is an interesting problem.

6 EXPERIMENTS

We present two experiments comparing the perfor-
mance of the average of the iterates with that of
the last iterate when using Algorithm 1 to minimize
f(x) = |x| over R with ψ(x) = 1/2∥x∥22 (i.e., clas-
sical SGD). For the noise, we consider the Gaus-

sian distribution with variance 1 and three different
Weibull distributions with θ = 1, 2, 10/3 respectively
(see Appendix F for an additional experiment concern-
ing polynomially-tailed noise). For a fair comparison,
the Weibull distributions are scaled to have unit vari-
ance. In each experiment, we run the algorithm for 3k
iterations, repeated 20k times. We report the average
and the 99-percentile of the optimization errors. In the
first experiment, we use 1/

√
T as a fixed step-size and

run the algorithm for seven values of T ranging from
100 to 3k, reporting only the errors at the end of each
run. The results for the average iterate and the last
iterate are reported in plots (a) and (b) respectively.
While in both plots the average error is almost the
same across noise levels (due to the normalization),
the 99-percentile curves show a significant difference
in behaviour between the two plots. In particular,
for the average iterate, the curves for the heavy-tailed
noise distributions approach the Gaussian level as the
horizon grows, as predicted by the two-regime bounds.
Whereas for the last iterate, the different noise levels
exhibit a clear separation for all values of T , indicating
higher sensitivity to heavy-tailed noise. In the second
experiment, we set ηt = 1/

√
t and report the evolution

of the error through the 3k iterations for the average
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iterate and the last iterate in plots (c) and (d) respec-
tively. We observe once again that the 99-percentile
curves for the last iterate remain well separated across
the entire run. On the other hand, in the average it-
erate case, the very small scale of the y-axis in the
zoomed plot and the steeper slope of the 99-percentile
curves (with respect to the Gaussian one) seem to hint
towards a two-regime behaviour in the anytime case as
well.
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A BASIC RESULTS FOR STOCHASTIC MIRROR DESCENT

The following lemma is a standard result for mirror descent; see, for example, (Orabona, 2023, Lemma 6.9).
Lemma 4. For any z ∈ X , the iterates (xt)t output by Algorithm 1 satisfy

f(xt)− f(z) ≤
1

ηt
Bψ(z, xt)−

1

ηt
Bψ(z, xt+1) + ⟨ξt, xt − z⟩+

ηt
2
∥ĝt∥2∗ .

Proof. Since xt+1 is the minimizer of the convex function Φt(x) = ⟨ĝt, x⟩+ 1
ηt
Bψ(x, xt) in X , it satisfies that for

any z ∈ X ,
⟨ĝt + (1/ηt)∇ψ(xt+1)− (1/ηt)∇ψ(xt), xt+1 − z⟩ = ⟨∇Φt(xt+1), xt+1 − z⟩ ≤ 0 . (4)

Hence,

ηt⟨ĝt, xt − z⟩ = ηt⟨ĝt, xt − xt+1⟩+ ηt⟨ĝt, xt+1 − z⟩
= ηt⟨ĝt, xt − xt+1⟩+ ⟨ηtĝt +∇ψ(xt+1)−∇ψ(xt), xt+1 − z⟩+ ⟨∇ψ(xt)−∇ψ(xt+1), xt+1 − z⟩
(a)

≤ ηt⟨ĝt, xt − xt+1⟩+ ⟨∇ψ(xt)−∇ψ(xt+1), xt+1 − z⟩
(b)
= ηt⟨ĝt, xt − xt+1⟩+Bψ(z, xt)−Bψ(z, xt+1)−Bψ(xt+1, xt)

(c)

≤ Bψ(z, xt)−Bψ(z, xt+1) + ηt∥ĝt∥∗∥xt − xt+1∥−
1

2
∥xt − xt+1∥2

(d)

≤ Bψ(z, xt)−Bψ(z, xt+1) +
η2t
2
∥ĝt∥2∗ ,

where (a) holds via (4), (b) holds via (Beck and Teboulle, 2003, Lemma 4.1), (c) holds by the 1-strong convexity
of ψ and the fact that (by the definition of the dual norm) ∥ĝt∥∗= supx∈Rd\{0}⟨ĝt, x/∥x∥⟩, and (d) holds since
ax− (1/2)x2 ≤ (1/2)a2 for x, a ∈ R. After dividing by ηt, the lemma follows using that ĝt = gt− ξt and the fact
that ⟨gt, xt − z⟩ ≥ f(xt)− f(z) as gt ∈ ∂f(xt).

Lemma 5. For any z ∈ X and any non-increasing sequence of positive weights (wt)t, Algorithm 1 satisfies that
for any s ≥ 1,

wsBψ(z, xs+1) +

s∑
t=1

wtηt(f(xt)− f(z)) ≤ w1Bψ(z, x1) +

s∑
t=1

wtη
2
t

2
∥ĝt∥2∗+

s∑
t=1

wtηt⟨ξt, xt − z⟩ .

Proof. Since both ηt and wt are non-negative, it follows from Lemma 4 that

wtηt(f(xt)− f(z)) ≤ wtBψ(z, xt)− wtBψ(z, xt+1) + wtηt⟨ξt, xt − z⟩+
wtη

2
t

2
∥ĝt∥2∗ .

Using that (wt)t is a non-increasing sequence, we have that
s∑
t=1

wt(Bψ(z, xt)−Bψ(z, xt+1)) = w1Bψ(z, x1)− wsBψ(z, xs+1) +

s∑
t=2

Bψ(z, xt)(wt − wt−1)

≤ w1Bψ(z, x1)− wsBψ(z, xs+1) ,

which entails that
s∑
t=1

wtηt(f(xt)− f(z)) ≤ w1Bψ(z, x1)− wsBψ(z, xs+1) +

s∑
t=1

wtηt⟨ξt, xt − z⟩+
s∑
t=1

wtη
2
t

2
∥ĝt∥2∗ .

Lemma 6. Let j and r be two time indices such that j ≤ r, and define η̃t = 1
ηt
− 1

ηt−1
and η̃1 = 1

η1
. Then,

Algorithm 1 satisfies that

1

ηr
Bψ(xj , xr+1) +

r∑
t=j

(f(xt)− f(xj)) ≤
r∑
t=j

⟨ξt, xt − xj⟩+
1

2

r∑
t=j

ηt∥ĝt∥2∗+
r∑
t=j

η̃tBψ(xj , xt) .
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Proof. For t ≥ j, Lemma 4 implies that

f(xt)− f(xj) ≤
1

ηt
Bψ(xj , xt)−

1

ηt
Bψ(xj , xt+1) + ⟨ξt, xt − xj⟩+

ηt
2
∥ĝt∥2∗ .

Notice that,
r∑
t=j

(
1

ηt
Bψ(xj , xt)−

1

ηt
Bψ(xj , xt+1)

)
=

1

ηj
Bψ(xj , xj)−

1

ηr
Bψ(xj , xr+1) +

r∑
t=j+1

(
1

ηt
− 1

ηt−1

)
Bψ(xj , xt)

= − 1

ηr
Bψ(xj , xr+1) +

r∑
t=j

η̃tBψ(xj , xt) ,

where we have used that Bψ(xj , xj) = 0. Thus, we conclude that
r∑
t=j

(f(xt)− f(xj)) ≤
r∑
t=j

⟨ξt, xt − xj⟩+
1

2

r∑
t=j

ηt∥ĝt∥2∗−
1

ηr
Bψ(xj , xr+1) +

r∑
t=j

η̃tBψ(xj , xt) .

B PROOFS OF SECTION 4

Before proving Corollaries 1 and 2, we state two lemmas specializing Propositions 2 and 3 in Appendix E to the
two martingales we encounter when analyzing SMD.
Lemma 7. Let (ωt)

T
t=1 be a sequence of positive (deterministic) weights with ω∗ denoting their maximum.

Additionally, let (ut)
T
t=1 be a sequence of vectors in Rd such that ut is Ft−1-measurable and ∥ut∥≤ 1. Then,

under Assumption 4, the following holds for any δ ∈ (0, 1) and s ≥ 0.

(i)

P

max
k∈[T ]

k∑
t=1

ωt⟨ξt, ut⟩ ≥ ϕ

√√√√C1

T∑
t=1

ω2
t log(2/δ) + 4ϕω∗C2 log

θ

(
2e
∑T
t=1 ω

s
t

ωs∗δ

) ≤ δ ,
where C1 = 23θ+1Γ(3θ + 1) and C2 = max{1, (sθ − s)θ−1}.

(ii)

P

max
k∈[T ]

k∑
t=1

ωt(∥ξt∥2∗−Et∥ξt∥2∗) ≥ C3ϕ
2

√√√√C1

T∑
t=1

ω2
t log(2/δ) + 4C2C3ϕ

2ω∗ log
2θ

(
2e
∑T
t=1 ω

s
t

ωs∗δ

) ≤ δ ,
where C1 = 26θ+1Γ(6θ + 1), C2 = max{1, (2sθ − s)2θ−1}, and C3 = 22θ+1Γ(2θ + 1)/ln2θ(2).

Proof. (i) Since ∥ut∥≤ 1, the definition of the dual norm implies that |ωt⟨ξt, ut⟩|≤ ωt∥ut∥∥ξt∥∗≤ ωt∥ξt∥∗, yielding
that ωt⟨ξt, ut⟩ is sub-Weibull(θ, ωtϕ) conditioned on Ft−1. The result then follows from Proposition 2(ii).

(ii) Using the definition of the sub-Weibull property, one can easily verify that if a random variable X is sub-
Weibull(θ, ϕ); then, X2 is sub-Weibull(2θ, ϕ2). Using this along with Lemma 13 yields that ωt(∥ξt∥2∗−Et∥ξt∥2∗)
is sub-Weibull(2θ, cθωtϕ2) conditioned on Ft−1, where cθ = 22θ+1Γ(2θ+1)/ln2θ(2). Hence, the result once more
follows from Proposition 2(ii).

Lemma 8. Let (ωt)
T
t=1 be a sequence of positive (deterministic) weights with ω∗ denoting their maximum.

Additionally, let (ut)
T
t=1 be a sequence of vectors in Rd such that ut is Ft−1-measurable and ∥ut∥≤ 1. Then,

under Assumption 5, the following holds for any δ ∈ (0, 1).

