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Abstract – This work details the latest advancements on
a single-channel, reactive Brain-Computer Interfaces
developed at the Interdepartmental Research Center
in Health Management and Innovation in Healthcare
(CIRMIS) of the University of Naples Federico II. The
proposed instrumentation is based on Extended Reality
(XR) and exploits the acquisition and classification of
the Steady-State Visually Evoked Potentials (SSVEPs).
In particular, an XR headset is employed for generating
the flickering stimuli necessary to the SSVEP elicita-
tion. The users brain signals are captured by means of
a highly wearable and portable electroencephalografic
acquisition unit, which is connected to a portable pro-
cessing unit in charge of processing in real time the in-
coming data. In this way, a deeper interaction between
users and external devices with respect to traditional
architectures is guaranteed. The classification capabil-
ity of the proposed instrument has been significantly
improved over the years. Currently, in fact, a classifi-
cation accuracy up to 90 % is obtained with at least 2 s
of acquisition time.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a technology em-

ployed in order to provide a direct communication path be-

tween the human brain and external devices [1, 2, 3]. Since

a huge amount of information can be extracted from the

user brain signals, a distinction is typically made between

active, reactive, and passive BCIs [4]. Reactive BCIs rely

on the acquisition and processing of brain waves produced

in response to external stimuli [5]. Among all the reactive-

BCI paradigms, Steady-State Visually Evoked Potentials

(SSVEPs) have gained momentum in the development of

applications regarding healthcare [6], entertainment [7],

and industry [8]. Typically, SSVEPs are a sinusoidal-like

waveform with a fundamental frequency equal to that of

the observed flickering stimulus. Often, higher harmonics

can also be detected [9].

In SSVEP-based applications, N flickering stimuli at dif-

ferent frequencies are associated to specific commands, so

that the user can select the desired target by simply look-

ing at the corresponding flickering stimulus. These stimuli

are traditionally displayed on LCD monitors. Moreover,

multi-channel EEG acquisition units are often adopted

[10]. However, this setup is often very bulky and limits

the portability of these systems.

For this reason, the Interdepartmental Research Center in

Health Management and Innovation in Healthcare (CIR-

MIS) of the University of Naples Federico II has devel-

oped an innovative solution which can facilitate the adop-

tion of BCI-SSVEP in daily-life activities. In particular,

the proposed BCI instrumentation is based on a single-

channel electroencephalographic (EEG) acquisitions [11]

and on the use of Extended Reality (XR) devices to ren-

der the flickering stimuli [12] for the SSVEPs elicitation.

The number of the stimuli accommodated on the XR dis-

play was set to two [8], so that the user was able to take

a binary decision by gazing one stimulus out of two. The

data coming from the wearable EEG acquisition unit are

processed in real time by a portable processing unit, which

is in charge of classify the received brain signals and send

the related command to external devices.

The classification capability of the proposed system has

been significantly improved over the years. The first pro-

cessing method employed was based on the traditional

Power Spectral Density Analysis (PSDA) in frequency do-

main. It managed to classify one frequency out of two with

an accuracy greater than 80 % and an acquisition time of 2

s [8]. More recently, a time-domain approach based on the

Canonical Correlation Analysis (CCA) was employed by

improving the obtained accuracy of about 5 % [6]. How-

ever, the main drawback of these methods was related to

the impossibility to detect undesired frame per second (fps)

variation of the XR headset during the generation of the

flickering stimuli. For the sake of the example, given a

refresh rate of 60 Hz, a variation of about 5 % inevitably

166



Fig. 1. Major blocks of the system architecture.

leads to a shift of the rendered frequencies from 10.0 Hz up

to 9.5 Hz or 10.5 Hz. This means that the elicited SSVEPs

are shifted accordingly. Therefore, the classification per-

formance of the proposed algorithms decreases since the

acquired signals and the reference ones are no longer con-

sistent.

For this reason, an adaptive strategy to find the actual

SSVEP peaks has been employed in recent months [5].

Moreover, the adoption of Machine Learning (ML) clas-

sifers such as K-Nearest Neighbor (K-NN), Support Vector

Machine (SVM), and Feed-Forward Neural Networls (NN)

has also been performed to further improve the classifica-

tion of the features which are extracted from the original

samples. This new technique, defined Features Reduction
(FR), has achieved an accuracy greater than 90 % at 2-s

acquisition time.

The paper is organized as follows. Section ii. pro-

vides a description of the system architecture, along with

the modality of rendering of the flickering stimuli, and

the classification algorithm implemented over the years.

Therefore, Section iii. shows the obtained experimental

results. Finally, conclusions are drawn.