(i)

P

max
k∈[T ]

k∑
t=1

ωt⟨ξt, ut⟩ > ϕ

√√√√2

T∑
t=1

ω2
t log(1/δ) + (2 + (p/3))ϕ

(
T∑
t=1

ωpt /δ

)1/p
 ≤ δ .
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(ii)

P

max
k∈[T ]

k∑
t=1

ωt(∥ξt∥2∗−Et∥ξt∥2∗) > 2ϕ2

√√√√2

T∑
t=1

ω2
t log(1/δ) + 2(2 + (p/6))ϕ2

(
T∑
t=1

ω
p/2
t /δ

)2/p
 ≤ δ .

Proof. (i) From the definition of the dual norm and the fact that ∥ut∥≤ 1, we have that

E
[
|ωt⟨ξt, ut⟩|p | Ft−1

]
≤ ωptE

[
∥ut∥p∥ξt∥p∗ | Ft−1

]
≤ ωptE

[
∥ξt∥p∗ | Ft−1

]
≤ (ωtϕ)

p
,

where the last inequality follows form Assumption 5. The result then follows from Proposition 3.

(ii) On the other hand,

E
[
|ωt(∥ξt∥2∗−Et∥ξt∥2∗)|

p/2 | Ft−1

]
≤ 2p/2ω

p/2
t E

[
∥ξt∥p∗ | Ft−1

]
≤ (2ωtϕ

2)
p/2

,

where the first inequality follows from Lemma 15 and the second follows from Assumption 5. Consequently, the
result follows once more from Proposition 3.

B.1 Proof of Corollary 1

Corollary 1. For any δ ∈ (0, 1) and η > 0, Algorithm 1, under Assumptions 1, 2 and 4, satisfies the following
with probability at least 1− δ.

(i) If ηt = η, f(x̄T )− f∗ is bounded by

C

T

(
Bψ(x

∗, x1)

η
+ η(G2 + ϕ2 log(e/δ))T + ηϕ2 log2θ(eT/δ)

)
(ii)If ηt = η√

t
, f(x̄T )− f∗ is bounded by

C log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η

(
G2 + ϕ2 log2θ(e/δ)

))
where C is a constant depending only on θ.

Proof. For t ∈ [T ], let ut = (xt − x∗)/(
√
2Dt), while for k ∈ [T ], we define

Wk =

k∑
t=1

ηt⟨ξt, ut⟩ and Vk =

k∑
t=1

η2t (∥ξt∥2∗−Et∥ξt∥2∗) .

As argued before, it holds that
√
2Dt ≥ ∥xt − x∗∥, implying that ∥ut∥≤ 1. For what follows, we will use

C,C1, C2, . . . to denote positive constants—depending only on θ—whose values may change between steps.

Case (i): ηt = η
Starting with (Wk), we invoke Lemma 7(i) with s = 0 and ωt = η obtaining that

P

(
max
k∈[T ]

Wk ≥ C1ηϕ
√
T log(2/δ) + C2ηϕ log

θ(2eT/δ)

)
≤ δ .

For (Vk), we invoke Lemma 7(ii) with s = 0 and ωt = η2 to get that

P

(
max
k∈[T ]

Vk ≥ C1η
2ϕ2
√
T log(2/δ) + C2η

2ϕ2 log2θ(2eT/δ)

)
≤ δ .

With these tail bounds, Theorem 1 implies that

ηT

3
(f(x̄T )− f∗) ≤ Bψ(x∗, x1) + η2(G2 + C1ϕ

2)T + C2η
2ϕ2
(
T log(4/δ) + log2θ(4eT/δ)

)
+ C3η

2ϕ2
(√

T log(4/δ) + log2θ(4eT/δ)
)

≤ Bψ(x∗, x1) + η2(G2 + C1ϕ
2)T + C2η

2ϕ2
(
T log(4/δ) + log2θ(4eT/δ)

)
,
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where we have used the fact that Assumption 4 implies Assumption 3 with σ2 = 2Γ(2θ+1)ϕ2 thanks to Lemma 12.
Subsequently, we have that

f(x̄T )− f∗ ≤
C

T

(
1

η
Bψ(x

∗, x1) + η(G2 + ϕ2 log(e/δ))T + ηϕ2 log2θ(eT/δ)

)
.

Case (ii): ηt = η/
√
t

For (Wk), we use Lemma 7(i) with s = 3 and ωt = η/
√
t, while for (Vk), we use the Lemma 7(ii) with s = 2 and

ωt = η2/t yielding that

P

max
k∈[T ]

Wk ≥ C1ηϕ

√√√√ T∑
t=1

(1/t) log(2/δ) + C2ηϕ log
θ

(
2e

T∑
t=1

(1/t)3/2/δ

) ≤ δ ,
and

P

max
k∈[T ]

Vk ≥ C1η
2ϕ2

√√√√ T∑
t=1

(1/t)2 log(2/δ) + C2η
2ϕ2 log2θ

(
2e

T∑
t=1

(1/t)2/δ

) ≤ δ .
Combining this with the facts that

T∑
t=1

1

t
≤ log(eT ) ,

T∑
t=1

1

t3/2
≤ 3 , and

T∑
t=1

1

t2
≤ 2 ,

implies via Theorem 1 that

η
√
T

3
(f(x̄T )− f∗) ≤ Bψ(x∗, x1) + η2(G2 + C1ϕ

2) log(eT ) + C2η
2ϕ2
(
log(eT ) log(4/δ) + log2θ(12e/δ)

)
+ C3η

2ϕ2
(√

log(4/δ) + log2θ(8e/δ)
)

≤ Bψ(x∗, x1) + η2(G2 + C1ϕ
2) log(eT ) + C2η

2ϕ2
(
log(eT ) log(4/δ) + log2θ(12e/δ)

)
≤ Bψ(x∗, x1) + η2(G2 + C1ϕ

2) log(eT ) + C2η
2ϕ2 log(eT ) log2θ(12e/δ) ,

where we have again used Lemma 12 to bound Et∥ξt∥2∗ in terms of ϕ2 (in place of σ2) under Assumption 4.
Hence, we conclude that

f(x̄T )− f∗ ≤
C log(eT )√

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2 log2θ(e/δ)

))
.

B.2 Proof of Corollary 2

Corollary 2. For any δ ∈ (0, 1) and η > 0, Algorithm 1, under Assumptions 1, 2 and 5, satisfies the following
with probability at least 1− δ.

(i) If ηt = η, f(x̄T )− f∗ is bounded by

C

T

(
Bψ(x

∗, x1)

η
+ η(G2 + ϕ2 log(e/δ))T + ηϕ2(T/δ)

2/p

)
(ii) If ηt = η√

t
, f(x̄T )− f∗ is bounded by

C log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η
(
G2 + ϕ2(1/δ)

2/p
))

where C is a constant depending only on p.
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Proof. Similar to the proof of Corollary 1, we define ut = (xt − x∗)/(
√
2Dt) (which satisfies ∥ut∥≤ 1), and

consider once again the two martingale terms

Wk =

k∑
t=1

ηt⟨ξt, ut⟩ and Vk =

k∑
t=1

η2t (∥ξt∥2∗−Et∥ξt∥2∗) .

For (Wk), we use Lemma 8(i) with ωt = ηt, while for (Vk), we use the Lemma 8(ii) with ωt = η2t yielding that

P

max
k∈[T ]

Wk > ϕ

√√√√2

T∑
t=1

η2t log(1/δ) + (2 + (p/3))ϕ

(
T∑
t=1

ηpt /δ

)1/p
 ≤ δ ,

and

P

max
k∈[T ]

Vk > 2ϕ2

√√√√2

T∑
t=1

η4t log(1/δ) + 2(2 + (p/6))ϕ2

(
T∑
t=1

ηpt /δ

)2/p
 ≤ δ .

For what follows, we will use C to denote a positive constant—depending only on p—whose value may change
between steps.

Case (i): ηt = η
Theorem 1 with the tail bounds above yields that
ηT

3
(f(x̄T )− f∗) ≤ Bψ(x∗, x1) + η2(G2 + ϕ2)T + 4η2ϕ2

(
2T log(2/δ) + (2 + (p/3))

2
(2T/δ)

2/p
)

+ 2η2ϕ2
(√

2T log(2/δ) + (2 + (p/6))(2T/δ)
2/p
)

≤ Bψ(x∗, x1) + η2(G2 + ϕ2)T + 6η2ϕ2
(
2T log(2/δ) + (2 + (p/3))

2
(2T/δ)

2/p
)
,

where we have used the fact that Assumption 5 implies Assumption 3 with σ2 = ϕ2. Subsequently, we have that

f(x̄T )− f∗ ≤
3

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2(1 + 12 log(2/δ))

)
T + 6ηϕ2(2 + (p/3))

2
(2T/δ)

2/p

)
≤ C

T

(
1

η
Bψ(x

∗, x1) + η(G2 + ϕ2 log(e/δ))T + ηϕ2(T/δ)
2/p

)
.

Case (ii): ηt = η/
√
t

Using that
T∑
t=1

η2t = η2
T∑
t=1

1

t
≤ η2 log(eT ) ,

T∑
t=1

η4t = η4
T∑
t=1

1

t2
≤ 2η4 , and

T∑
t=1

ηpt = ηp
T∑
t=1

1

tp/2
≤ 2ηp

as p > 4 and t ≥ 1, Theorem 1 implies that

η
√
T

3
(f(x̄T )− f∗) ≤ Bψ(x∗, x1) + η2(G2 + ϕ2) log(eT ) + 4η2ϕ2

(
2 log(eT ) log(2/δ) + (2 + (p/3))

2
(4/δ)

2/p
)

+ 4η2ϕ2
(√

log(2/δ) + (2 + (p/6))(4/δ)
2/p
)

≤ Bψ(x∗, x1) + η2(G2 + ϕ2) log(eT ) + 8η2ϕ2
(
2 log(2/δ) + (2 + (p/3))

2
(4/δ)

2/p
)
log(eT )

≤ Bψ(x∗, x1) + η2(G2 + ϕ2) log(eT ) + 8η2ϕ2
(
p(2/δ)2/p + (2 + (p/3))

2
(4/δ)

2/p
)
log(eT ) ,

where we have used that log(2/δ) ≤ (p/2)(2/δ)2/p, and once again used ϕ2 in place of σ2 by virtue of Assump-
tion 5. Hence, we conclude that

f(x̄T )− f∗ ≤
3 log(eT )√

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2 + 16(2 + p)

2
ϕ2(4/δ)

2/p
))

≤ C log(eT )√
T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2(1/δ)

2/p
))

.
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C BOUNDS FOR THE AVERAGE ITERATE UNDER A BOUNDED
DOMAIN ASSUMPTION

In this section, we consider again the case when ηt = η/
√
t and prove, under a bounded domain assumption,

error bounds for the average iterate that assume a two-regime form. We start with following standard error
bound.
Lemma 9. Assume that there exits D > 0 such that

√
Bψ(x, y) ≤ D for any (x, y) ∈ dom(ψ) × int(dom(ψ)).

Then, under Assumptions 1–3, Algorithm 1 satisfies

f(x̄T )− f∗ ≤
1

T

(
D2

ηT
+

T∑
t=1

ηt(G
2 + σ2) +

T∑
t=1

⟨ξt, xt − x∗⟩+
T∑
t=1

ηt(∥ξt∥2∗−Et∥ξt∥2∗)

)
.

Proof. Lemma 4 with z = x∗ yields that

f(xt)− f∗ ≤
1

ηt
Bψ(x

∗, xt)−
1

ηt
Bψ(x

∗, xt+1) + ⟨ξt, xt − x∗⟩+
ηt
2
∥ĝt∥2∗ .

Summing this inequality we obtain that

T∑
t=1

(f(xt)− f∗) ≤
T∑
t=1

1

ηt
Bψ(x

∗, xt)−
T∑
t=1

1

ηt
Bψ(x

∗, xt+1) +

T∑
t=1

⟨ξt, xt − x∗⟩+
1

2

T∑
t=1

ηt∥ĝt∥2∗

=
1

η1
Bψ(x

∗, x1)−
1

ηT
Bψ(x

∗, xT+1) +

T∑
t=2

Bψ(x
∗, xt)

(
1

ηt
− 1

ηt−1

)

+

T∑
t=1

⟨ξt, xt − x∗⟩+
1

2

T∑
t=1

ηt∥ĝt∥2∗

≤ D2

η1
+D2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

⟨ξt, xt − x∗⟩+
1

2

T∑
t=1

ηt∥ĝt∥2∗

=
D2

ηT
+

T∑
t=1

⟨ξt, xt − x∗⟩+
1

2

T∑
t=1

ηt∥ĝt∥2∗ .

The required result then follows using the fact that f(x̄T )− f∗ ≤ 1
T

∑T
t=1(f(xt)− f∗) and that

∥ĝt∥2∗= ∥gt − ξt∥2∗≤ 2(∥gt∥2∗+∥ξt∥2∗) = 2(∥gt∥2∗+Et∥ξt∥2∗) + 2(∥ξt∥2∗−Et∥ξt∥2∗) ≤ 2(G2 + σ2) + 2(∥ξt∥2∗−Et∥ξt∥2∗) ,

where we used Assumptions 2 and 3 in the last step.

We then state the two following corollaries specializing the result of the last lemma under Assumptions 4 and 5
respectively.
Corollary 4. Assume that there exits D > 0 such that

√
Bψ(x, y) ≤ D for any (x, y) ∈ dom(ψ)× int(dom(ψ)).

Then, for any δ ∈ (0, 1) and η > 0, Algorithm 1 with ηt = η√
t

satisfies, under Assumptions 1, 2 and 4, that with
probability at least 1− δ,

f(x̄T )− f∗ ≤
C1√
T

(
D2

η
+ ηG2 + ϕD

(√
log(e/δ) +

logθ(eT/δ)√
T

)
+ ηϕ2

(
1 +

√
log(eT ) log(e/δ)

T
+

log2θ (e/δ)√
T

))
≤ C2√

T

(
D2

η
+ ηG2 + ηϕ2

(
log(e/δ) +

log2θ (e/δ)√
T

+
log2θ(eT/δ)

T

))
,

where C1 and C2 are constants depending only on θ.

Proof. For t ∈ [T ], let ut = (xt − x∗)/(
√
2D), while for k ∈ [T ], we define

Wk =

k∑
t=1

⟨ξt, ut⟩ and Vk =

k∑
t=1

ηt(∥ξt∥2∗−Et∥ξt∥2∗) .
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Since
√
2D ≥

√
2Bψ(x∗, xt) ≥ ∥xt − x∗∥, it holds that ∥ut∥≤ 1. For what follows, we will use C,C1, C2, . . .

to denote positive constants—depending only on θ—whose values may change between steps. For the first
martingale (Wk), we invoke Lemma 7(i) with s = 0 and ωt = 1 obtaining that

P

(
max
k∈[T ]

Wk ≥ C1ϕ
√
T log(2/δ) + C2ϕ log

θ(2eT/δ)

)
≤ δ .

while for (Vk), we use the Lemma 7(ii) with s = 3 and ωt = η/
√
t yielding that

P

max
k∈[T ]

Vk ≥ C1ηϕ
2

√√√√ T∑
t=1

(1/t) log(2/δ) + C2ηϕ
2 log2θ

(
2e

T∑
t=1

(1/t)3/2/δ

) ≤ δ .
Since

∑T
t=1

1√
t
≤ 2
√
T ,
∑T
t=1(1/t) ≤ log(eT ), and

∑T
t=1(1/t)

3/2 ≤ 3, Lemma 9 implies via a union bound that
with probability at least 1− δ,

T (f(x̄T )− f∗) ≤
D2
√
T

η
+ C1η(G

2 + ϕ2)
√
T + C2ϕD

(√
T log(4/δ) + logθ(4eT/δ)

)
+ C3ηϕ

2
(√

log(eT ) log(4/δ) + log2θ (12e/δ)
)
,

where we have used that Assumption 4 implies Assumption 3 with σ2 = 2Γ(2θ+1)ϕ2 thanks to Lemma 12. This
proves the first inequality in the statement. Going further, we can use the fact that 2ab = infr>0 a

2/r + rb2 for
any a, b > 0 to get that

2ϕD
(√

T log(4/δ) + logθ(4eT/δ)
)
≤ D2

ηT
+ ηTϕ

2
(√

T log(4/δ) + logθ(4eT/δ)
)2

≤ D2
√
T

η
+

2η√
T
ϕ2
(
T log(4/δ) + log2θ(4eT/δ)

)
,

implying that

T (f(x̄T )− f∗) ≤ C1
D2
√
T

η
+ C2η(G

2 + ϕ2)
√
T + C3ηϕ

2

(√
T log(4/δ) +

log2θ(4eT/δ)√
T

)
+ C4ηϕ

2
(√

log(eT ) log(4/δ) + log2θ (12e/δ)
)

≤ C1
D2
√
T

η
+ C2η(G

2 + ϕ2)
√
T + C3ηϕ

2

(√
T log(4/δ) +

log2θ(4eT/δ)√
T

+ log2θ (12e/δ)

)
.

Corollary 5. Assume that there exits D > 0 such that
√
Bψ(x, y) ≤ D for any (x, y) ∈ dom(ψ)× int(dom(ψ)).

Then, for any δ ∈ (0, 1) and η > 0, Algorithm 1 with ηt = η√
t

satisfies, under Assumptions 1, 2 and 5, that with
probability at least 1− δ,

f(x̄T )− f∗ ≤
C1√
T

(
D2

η
+ ηG2 + ϕD

(√
log(e/δ) +

(1/δ)
1/p

T 1/2−1/p

)
+ ηϕ2

(
1 +

√
log(eT ) log(e/δ)

T
+

(1/δ)
2/p

√
T

))
≤ C2√

T

(
D2

η
+ ηG2 + ηϕ2

(
log(e/δ) +

(1/δ)
2/p

√
T

))
,

where C1 and C2 are constants depending only on p.

Proof. Similar to the proof of Corollary 4, we define ut = (xt−x∗)/(
√
2D) (which satisfies ∥ut∥≤ 1), and consider

once again the two martingale terms

Wk =

k∑
t=1

⟨ξt, ut⟩ and Vk =

k∑
t=1

ηt(∥ξt∥2∗−Et∥ξt∥2∗) .
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For (Wk), we use Lemma 8(i) with ωt = 1, while for (Vk), we use the Lemma 8(ii) with ωt = η/
√
t yielding that

P

(
max
k∈[T ]

Wk > ϕ
√
2T log(1/δ) + (2 + (p/3))ϕ (T/δ)

1/p

)
≤ δ ,

and

P

max
k∈[T ]

Vk > 2ηϕ2

√√√√2

T∑
t=1

(1/t) log(1/δ) + 2(2 + (p/6))ηϕ2

(
T∑
t=1

(1/t)p/4/δ

)2/p
 ≤ δ .

Since
∑T
t=1

1√
t
≤ 2
√
T ,
∑T
t=1(1/t) ≤ log(eT ), and

∑T
t=1(1/t)

p/4 ≤ p/(p−4), Lemma 9 implies via a union bound
that with probability at least 1− δ,

T (f(x̄T )− f∗) ≤
D2
√
T

η
+ 2η(G2 + ϕ2)

√
T +
√
2ϕD

(√
2T log(2/δ) + (2 + (p/3)) (2T/δ)

1/p
)

+ 2ηϕ2
(√

2 log(eT ) log(2/δ) + (2 + (p/6))(p/(p− 4))
2/p

(2/δ)
2/p
)
,

where we have used that Assumption 5 implies Assumption 3 with σ2 = ϕ2. This proves the first inequality in
the corollary’s statement. For the second, we use once again that 2ab = infr>0 a

2/r+ rb2 for any a, b > 0, which
implies that

√
2ϕD

(√
2T log(2/δ) + (2 + (p/3)) (2T/δ)

1/p
)
≤ D2

ηT
+

1

2
ηTϕ

2
(√

2T log(2/δ) + (2 + (p/3)) (2T/δ)
1/p
)2

≤ D2
√
T

η
+

η√
T
ϕ2
(
2T log(2/δ) + (2 + (p/3))

2
(2T/δ)

2/p
)
,

using which we obtain that

T (f(x̄T )− f∗) ≤
2D2
√
T

η
+ 2η(G2 + ϕ2)

√
T + ηϕ2

(
2
√
T log(2/δ) + (2 + (p/3))

2
T (4−p)/(2p) (2/δ)

2/p
)

+ 2ηϕ2
(√

2 log(eT ) log(2/δ) + (2 + (p/6))(p/(p− 4))
2/p

(2/δ)
2/p
)

≤ 2D2
√
T

η
+ 2η(G2 + ϕ2)

√
T + 3ηϕ2

(
2
√
T log(2/δ) + (2 + (p/3))

2
(p/(p− 4))

2/p
(2/δ)

2/p
)
,

where in the second step we used that p > 4.

D PROOFS OF SECTION 5

D.1 Proof of Proposition 1

Proposition 1. Let (Mt)
n
t=0 be a square integrable martingale adapted to filtration (Ft)nt=0 with M0 = 0. Then,

for all x, β > 0 and α ≥ 0,

P

(
n⋃
t=1

{Mt ≥ x and ⟨M⟩t + [M ]t ≤ αMt + β}

)
≤ exp

(
−min

{
x2

8β
,
x

6α

})
.