II. MATERIALS AND METHODS

A. System Description
The architecture of the BCI instrumentation is shown

in Fig. 1. An AR Display renders 2 flickering stimuli to

elicit users SSVEPs. Then, three dry Electrodes are placed

in Oz, Fz, and A2 positions, according to the 10-20 Inter-

national System [6], and capture the user EEG. The elec-

trodes are connected to a portable Acquisition Unit, which

sends the digitized EEG samples to a portable Processing
Unit. The processing unit runs the SSVEP classification

algorithm, and sends in real time the output command to

the BCI Application, which actuates the received command

and provides a feedback to the User in order to show the

desired selection.

Fig. 2. Rendering of the two flickering stimuli in a 1-s time
interval

B. Hardware
The chosen XR device was the Epson Moverio BT-200.

It is an Optical-See-Through device with a 23Â° diagonal

field of view, and a nominal refresh rate of 60 Hz. The

selected acquisition unit was the Olimex EEG-SMT, a 10-

bit, 256 S/s, open source Analog-to-Digital converter. Fi-

nally, the adopted processing unit was the Raspberry Pi 4,

a single-board PC connected via USB to the Olimex.

C. Software
The flickering icons on the Epson Moverio glasses were

generated by means of an Android application realized

with Android Studio. The XR environment consisted of

two squares placed at opposite edges of the screen. The

two squares reverse black and white according to the cho-

sen flickering frequency (namely, 10 Hz and 12 Hz). More-

over, a software written in Python 3 on the Raspberry Pi 4

was used to (i) acquire the digitized signal via USB from

the Olimex, (ii) process it, and (iii) send the output com-

mand to the specific target via TCP/IP [6, 12, 13]

D. Rendering of the Flickering Stimuli
With regards to the rendering of the flickering stimuli at

10 Hz and 12 Hz, Fig. 2 shows the implemented pixel al-

ternations. Since 10 Hz is a submultiple of six of Moverio

Refresh Rate (60 Hz), the length of the sequence that has to

be repeated is equal to six frames (i.e., three frames white,

and three frames black). Instead, 12 Hz is a submultiple

of five of Moverio Refresh Rate, then the length of the se-

quence is equal to five frame (i.e., three frames white, and

two frames black).
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E. SSVEPs Classification
The algorithms implemented over the years were metro-

logically characterized by analyzing data related to an

experimental campaign conducted on 20 untrained and

healthy volunteers. For each volunteer, 24 signals were

acquired. The chosen flickering frequencies were 10 Hz

(rendered on the right side of the screen) and 12 Hz (ren-

dered on the left). Each subject was asked to focus on one

stimulus at time, for 10 s. Two metrics are used to evaluate

the classification performance: (i) classification accuracy,

and (ii) acquisition time. The classification accuracy is de-

fined as the percentage of brain signal correctly classified,

while the acquisition time represents the time duration of

the signals considered.

In this work, three algorithms are considered.

• Power Spectral Density Analysis: The most intu-

itive approach used to detect and classify the elicited

SSVEPs is based on a Power Spectral Density Anal-

ysis (PSDA) [14]. First, a Fast Fourier Transform

(FFT) is applied to the user EEG. Then, a PSD is per-

formed in the neighborhood of each frequency ren-

dered on the display according to (1).

P (fn) =
1

2k + 1

[
kn+k∑

i=kn−k

A2(i)

]
(1)

Where: P (fn) is the PSD coefficient for the given fre-

quency fn, kn is the corresponding bin in frequency

domain, k is the number of neighbours to be consid-

ered, and A is the signal amplitude. Finally, the clas-

sification is performed based on the hypothesis that

the observed stimulus is very likely to be that with the

highest PSD [15]. However, this method requires a

minimum time duration ΔT of the acquired EEG in

order to correctly discriminate the harmonics, since

an appropriate frequency resolution Δf is required

[16], as explained in (2).

ΔT =
1

Δf
(2)

• Canonical Correlation Analysis: An alternative way

to process SSVEPs is the Canonical Correlation Anal-

ysis (CCA) in time domain. It is a multivariate sta-

tistical method of correlating linear relationships be-

tween two sets of data [17]. CCA is performed be-

tween the EEG data and a set of sine waves having the

same frequencies of the stimuli, and variable phase. A

correlation coefficient ρmn is extracted for each stim-

ulus frequency fn. This relation is described by (3).

ρn = maxφ
cov(D,Φn(φ))

σD σΦn(φ)
(3)

Where D is the EEG data, Φn is the sine wave at the

frequency fn of each rendered stimulus, and φ is the

Fig. 3. Features extractions and ML-based classification

phase ranging from 0 to 2π. Therefore, these coeffi-

cients are used for SSVEP classification. For the sake

of example, in [17] the output of the classification was

associated to the frequency with the highest correla-

tion coefficient extracted. Alternatively, in [6, 13] the

maximum value among the correlation coefficients ρn
was compared with given threshold values: the signal

was marked as classified only if the chosen correla-

tion coefficient exceeded these thresholds. The clas-

sification performance achieved with the use of CCA

are typically better than PSDA [15]. However, a band

pass filtering for the EEG can be necessary during the

pre-processing phase, due to the effect of spontaneous

EEG activities not involved in SSVEP events.