Proof. For any λ ∈ R and 0 ≤ t ≤ n, define6

Vt(λ) = exp

(
λMt −

λ2

2
(⟨M⟩t + [M ]t)

)
.

By Lemma B.1 in (Bercu and Touati, 2008), (Vt(λ))nt=0 is a (non-negative) supermartingale (with V0(λ) = 1). For
t ∈ [n], define the event At = {Mt ≥ x and ⟨M⟩t+ [M ]t ≤ αMt+ β}. From the proof of Theorem 3.3 in (Harvey

6One can set ⟨M⟩0 = [M ]0 = M0.
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et al., 2019), if we fix some λ ∈ (0, 1/(2α)), then there exists c = c(λ, α) ∈ (0, 2] such that (λ + cλ2α)
2
= 2cλ2.

With this in mind, we have that for any t ∈ [n] and any λ ∈ (0, 1/(2α)):

I{At} ≤ exp

(
(λ+ cλ2α)Mt − cλ2(⟨M⟩t + [M ]t)− λx+ cλ2β

)
= exp(−λx+ cλ2β) exp

(
(λ+ cλ2α)Mt − cλ2(⟨M⟩t + [M ]t)

)
= exp(−λx+ cλ2β) exp

(
λ̃Mt −

λ̃2

2
(⟨M⟩t + [M ]t)

)
= exp(−λx+ cλ2β)Vt(λ̃) ≤ exp(−λx+ 2λ2β)Vt(λ̃) ,

where λ̃ = λ+ cλ2α, and the first inequality holds since the argument of the exponent is non-negative under At.
Hence, Lemma 16 entails that

P

(
n⋃
t=1

At

)
≤ exp(−λx+ 2λ2β) .

Finally, upon choosing λ = min{ x4β ,
1
3α}, we can conclude that

exp(−λx+ 2λ2β) ≤ exp

(
−min

{
x2

8β
,
x

6α

})
.

D.2 Proof of Lemma 1

Lemma 1. Algorithm 1 with ηt = η√
t

for some constant η > 0 satisfies

f(xT )− f∗ ≤
2

T

T∑
t=⌈T/2⌉

(f(xt)− f∗) +
T∑

t=⌈T/2⌉

⟨ξt, wt⟩+
η√
2T

T∑
t=⌈T/2⌉

ρt∥ĝt∥2∗+
√
2

η
√
T

T∑
t=⌈T/2⌉

zt ,

where, for j < T , αj = 1
(T−j)(T−j+1) , and for any time-step t ≥ ⌈T/2⌉,

wt =

t∧(T−1)∑
j=⌈T/2⌉

αj(xt − xj) , zt =

t∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xt) , and ρt =

t∧(T−1)∑
j=⌈T/2⌉

αj .

Proof. For any k ∈ [T − 1], Lemma 6 with j = T − k and r = T implies that
T∑

t=T−k

(f(xt)− f(xT−k)) ≤
T∑

t=T−k

⟨ξt, xt − xT−k⟩+
1

2

T∑
t=T−k

ηt∥ĝt∥2∗+
T∑

t=T−k

η̃tBψ(xT−k, xt) ,

where η̃t = 1/ηt− 1/ηt−1 and η̃1 = 1/η1. We then proceed as in the proof of Lemma 7.1 in (Harvey et al., 2019).
Namely, we define Sk = 1

k+1

∑T
t=T−k f(xt), which, combined with the previous inequality, yields that

Sk−1 = Sk +
Sk − f(xT−k)

k

≤ Sk +
1

k(k + 1)

T∑
t=T−k

⟨ξt, xt − xT−k⟩+
1

2k(k + 1)

T∑
t=T−k

ηt∥ĝt∥2∗+
1

k(k + 1)

T∑
t=T−k

η̃tBψ(xT−k, xt) .

Since S0 = f(xT ), by unrolling the recursion we obtain that

f(xT ) ≤
1

⌊T/2⌋+ 1

T∑
t=⌈T/2⌉

f(xt) +

⌊T/2⌋∑
k=1

1

k(k + 1)

T∑
t=T−k

⟨ξt, xt − xT−k⟩+
⌊T/2⌋∑
k=1

1

2k(k + 1)

T∑
t=T−k

ηt∥ĝt∥2∗

+

⌊T/2⌋∑
k=1

1

k(k + 1)

T∑
t=T−k

η̃tBψ(xT−k, xt) . (5)
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One can rewrite the second term on the right-hand side of the above inequality as follows

⌊T/2⌋∑
k=1

1

k(k + 1)

T∑
t=T−k

⟨ξt, xt − xT−k⟩ =
T∑

t=⌈T/2⌉

⌊T/2⌋∑
k=(T−t)∨1

1

k(k + 1)
⟨ξt, xt − xT−k⟩

=

T∑
t=⌈T/2⌉

t∧(T−1)∑
j=⌈T/2⌉

1

(T − j)(T − j + 1)
⟨ξt, xt − xj⟩ =

T∑
t=⌈T/2⌉

⟨ξt, wt⟩ .

Similarly, we also have that

⌊T/2⌋∑
k=1

1

2k(k + 1)

T∑
t=T−k

ηt∥ĝt∥2∗ =
1

2

T∑
t=⌈T/2⌉

ηt∥ĝt∥2∗
t∧(T−1)∑
j=⌈T/2⌉

1

(T − j)(T − j + 1)
=

1

2

T∑
t=⌈T/2⌉

ηtρt∥ĝt∥2∗

⌊T/2⌋∑
k=1

1

k(k + 1)

T∑
t=T−k

η̃tBψ(xT−k, xt) =

T∑
t=⌈T/2⌉

η̃t

t∧(T−1)∑
j=⌈T/2⌉

1

(T − j)(T − j + 1)
Bψ(xj , xt) =

T∑
t=⌈T/2⌉

η̃tzt .

After plugging these expressions back into (5), we conclude the proof by using that ⌊T/2⌋+1 ≥ T/2 and observing
that for any time-step t ≥ ⌈T/2⌉,

ηt =
η√
t
≤
√
2η√
T

and η̃t =
1

η
(
√
t−
√
t− 1) =

1

η(
√
t+
√
t− 1)

≤
√
2

η
√
T
.

D.3 Proof of Lemma 2

Recall that for a time-step s such that ⌈T/2⌉ ≤ s ≤ T , Qs =
∑s
t=⌈T/2⌉ ⟨ξt, wt⟩, and that z∗ is short for

max⌈T/2⌉≤s≤T zs.

Lemma 2. In the same setting as Lemma 1, it holds that

z∗ ≤ 6
√
2η

T
√
T

∑T

t=⌈T/2⌉
(f(xt)− f∗) +

3
√
2η√
T
Qn∗ +

3η2

T

∑T

t=⌈T/2⌉
ρt∥ĝt∥2∗ ,

where n∗ = min{n : n ∈ argmax⌈T/2⌉≤s≤T Qs}.

Proof. Notice that z⌈T/2⌉ = 0 and Q⌈T/2⌉ = 0; hence, the lemma trivially holds when T = 1. Thus, we assume
for what follows that T ≥ 2. Let j and s be two time-steps such that ⌈T/2⌉ + 1 ≤ s ≤ T and ⌈T/2⌉ ≤ j ≤ s.
Then, via Lemma 6, we have that

1

ηs−1
Bψ(xj , xs) ≤

s−1∑
t=j

(f(xj)− f(xt)) +
s−1∑
t=j

⟨ξt, xt − xj⟩+
1

2

s−1∑
t=j

ηt∥ĝt∥2∗+
s−1∑
t=j

η̃tBψ(xj , xt) ,

where η̃t = 1/ηt − 1/ηt−1 and η̃1 = 1/η1. This, in turn, implies that

1

ηs−1

s∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xs) ≤
s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

(f(xj)− f(xt)) +
s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

⟨ξt, xt − xj⟩

+
1

2

s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

ηt∥ĝt∥2∗+
s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

η̃tBψ(xj , xt) . (6)
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For the last three terms, we swap the sums obtaining that

s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

⟨ξt, xt − xj⟩ =
s−1∑

t=⌈T/2⌉

t∧(T−1)∑
j=⌈T/2⌉

αj⟨ξt, xt − xj⟩ =
s−1∑

t=⌈T/2⌉

⟨ξt, wt⟩

1

2

s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

ηt∥ĝt∥2∗ =
1

2

s−1∑
t=⌈T/2⌉

ηt∥ĝt∥2∗
t∧(T−1)∑
j=⌈T/2⌉

αj =
1

2

s−1∑
t=⌈T/2⌉

ηtρt∥ĝt∥2∗≤
η√
2T

s−1∑
t=⌈T/2⌉

ρt∥ĝt∥2∗

s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

η̃tBψ(xj , xt) =

s−1∑
t=⌈T/2⌉

η̃t

t∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xt) =

s−1∑
t=⌈T/2⌉

η̃tzt .

For the first term, if we define ∆t = f(xt)− f∗ for t ∈ [T ], we obtain that

s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

(f(xj)− f(xt)) =
s∧(T−1)∑
j=⌈T/2⌉

αj

s−1∑
t=j

(∆j −∆t)

=

s−1∑
j=⌈T/2⌉

αj∆j(s− j)−
s−1∑

j=⌈T/2⌉

αj

s−1∑
t=j

∆t

=

s−1∑
t=⌈T/2⌉

αt∆t(s− t)−
s−1∑

t=⌈T/2⌉

∆t

t∑
j=⌈T/2⌉

αj

=

s−1∑
t=⌈T/2⌉

∆t

(
s− t

(T − t)(T − t+ 1)
− 1

T − t
+

1

T − ⌈T/2⌉+ 1

)

≤ 1

⌊T/2⌋+ 1

s−1∑
t=⌈T/2⌉

∆t ≤
2

T

s−1∑
t=⌈T/2⌉

∆t ,

where in the second equality we used that the inner sum is empty when j = s and that s ≤ T , the fourth equality
follows from Lemma 10 and the definition of αt, and the inequality holds since (s− t)/(T − t+1) < 1. Returning
back to Equation (6), we have that

zs =

s∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xs) ≤
η⌈T/2⌉

ηs−1

s∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xs)

≤ η⌈T/2⌉
(
2

T

s−1∑
t=⌈T/2⌉

(f(xt)− f∗) +
s−1∑

t=⌈T/2⌉

⟨ξt, wt⟩+
η√
2T

s−1∑
t=⌈T/2⌉

ρt∥ĝt∥2∗+
s−1∑

t=⌈T/2⌉

η̃tzt

)

≤ 2
√
2η

T
√
T

s−1∑
t=⌈T/2⌉

(f(xt)− f∗) +
√
2η√
T

s−1∑
t=⌈T/2⌉

⟨ξt, wt⟩+
η2

T

s−1∑
t=⌈T/2⌉

ρt∥ĝt∥2∗+
√
2η√
T

s−1∑
t=⌈T/2⌉

η̃tzt .

Notice that the terms in the first, third and fourth sum on the right-hand side of the last inequality are non-
negative. Hence, it holds that

z∗ ≤ 2
√
2η

T
√
T

T−1∑
t=⌈T/2⌉

(f(xt) − f∗) +

√
2η√
T

max
⌈T/2⌉≤n≤T−1

n∑
t=⌈T/2⌉

⟨ξt, wt⟩ +
η2

T

T−1∑
t=⌈T/2⌉

ρt∥ĝt∥2∗+
√
2η√
T

T−1∑
t=⌈T/2⌉

η̃tzt .

Next, we will bound the last term by relating it back to z∗. Since this term is zero when T = 2 (recalling that
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z⌈T/2⌉ = 0), we focus in the following argument on the case when T ≥ 3. Observe that

√
2η√
T

T−1∑
t=⌈T/2⌉

η̃t =

√
2η√
T

T−1∑
t=⌈T/2⌉

√
t−
√
t− 1

η

=

√
2√
T
(
√
T − 1−

√
⌈T/2⌉ − 1)

≤
√
2√
T
(
√
T − 1−

√
T/2− 1)

As a function of T , the last expression is decreasing in T ≥ 3, and thus (by plugging in T = 3) can be bounded
by 1/

√
3 . Hence,

√
2η√
T

T−1∑
t=⌈T/2⌉

η̃tzt ≤
1√
3
z∗ ≤ 2

3
z∗ .

Consequently,

z∗ ≤ 6
√
2η

T
√
T

T−1∑
t=⌈T/2⌉

(f(xt)− f∗) +
3
√
2η√
T

max
⌈T/2⌉≤n≤T−1

n∑
t=⌈T/2⌉

⟨ξt, wt⟩+
3η2

T

T−1∑
t=⌈T/2⌉

ρt∥ĝt∥2∗

≤ 6
√
2η

T
√
T

T∑
t=⌈T/2⌉

(f(xt)− f∗) +
3
√
2η√
T
Qn∗ +

3η2

T

T∑
t=⌈T/2⌉

ρt∥ĝt∥2∗ .

D.4 Proof of Lemma 3

Lemma 3. In the same setting as Lemma 1, it holds under Assumption 3 that

⟨Q⟩T + [Q]T ≤ 4σ2z∗ log(4T ) + 2z∗
∑T

t=⌈T/2⌉
ρt(∥ξt∥2∗−Et∥ξt∥2∗) .

Proof. Recall that wt =
∑t∧(T−1)
j=⌈T/2⌉ αj(xt − xj), zt =

∑t∧(T−1)
j=⌈T/2⌉ αjBψ(xj , xt), and ρt =

∑t∧(T−1)
j=⌈T/2⌉ αj for time-step

t ≥ ⌈T/2⌉, and observe that

∥wt∥2= ρ2t

∥∥∥∥∥∥
t∧(T−1)∑
j=⌈T/2⌉

αj
ρt

(xt − xj)

∥∥∥∥∥∥
2

≤ ρ2t
t∧(T−1)∑
j=⌈T/2⌉

αj
ρt
∥xt − xj∥2≤ 2ρt

t∧(T−1)∑
j=⌈T/2⌉

αjBψ(xj , xt) = 2ρtzt , (7)

where the first inequality holds via the convexity of ∥·∥2, and the second follows from the fact that ∥xt − xj∥2≤
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2Bψ(xj , xt) as ψ is 1-strongly convex. Hence,

⟨Q⟩T + [Q]T =

T∑
t=⌈T/2⌉

(
Et[|⟨ξt, wt⟩|2] + |⟨ξt, wt⟩|2

)

≤
T∑

t=⌈T/2⌉

(
Et[∥ξt∥2∗∥wt∥2] + ∥ξt∥2∗∥wt∥2

)

=

T∑
t=⌈T/2⌉

∥wt∥2
(
Et[∥ξt∥2∗] + ∥ξt∥2∗

)

≤ 2z∗
T∑

t=⌈T/2⌉

ρt

(
Et[∥ξt∥2∗] + ∥ξt∥2∗

)

= 4z∗
T∑

t=⌈T/2⌉

ρtEt[∥ξt∥2∗] + 2z∗
T∑

t=⌈T/2⌉

ρt

(
∥ξt∥2∗−Et[∥ξt∥2∗]

)

≤ 4σ2z∗
T∑

t=⌈T/2⌉

ρt + 2z∗
T∑

t=⌈T/2⌉

ρt

(
∥ξt∥2∗−Et[∥ξt∥2∗]

)

≤ 4σ2z∗ log(4T ) + 2z∗
T∑

t=⌈T/2⌉

ρt

(
∥ξt∥2∗−Et[∥ξt∥2∗]

)
,

where the first inequality follows from the definition of the dual norm, the second equality holds since wt is
Ft−1-measurable, the second inequality follows from (7) and the definition of z∗, the third inequality follows
from Assumption 3, and the last inequality is an application of Lemma 11.

D.5 Proof of Theorem 2

Theorem 2. Let Ξ1,Ξ2 : (0, 1)→ (0,∞) be two functions such that for any δ ∈ (0, 1),

P

(
1√
T

∑T

t=1
(f(xt)− f∗) > Ξ1(δ)

)
≤ δ

and

P

(∑T

t=⌈T/2⌉
ρt(∥ξt∥2∗−Et∥ξt∥2∗) > Ξ2(δ)

)
≤ δ .

Then, under Assumptions 1–3, Algorithm 1 with ηt = η√
t

satisfies the following with probability at least 1− δ:

f(xT )− f∗ ≤
35√
T

(
2Ξ1(δ/3) +

√
2ηG2 log(4T ) + 9

√
2η
(
Ξ2(δ/3) + 2σ2 log(4T )

)
log(3/δ)

)
.

Proof. From Lemma 1, we have that

f(xT )− f∗ ≤
2

T

T∑
t=⌈T/2⌉

(f(xt)− f∗) +QT +
η√
2T

T∑
t=⌈T/2⌉

ρt∥ĝt∥2∗+
√
2

η
√
T

T∑
t=⌈T/2⌉

zt .
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Notice that

T∑
t=⌈T/2⌉

ρt∥ĝt∥2∗ =

T∑
t=⌈T/2⌉

ρt∥gt − ξt∥2∗

≤ 2

T∑
t=⌈T/2⌉

ρt(∥gt∥2∗+∥ξt∥2∗)

= 2

T∑
t=⌈T/2⌉

ρt(∥gt∥2∗+Et∥ξt∥2∗) + 2

T∑
t=⌈T/2⌉

ρt(∥ξt∥2∗−Et∥ξt∥2∗)

≤ 2

T∑
t=⌈T/2⌉

ρt(G
2 + σ2) + 2

T∑
t=⌈T/2⌉

ρt(∥ξt∥2∗−Et∥ξt∥2∗)

≤ 2(G2 + σ2) log(4T ) + 2

T∑
t=⌈T/2⌉

ρt(∥ξt∥2∗−Et∥ξt∥2∗) ,

where the second inequality follows from Assumptions 2 and 3, and the third inequality follows from Lemma 11.
For what follows, define

Λ1 =
1√
T

T∑
t=1

(f(xt)− f∗)

Λ2 =

T∑
t=⌈T/2⌉

ρt(∥ξt∥2∗−Et∥ξt∥2∗) .

From the assumption in the theorem’s statement, we have that for any δ ∈ (0, 1),

P (Λ1 > Ξ1(δ)) ≤ δ and P (Λ2 > Ξ2(δ)) ≤ δ . (8)

Additionally, define Ξ3 = (G2 + σ2) log(4T ). Subsequently, it holds that

f(xT )− f∗ ≤
2√
T
Λ1 +Qn∗ +

√
2η√
T
(Λ2 + Ξ3) +

√
2

η
√
T

T∑
t=⌈T/2⌉

zt . (9)

On the other hand, we have via Lemma 2 that

z∗ = max
⌈T/2⌉≤s≤T

zs ≤
6
√
2η

T
√
T

T∑
t=⌈T/2⌉

(f(xt)− f∗) +
3
√
2η√
T
Qn∗ +

3η2

T

T∑
t=⌈T/2⌉

ρt∥ĝt∥2∗

≤ 6
√
2η

T
Λ1 +

3
√
2η√
T
Qn∗ +

6η2

T
(Λ2 + Ξ3) . (10)

Hence,

√
2

η
√
T

T∑
t=⌈T/2⌉

zt ≤
√
2T

η
√
T

(
6
√
2η

T
Λ1 +

3
√
2η√
T
Qn∗ +

6η2

T
(Λ2 + Ξ3)

)

=
12√
T
Λ1 + 6Qn∗ +

6
√
2η√
T

(Λ2 + Ξ3) .

Plugging back into (9) yields that

f(xT )− f∗ ≤
14√
T
Λ1 + 7Qn∗ +

7
√
2η√
T

(Λ2 + Ξ3) . (11)
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Our aim in the sequel is to use the above inequality in conjunction with (8) and Proposition 1 to bound the error
in high probability. Towards that end, we start with the following upper bound on the TCV and TQV of Qn∗ ,
which is implied by Lemma 3 and the fact that the TCV and TQV are non-decreasing.

⟨Q⟩n∗ + [Q]n∗ ≤ ⟨Q⟩T + [Q]T ≤ 4σ2z∗ log(4T ) + 2z∗
T∑

t=⌈T/2⌉

ρt(∥ξt∥2∗−Et∥ξt∥2∗) = 2z∗(2Ξ̃3 + Λ2) ,

where Ξ̃3 := σ2 log(4T ). Moreover, under the event that Λ1 ≤ Ξ1(δ) and Λ2 ≤ Ξ2(δ), we have that

12
√
2η

T
Λ1 +

6
√
2η√
T
Qn∗ +

12η2

T
(Λ2 + Ξ3) ≤

12
√
2η

T
Ξ1(δ) +

6
√
2η√
T
Qn∗ +

12η2

T
(Ξ2(δ) + Ξ3) (12)

and

Λ2 + 2Ξ̃3 ≤ Ξ2(δ) + 2Ξ̃3 , (13)

which implies that under the same event,

⟨Q⟩n∗ + [Q]n∗ ≤ 2z∗(Λ2 + 2Ξ̃3)

≤
(
12
√
2η

T
Λ1 +

6
√
2η√
T
Qn∗ +

12η2

T
(Λ2 + Ξ3)

)
(Λ2 + 2Ξ̃3)

≤
(
12
√
2η

T
Λ1 +

6
√
2η√
T
Qn∗ +

12η2

T
(Λ2 + Ξ3)

)
(Ξ2(δ) + 2Ξ̃3)

≤
(
12
√
2η

T
Ξ1(δ) +

6
√
2η√
T
Qn∗ +

12η2

T
(Ξ2(δ) + Ξ3)

)
(Ξ2(δ) + 2Ξ̃3) , (14)

where the second inequality follows from (10) and the fact that Λ2 + 2Ξ̃3 is non-negative,7 the third inequality
follows from (13) and the fact that the first bracketed expression on the left-hand side is non-negative as it is an
upper bound for the non-negative quantity 2z∗, whereas the last inequality follows from (12) and the fact that
Ξ2(δ) + 2Ξ̃3 is non-negative. As a last bit of notation, we define

R1(δ) =
6
√
2η√
T

(Ξ2(δ) + 2Ξ̃3)

R2(δ) =

(
12
√
2η

T
Ξ1(δ) +

12η2

T
(Ξ2(δ) + Ξ3)

)
(Ξ2(δ) + 2Ξ̃3)

ζ(δ) =
14√
T
Ξ1(δ) +

7
√
2η√
T

(Ξ2(δ) + Ξ3) + 7
√
8R2(δ) log(δ) + 42R1(δ) log(δ) ,

and (for any time-step s such that ⌈T/2⌉ ≤ s ≤ T ) the events

A1 = {Λ1 ≤ Ξ1(δ/3)} ∩ {Λ2 ≤ Ξ2(δ/3)}

A2(s) =
{
Qs >

√
8R2(δ/3) log(3/δ) + 6R1(δ/3) log(3/δ)

}
A3(s) =

{
⟨Q⟩s + [Q]s ≤ R1(δ/3)Qs +R2(δ/3)

}
.

7As Ξ̃3 is an upper bound for
∑T

t=⌈T/2⌉ ρtEt[∥ξt∥2∗].
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Now, notice that

P
(
f(xT )− f∗ > ζ(δ/3)

)
= P

(
{f(xT )− f∗ > ζ(δ/3)} ∩A1

)
+ P

(
{f(xT )− f∗ > ζ(δ/3)} ∩A1

)
≤ P

(
{f(xT )− f∗ > ζ(δ/3)} ∩A1

)
+ P (A1)

(a)

≤ P
(
{f(xT )− f∗ > ζ(δ/3)} ∩A1

)
+ 2δ/3

(b)

≤ P

({
14√
T
Λ1 + 7Qn∗ +

7
√
2η√
T

(Λ2 + Ξ3) > ζ(δ/3)

}
∩A1

)
+ 2δ/3

≤ P

({
14√
T
Ξ1(δ/3) + 7Qn∗ +

7
√
2η√
T

(Ξ2(δ/3) + Ξ3) > ζ(δ/3)

}
∩A1

)
+ 2δ/3

= P (A2(n
∗) ∩A1) + 2δ/3

(c)

≤ P
(
A2(n

∗) ∩A3(n
∗)
)
+ 2δ/3

≤ P

 T⋃
s=⌈T/2⌉

(A1(s) ∩A2(s))

+ 2δ/3

(d)

≤ δ/3 + 2δ/3 = δ ,

where (a) follows from (8) and a union bound, (b) follows from (11), (c) follows from (14) and the definitions of
R1, R2, and A3, whereas (d) follows from Proposition 1 and the fact that (Qt)

T
t=⌈T/2⌉ is a (square integrable)

martingale adapted to (Ft)Tt=⌈T/2⌉ (with Q⌈T/2⌉ = 0).

Hence, with probability at least 1− δ,

1

7
(f(xT )− f∗) ≤

2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + Ξ3) +

√
8R2(δ/3) log(3/δ) + 6R1(δ/3) log(3/δ)

(a)
=

2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + Ξ3) +

36
√
2η√
T

(Ξ2(δ/3) + 2Ξ̃3) log(3/δ)

+ 2
√
2

√
2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + Ξ3)

√
6
√
2η√
T

(Ξ2(δ/3) + 2Ξ̃3) log(3/δ)

(b)

≤ 2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + Ξ3) +

36
√
2η√
T

(Ξ2(δ/3) + 2Ξ̃3) log(3/δ)

+ 4

(
2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + Ξ3)

)
+

3
√
2η√
T

(Ξ2(δ/3) + 2Ξ̃3) log(3/δ)

= 5

(
2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + Ξ3)

)
+

39
√
2η√
T

(Ξ2(δ/3) + 2Ξ̃3) log(3/δ)

(c)
= 5

(
2√
T
Ξ1(δ/3) +

√
2η√
T
(Ξ2(δ/3) + (G2 + σ2) log(4T ))

)
+

39
√
2η√
T

(
Ξ2(δ/3) + 2σ2 log(4T )

)
log(3/δ)

(d)

≤ 5

(
2√
T
Ξ1(δ/3) +

√
2η√
T
G2 log(4T )

)
+

44
√
2η√
T

(
Ξ2(δ/3) + 2σ2 log(4T )

)
log(3/δ) ,

where (a) follows from the definitions of R1 and R2, (b) follows from the elementary fact that ab ≤ a2/2 + b2/2,
(c) follows from the definitions of Ξ3 and Ξ̃3, and (d) follows from the fact that log(3/δ) ≥ 1. We can then
conclude that with probability at least 1− δ,

f(xT )− f∗ ≤
35√
T

(
2Ξ1(δ/3) +

√
2ηG2 log(4T ) + 9

√
2η
(
Ξ2(δ/3) + 2σ2 log(4T )

)
log(3/δ)

)
.
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D.6 Proof of Corollary 3

Corollary 3. For any δ ∈ (0, 1) and η > 0, Algorithm 1 with ηt = η√
t

satisfies the following with probability at
least 1− δ, where C1 and C2 are constant depending solely on, respectively, θ and p.
(i) Under Assumptions 1, 2 and 4, f(xT )− f∗ is bounded by

C1 log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η

(
G2 + ϕ2 log2θ+1(e/δ)

))
(ii) Under Assumptions 1, 2 and 5, f(xT )− f∗ is bounded by

C2 log(eT )√
T

(
Bψ(x

∗, x1)

η
+ η
(
G2 + ϕ2(1/δ)

2/p
log(e/δ)

))

Proof. Starting with case (i), we let C,C1, C2, . . . denote positive constants—depending only on θ—whose values
may change between steps. In the notation of Theorem 2, we choose

Ξ1(δ) = C log(eT )

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2 log2θ(e/δ)

))
by virtue of Corollary 1. While invoking Lemma 7(ii) with s = 2 and ωt = ρt allows us to choose8

Ξ2(δ) = C1ϕ
2

√√√√ T∑
t=⌈T/2⌉

ρ2t log(2/δ) + C2ϕ
2 max
⌈T/2⌉≤t≤T

ρt log
2θ

(
2e
∑T
t=⌈T/2⌉ ρ

2
t

max⌈T/2⌉≤t≤T ρ
2
t δ

)
.

Then, using that (via Lemma 11)

T∑
t=⌈T/2⌉

ρ2t ≤ 3 and max
⌈T/2⌉≤t≤T

ρt = ρT =
1

2
,

Theorem 2 yields that

f(xT )− f∗ ≤
C log(eT )√

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2 log2θ(e/δ)

)
+ ηG2

+ η
(
ϕ2
√
log(e/δ) + ϕ2 log2θ(e/δ) + ϕ2

)
log(e/δ)

)
≤ C log(eT )√

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2 log2θ+1(e/δ)

))
,

where upon invoking Theorem 2, we used the fact that Assumption 4 implies Assumption 3 with σ2 = 2Γ(2θ+1)ϕ2

thanks to Lemma 12.

For case (ii), we let C denote a positive constant—depending only on p—whose value may change between steps.
Via Corollary 2, we can choose

Ξ1(δ) = C log(eT )

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2(1/δ)

2/p
))

Invoking Lemma 8(ii) with ωt = ρt allows us to choose

Ξ2(δ) = 2ϕ2
√

6 log(1/δ) + 2(2 + (p/6))ϕ2(3/δ)
2/p

,

8This is valid despite the fact that, contrary to Lemma 7(ii), the indices here start from ⌈T/2⌉.
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where we have used that

T∑
t=⌈T/2⌉

ρ
p/2
t ≤

T∑
t=⌈T/2⌉

ρ2t ≤ 3 ,

which holds via Lemma 11 and the fact that p > 4 and ρt ≤ 1. Theorem 2 then implies that

f(xT )− f∗ ≤
C log(eT )√

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2(1/δ)

2/p
)
+ ηG2

+ η
(
ϕ2
√
log(e/δ) + ϕ2(1/δ)

2/p
+ ϕ2

)
log(e/δ)

)
≤ C log(eT )√

T

(
1

η
Bψ(x

∗, x1) + η
(
G2 + ϕ2(1/δ)

2/p
log(e/δ)

))
,

where upon invoking Theorem 2, we used the fact that Assumption 5 implies Assumption 3 with σ2 = ϕ2; while
in the second step, we used the fact that

√
log(e/δ) ≤

√
(p/4)(e/δ)(4/p) =

√
(p/4)(e/δ)(2/p).

D.7 Auxiliary Lemmas

Lemma 10. Let a and b be two positive integers such that a ≤ b < T . Then,

b∑
j=a

1

(T − j)(T − j + 1)
=

1

T − b
− 1

T − a+ 1
.

Proof.

b∑
j=a

1

(T − j)(T − j + 1)
=

b∑
j=a

1

(T − j)
− 1

(T − j + 1)
=

1

T − b
− 1

T − a+ 1
.

Lemma 11. For j < T , let αj = 1
(T−j)(T−j+1) . Then, for T ≥ 1, we have that

T∑
t=⌈T/2⌉

t∧(T−1)∑
j=⌈T/2⌉

αj ≤ log(4T ) and
T∑

t=⌈T/2⌉

t∧(T−1)∑
j=⌈T/2⌉

αj

2

≤ 3 .

Proof. By Lemma 10,
t∧(T−1)∑
j=⌈T/2⌉

αj ≤
1

T − t ∧ (T − 1)
.

Assuming T ≥ 2 (as the lemma follows directly otherwise), we have that

T∑
t=⌈T/2⌉

t∧(T−1)∑
j=⌈T/2⌉

αj ≤
T∑

t=⌈T/2⌉

1

T − t ∧ (T − 1)

= 2 +

T−2∑
t=⌈T/2⌉

1

T − t

≤ 2 +

∫ T−1

⌈T/2⌉

1

T − t
dt

= 2 + log(⌊T/2⌋) ≤ log(4T ) .
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Similarly,

T∑
t=⌈T/2⌉

t∧(T−1)∑
j=⌈T/2⌉

αj

2

≤ 2 +

∫ T−1

⌈T/2⌉

1

(T − t)2
dt ≤ 3 .

E CONCENTRATION INEQUALITIES FOR MARTINGALES WITH
HEAVY-TAILED INCREMENTS

We collect in this section relevant concentration results for Martingales with heavy-tailed increments. We treat
two families of heavy-tailed random variables: a class of sub-Weibull random variables, and a class of random
variables with polynomially decaying tails (implied by a bounded moment assumption).

E.1 Sub-Weibull Increments

Before stating the main concentration inequality in Proposition 2, we collect some basic results concerning sub-
Weibull random variables. The following lemma (adapted from (Madden et al., 2021)) provides an upper bound
for the p-th absolute moment of a sub-Weibull random variable.

Lemma 12. (Madden et al., 2021, Lemma 22) Let X be a sub-Weibull(θ, ϕ) random variable. Then, for any
p > 0, it satisfies

E|X|p≤ 2Γ(θp+ 1)ϕp .

The following lemma shows that centering a random variable preserves the sub-Weibull property up to a constant
depending on θ.

Lemma 13. Let X be a sub-Weibull(θ, ϕ) random variable. Then X − EX is sub-Weibull(θ, cθϕ), where cθ =
2max{θ,1}+1Γ(θ + 1)/lnθ(2).

Proof. If θ ≤ 1, define

∥X∥ψ1/θ
= inf

{
t > 0 : E

[
exp
(
(|X|/t)1/θ

)]
≤ 2

}

which is an (Orlicz) norm for the space Lψ1/θ
= {X : ∥X∥ψ1/θ

<∞} (Vershynin, 2018, Section 2.7.1). Clearly,
X is sub-Weibull(θ, ϕ) if and only if ∥X∥ψ1/θ

≤ ϕ. Starting with the triangle inequality, we proceed in the same
manner as in the proof of (Vershynin, 2018, Lemma 2.6.8) to get that

∥X − EX∥ψ1/θ
≤ ∥X∥ψ1/θ

+ ∥EX∥ψ1/θ
≤ ϕ+

|EX|
lnθ(2)

≤ ϕ+
E|X|
lnθ(2)

≤
(
2Γ(θ + 1)

lnθ(2)
+ 1

)
ϕ ,

where the last inequality is an application of Lemma 12. Hence, the lemma follows for the case when θ ≤ 1 after
using that 2Γ(θ+1)/lnθ(2) ≥ 1. On the other hand, when θ > 1, ∥·∥ψ1/θ

is no longer a norm. Instead, we exploit
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the fact that x1/θ is a sub-additive function in x for θ > 1 and x ≥ 0. In particular, we have that

E

[
exp

((
|X − EX|

cθϕ

)1/θ
)]
≤ E

[
exp

((
|X|+E|X|

cθϕ

)1/θ
)]

≤ E

[
exp

((
|X|
cθϕ

)1/θ

+

(
E|X|
cθϕ

)1/θ
)]

= exp

((
E|X|
cθϕ

)1/θ
)
E
[(

exp
(
(|X|/ϕ)1/θ

))(1/cθ)1/θ]

≤ exp

((
E|X|
cθϕ

)1/θ
)(

E
[
exp

(
(|X|/ϕ)1/θ

)])(1/cθ)1/θ
≤ exp

((
E|X|
cθϕ

)1/θ
)
2(1/cθ)

1/θ

≤ exp

((
2Γ(θ + 1)

cθ

)1/θ
)
2(1/cθ)

1/θ

≤ exp

(
2

(
2Γ(θ + 1)

cθ

)1/θ
)

= 2 ,

where the third inequality is an application of Jensen’s inequality as the fact that 0 < (1/cθ)
1/θ < 1 implies

the concavity of x(1/cθ)
1/θ

for x ≥ 0, the fourth inequality uses that X is sub-Weibull(θ, ϕ), the fifth inequality
follows via Lemma 12, and the last inequality uses the fact that 2Γ(θ + 1) ≥ 1.

The following lemma collects upper bounds for the moment-generating function (MGF) of (centered) sub-Weibull
random variables, depending on the value of θ. The MGF of a random variable X is a function of λ ∈ R given
by E[exp(λX)]. As mentioned before, our focus in this work is on the heavy-tailed regime where θ ≥ 1, though
we also consider the canonical case of θ = 1/2 for comparison. In the latter case, we have the standard bound
on the MGF of a sub-Gaussian random variable (see, e.g., (Vershynin, 2018, Proposition 2.5.2)). When θ = 1, a
similar bound (see, e.g., (Vershynin, 2018, Proposition 2.7.1)) holds only for a certain range of λ. When θ > 1,
one cannot bound the MGF in general; thus, we settle for a bound on the MGF of a truncated version of the
random variable due to Bakhshizadeh et al. (2023). This last result is reported in (Madden et al., 2021, Lemma
31) for a specific choice of the truncation parameter, which we will slightly modify when applying this lemma.

Lemma 14. Let X be a sub-Weibull(θ, ϕ) random variable with E[X] = 0.

(i) (Vershynin, 2018, Proposition 2.5.2) If θ = 1/2,

E[exp(λX)] ≤ exp(4eϕ2λ2) ∀λ ∈ R .

(ii) (Vershynin, 2018, Proposition 2.7.1) If θ = 1,

E[exp(λX)] ≤ exp(2e2ϕ2λ2) ∀λ : |λ|≤ 1

2eϕ
.

(iii) If θ ≥ 1, let L = ϕh for some parameter h > 0, and define X̃ = XI{X ≤ L}. Then,

E[exp(λX̃)] ≤ exp(aϕ2λ2) ∀λ ∈
[
0,

1

2h1−
1
θ ϕ

]
,

where

a = (22θ + 1)Γ(2θ + 1) +
23θΓ(3θ + 1)

6
h

1
θ−1 .
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Proof.
(iii) Since E[X] = 0, we have that for any λ ∈

[
0, 1

2h1− 1
θ ϕ

]
,

logE[exp(λX̃)] ≤ λ2

2

(
E
[
X̃2I{X̃ ≤ 0}

]
+ E

[
X̃2 exp(λX̃)I{X̃ > 0}

])
≤ λ2

2

(
E
[
X2I{X ≤ 0}

]
+ 22θ+1Γ(2θ + 1)ϕ2 +

23θΓ(3θ + 1)

3
L

1
θ−1ϕ3−

1
θ

)
=
λ2

2

(
E
[
X2I{X ≤ 0}

]
+ 22θ+1Γ(2θ + 1)ϕ2 +

23θΓ(3θ + 1)

3
h

1
θ−1ϕ2

)
≤ λ2

2

(
2Γ(2θ + 1)ϕ2 + 22θ+1Γ(2θ + 1)ϕ2 +

23θΓ(3θ + 1)

3
h

1
θ−1ϕ2

)
,

where the first inequality follows from Lemma 1 in (Bakhshizadeh et al., 2023), the second inequality follows
from Corollary 2 in the same paper,9 the equality holds by the definition of L, and the last inequality is an
application of Lemma 12.

The following proposition provides time-uniform concentration inequalities for martingales with conditionally
sub-Weibull increments. Case (i) is a standard sub-Gaussian concentration result included for completeness,
whereas Case (ii) considers the heavy-tailed regime where θ ≥ 1. The latter generalizes a result in (Madden
et al., 2021, Proposition 11), which corresponds to the case when s = 0. In our problem, this generalized form
allows us in come cases to avoid an extra poly-logarithmic dependence on the time horizon, at the cost of a
constant depending on θ. This is thanks to the (possibly) non-uniform union bound employed when s > 0, which
can take advantage of the non-uniformity of the sequence (mi).
Proposition 2. Assume that (Xi)

n
i=1 is a martingale difference sequence adapted to filtration F = (Fi)ni=0,

where n is a positive integer, and let St =
∑t
i=1Xi for t ∈ [n]. Furthermore, assume that for each i ∈ [n], Xi is

sub-Weibull(θ,mi) conditioned on Fi−1; that is,

E
[
exp
(
(|Xi|/mi)

1/θ
)
| Fi−1

]
≤ 2 ,

for some constant mi > 0, and define m∗ = maximi. Then, for any δ ∈ (0, 1):

(i) If θ = 1/2,

P

(
n⋃
t=1

{
St ≥ 4

√
e
∑n
i=1m

2
i log(1/δ)

})
≤ δ .

(ii) If θ ≥ 1; then for any s ≥ 0,

P

(
n⋃
t=1

{
St ≥

√
C1

∑n
i=1m

2
i log(2/δ) + 4m∗ max

{
logθ−1

(
2e
∑n
j=1m

s
j

ms
∗δ

)
, (sθ − s)θ−1

}
log(2/δ)

})
≤ δ ,

where C1 = 23θ+1Γ(3θ + 1).

Proof.

(i) We have via Lemma 14(i) that for every i ∈ [n],

E[exp(λXi) | Fi−1] ≤ exp(4em2
iλ

2) ∀λ ∈ R .

Hence, the required result follows from Lemma 17(i) using that r2 ≤ 4e
∑n
i=1m

2
i .

9In the notation of Bakhshizadeh et al. (2023), we have that α = θ, cα = ϕ−1/θ, λ = βI(L)/L with I(L) = (L/ϕ)1/θ

and β ∈ [0, 1/2]. Compared to Corollary 2 in (Bakhshizadeh et al., 2023), the extra factor of 2 in the last two terms on
the right-hand side of the inequality is because in our case (similar to Madden et al. (2021)), we start with the assumption
that X is sub-Weibull(θ, ϕ), which implies the tail bound P (|X|≥ t) ≤ 2 exp (−I(t)).
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(ii) For i ∈ [n], let ℓi = mihi, where

hi = logθ

(
e
∑n
j=1m

s
j

ms
i δ

′

)
for some δ′ ∈ (0, 1). Define X̃i = XiI{Xi ≤ ℓi} and S̃t =

∑t
i=1 X̃i. Note that for any x > 0,

P

(
n⋃
t=1

{St ≥ x}

)
≤ P

(
n⋃
t=1

{S̃t ≥ x}

)
+ P

(
n⋃
i=1

{Xi > ℓi}

)
. (15)

Starting with the second term, we perform a union bound and proceed in a similar manner to the proof of
Proposition 11 in (Madden et al., 2021):

P

(
n⋃
i=1

{Xi > ℓi}

)
≤

n∑
t=1

P (Xi > ℓi)

=

n∑
i=1

P
(
exp
(
(Xi/mi)

1/θ
)
> exp

(
h
1/θ
i

))
≤

n∑
i=1

exp
(
−h1/θi

)
E
[
E
[
exp
(
(Xi/mi)

1/θ
)
| Fi−1

]]
≤ 2

n∑
i=1

exp
(
−h1/θi

)
=

2

e

n∑
i=1

ms
i δ

′∑n
j=1m

s
j

=
2

e
δ′ ≤ δ′ . (16)

Returning to the first term in (15), notice that for i ∈ [n], Lemma 14(iii) implies that

E[exp(λX̃i) | Fi−1] ≤ exp(am2
iλ

2) ∀λ ∈

[
0,

1

2h
1− 1

θ
i mi

]
,

where10 a = (22θ + 1)Γ(2θ+ 1) + 23θΓ(3θ+1)
6 . In preparation for applying Lemma 17(ii), we study the term

max
i∈[n]

mih
1− 1

θ
i = max

i∈[n]
mi log

θ−1

(
e
∑n
j=1m

s
j

ms
i δ

′

)
.

Assuming that s > 0 and θ > 1, let w =
∑n
j=1m

s
j/δ

′, and observe that e1/sw1/s ≥ w1/s ≥ m∗. Define
f(z) = z logθ−1(ew/zs), and let ẑ1 = exp(1 − θ + 1/s)w1/s and ẑ2 = e1/sw1/s. By inspecting its first
derivative,

f ′(z) = logθ−2(ew/zs)(log(ew/zs)− s(θ − 1)),

we observe that f is increasing in (0, ẑ1) and decreasing in (ẑ1, ẑ2). Hence, if m∗ ≤ ẑ1; then,

max
i∈[n]

mi log
θ−1

(
e
∑n
j=1m

s
j

ms
i δ

′

)
= m∗ log

θ−1

(
e
∑n
j=1m

s
j

ms
∗δ

′

)
.

Otherwise,

max
i∈[n]

mi log
θ−1

(
e
∑n
j=1m

s
j

ms
i δ

′

)
≤ ẑ1 logθ−1

(
e
∑n
j=1m

s
j

ẑs1δ
′

)
= ẑ1(sθ − s)θ−1 ≤ m∗(sθ − s)θ−1 .

Combing both cases yields that

max
i∈[n]

mi log
θ−1

(
e
∑n
j=1m

s
j

ms
i δ

′

)
≤ m∗ max

{
logθ−1

(
e
∑n
j=1m

s
j

ms
∗δ

′

)
, (sθ − s)θ−1

}
,

10We have used the fact that hi ≥ 1 and θ ≥ 1 to bound the value of a stated in the lemma.
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which, trivially, also holds when either s = 0 or θ = 1. Subsequently, if we define u1 = a
∑n
i=1m

2
i and u2

as twice the right-hand side of the above inequality, we can apply Lemma 17(ii) with r2 ≤ u1 and b ≤ u2
to obtain that

P

(
n⋃
t=1

{
S̃t ≥ x

})
≤ exp

(
−min

{
x2

4u1
,
x

2u2

})
.

Finally, by choosing x =
√
4u1 log(1/δ′) + 2u2 log(1/δ

′), we can upper bound the right-hand side of the
above inequality with δ′. Combining this with (16) and (15), the required result follows after setting
δ′ = δ/2 and using that a ≤ 23θ+1Γ(3θ + 1).

E.2 Increments with a Bounded Moment Condition

The following proposition, a weaker version of Corollary 3.2 in (Rio, 2017), is an analogue of Proposition 2 when
we only have the assumption that the increments of the martingale have a finite p-th absolute moment for some
p > 2.

Proposition 3. Assume that (Xi)
n
i=1 is a martingale difference sequence adapted to filtration F = (Fi)ni=0, where

n is a positive integer, and let St =
∑t
i=1Xi for t ∈ [n]. Moreover, assume that there exists a constant p > 2

such that for each i ∈ [n], Xi satisfies

E
[
(|Xi|/mi)

p | Fi−1

]
≤ 1

for some finite constant mi > 0. Then, for any δ ∈ (0, 1):

P

(
n⋃
t=1

{
St >

√
2
∑n
i=1m

2
i log(1/δ) + (2 + (p/3))(

∑n
i=1m

p
i /δ)

1/p

})
≤ δ .

Proof. Using that max{0, Xi} ≤ |Xi| and E
[
X2
i | Fi−1

]
≤ (E [|Xi|p | Fi−1])

2/p ≤ m2
i , the result follows from

Corollary 3.2 and Remark 3.3 in (Rio, 2017).

E.3 Auxiliary Lemmas

For a random variable X, define ∥X∥p:= (E|X|p)1/p for p > 0. The following lemma relates ∥X−EX∥p to ∥X∥p
when p ≥ 1.

Lemma 15. Let X be a random variable satisfying ∥X∥p<∞ for some p ≥ 1. Then, ∥X − EX∥p≤ 2∥X∥p.

Proof. We have that

∥X − EX∥p≤ ∥X∥p+∥EX∥p= ∥X∥p+|EX|≤ ∥X∥p+E|X|≤ 2∥X∥p ,

where the first inequality is an application of the triangle’s inequality as ∥·∥p is a norm for p ≥ 1, the second
inequality is an application of Jensen’s inequality, and the last inequality holds since ∥X∥p is an increasing
function in p.

The following lemma, similar in spirit to (Madden et al., 2021, Lemma 26), allows us to reuse a standard argument
when proving time-uniform concentration inequalities.

Lemma 16. Fix a positive integer n and assume that (Vt)
n
t=0 is a non-negative supermartingale adapted to

filtration (Ft)nt=0 with V0 = 1. Let (At)
n
t=1 be a sequence of events adapted to the same filtration, and assume

that there exists a constant ζ > 0 such that for any t ∈ [n], it holds almost surely that I{At} ≤ ζVt. Then,

P

(
n⋃
t=1

At

)
≤ ζ .
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Proof. Define the stopping time τ = min{t ∈ [n] : I{At} = 1}, where min(∅) = ∞. Since (Vt)
n
t=0 is a su-

permartingale, the stopped process (Vt∧τ )
n
t=0 is also a supermartingale (Williams, 1991, Theorem 10.9), where

t ∧ τ = min{t, τ}. This implies in particular that

E[Vn∧τ ] ≤ E[V0] = 1 .

Hence,

P

(
n⋃
t=1

At

)
= P (An∧τ ) = E[I{An∧τ}] ≤ ζE[Vn∧τ ] ≤ ζ ,

where the first inequality holds since

P (I{An∧τ} > ζVn∧τ ) ≤ P

(
n⋃
t=1

{I{At} > ζVt}

)
= 0 .

The following lemma provides, via standard tools, concentration inequalities for sums of random variables en-
joying sub-Gaussian or sub-exponential type bounds on their (conditional) moment generating functions.

Lemma 17. Assume that (Xi)
n
i=1 is a sequence of random variables adapted to filtration F = (Fi)ni=0, where n

is a positive integer, and let St =
∑t
i=1Xi for t ∈ [n]. Moreover, let (Ri)ni=0 be a sequence of random variables

adapted to the same filtration, and define r2 =
∥∥∑n

i=1R
2
i−1

∥∥
∞.

(i) If for all i ∈ [n], it holds that

E[exp(λXi) | Fi−1] ≤ exp(R2
i−1λ

2) ∀λ ∈ R ;

then, for all x > 0,

P

(
n⋃
t=1

{St ≥ x}

)
≤ exp

(
− x2

4r2

)
.

(ii) Let (Bi)ni=0 be an F-adapted sequence of positive random variables, and define b = maxi ∥Bi∥∞. If for all
i ∈ [n], it holds that

E[exp(λXi) | Fi−1] ≤ exp(R2
i−1λ

2) ∀λ ∈
[
0,

1

Bi−1

]
;

then, for all x > 0,

P

(
n⋃
t=1

{St ≥ x}

)
≤ exp

(
−min

{
x2

4r2
,
x

2b

})
.

Proof. Define the set Λ as R≥0 in case (i) and as [0, 1/b] in case (ii). Then, in either case, for any fixed λ ∈ Λ,
the process (Vt(λ))

n
t=0, where

Vt(λ) =

t∏
i=1

exp(λXi)

exp(R2
i−1λ

2)
, V0(λ) = 1

is an F-adapted non-negative supermartingale. Moreover, notice that for any t ∈ [n], it holds almost surely that

I{St ≥ x} ≤ exp

(
λSt − λx+ λ2r2 − λ2

t∑
i=1

R2
i−1

)

= exp
(
−λx+ λ2r2

)
exp

(
λ

t∑
i=1

Xi − λ2
t∑
i=1

R2
i−1

)
= exp

(
−λx+ λ2r2

)
Vt(λ) .
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Consequently, Lemma 16 implies that

P

(
n⋃
t=1

{St ≥ x}

)
≤ exp

(
−λx+ λ2r2

)
.

From this, the result in case (i) follows by choosing λ = x
2r2 , while the result in case (ii) follows by choosing

λ = min{ x
2r2 ,

1
b} and using that r2

b2 ≤
x
2b whenever x

2r2 ≥
1
b .

F ADDITIONAL EXPERIMENTS

In this section, we present an additional experiment comparing the performance of the average of the iterates with
that of the last iterate under polynomially-tailed noise. As before, we use Algorithm 1 to minimize f(x) = |x|
over R with ψ(x) = 1/2∥x∥22 (i.e., classical SGD). For the noise, we consider the Gaussian distribution with
variance 1 and three different (symmetric) Pareto distributions with the shape parameter set to 5, 10, and 100
respectively. For a fair comparison, the Pareto distributions are scaled to have unit variance. We use 1/

√
T as a

fixed step-size and run the algorithm for seven values of T ranging from 100 to 3k. We report the 99-percentile
of the optimization error evaluated over 10k runs for each of the aforementioned noise distributions. The results
for the average iterate and the last iterate are reported in plots (a) and (b) respectively. Much like the Weibull
case, the average iterate appears more robust to heavy-tailed noise compared to the last iterate. This is again
deducible from the fact that the 99-percentile curves of the optimization error of the average iterate converge
towards the Gaussian rate (as predicted by the two-regime bounds), while the separation between them seems
to persist (at least for longer) for the last iterate.

(a) (b)

Figure 2: The performance of the average iterate and the last iterate are reported in the plots on the left and
the right respectively. The plots show the 99-percentile of the error across runs for different choices of the noise
distribution.
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