• Features Reduction: However, none of these two

methods detects undesired frame per second (fps)

variation of the XR headset during the generation of

the flickering stimuli. Given the Moverio Refresh

Rate (60 Hz), a variation of about 5 % inevitably

leads to a shift of the rendered frequencies from 10.0

Hz up to 9.5 Hz or 10.5 Hz. This means that the

elicited SSVEPs are shifted accordingly. Therefore,

the classification performance of the proposed algo-

rithms may decrease as the acquired signals and the

reference ones are no longer consistent. For this rea-

son, an adaptive strategy to find the actual SSVEP

peaks has been employed. The main blocks are shown

in Fig. 3. The EEG Samples are processed both in fre-

quency and time domains, in order to obtain a reduced

number of significant features.

– In the frequency domain, a fast Fourier trans-

form (FFT) is performed. Then, the actual

SSVEPs Peaks are detected around the two

rendered frequencies. In this way, the uncer-

tainty introduced by the XR device during the

generation of the flickering stimuli is mitigated
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as the Power Spectral Densities (PSDs) P1 and

P2 around the two detected peaks are more

accurate.

– In the time domain, a Band pass Filtering
between 5 and 25 Hz is applied by means of

a Finite Impulsive Response (FIR) filter with

linear phase response. Then, the Canonical

Correlation Analysis (CCA) between the fil-

tered signal and a set of sinewaves, having

the frequencies of the two detected peaks and

variable phase, is performed. As a consequence,

also the two canonical correlation coefficients

ρ1 and ρ2 obtained for each frequency are more

accurate.

Ultimately, for a given brain signal of variable length,

only four features are extracted and Normalized.

The Classification is carried out by means of three

ML classifiers: in particular, Support Vector Machine

(SVM), k-Nearest Neighbour (k-NN), and Artificial

Neural Network (ANN) are employed. The FR algo-

rithm was tested on this realized data set by means of

Leave One Subject Out Cross Validation (LOSO CV).

This validation strategy highlights the inter-individual

reproducibility. It divides the data set in 20 folds,

where each fold is constituted by a subject. Then, for

each combination of the models hyperparameters, the

process will run 20 times, each time with a different

subject in the test set, taking the remaining ones in the

training set.

III. RESULTS

In Table 1, the classification accuracy obtained by the

proposed algorithm in function of the acquisition time T
and the ML model is summarized. The uncertainty is eval-

uated at 2-σ. Clearly, increasing the duration of T leads to

an increase of the classification accuracy as more informa-

tion is given to the Features Reduction block. Overall, the

best performance are obtained by ANN, but even a more

simple classifier like k-NN reaches comparable accuracy

levels.

In Table 2, a comparison between the results achieved by

ANN is made with those obtained by the two classifica-

tion algorithm previously developed (PSDA and CCA). As

visible, the proposed ML-based algorithm provides a sig-

nificant enhancement. The main contribution is given by

the peak detection block, which allows to obtain more ac-

curate features both in time and frequency domains, thus

mitigating the uncertainty caused by unpredictable frame

rate variation of the XR device. It should also be noted

that both the CCA and PSDA are characterized by a worse

inter-individual 2-σ uncertainty. Hence, the model pro-

posed in this work offers a greater possibility to be gen-

Table 1. Accuracy Results in function of the Acquisition
Time T for the three ML Models

T (s) k-NN (%) SVM (%) ANN (%)
0.5 72.8 ± 4.1 74.8 ± 4.3 75.0 ± 4.3
1.0 80.7 ± 4.4 82.0 ± 4.4 82.1 ± 4.4
2.0 88.3 ± 2.6 89.2 ± 2.3 89.2 ± 2.3
3.0 93.3 ± 2.6 93.6 ± 2.3 93.7 ± 2.5
5.0 96.4 ± 2.1 96.4 ± 2.1 96.7 ± 1.7
10.0 99.0 ± 1.3 99.2 ± 1.3 99.4 ± 1.2

Table 2. PSDA, CCA, and FR Classification Accuracy in
function of the Acquisition Time T

T (s) PSDA [8] (%) CCA [6] (%) FR (%)
0.5 - 70.8 ± 4.5 75.0 ± 4.3
1.0 - 74.8 ± 8.1 82.1 ± 4.4
2.0 81.1 ± 7.6 84.9 ± 5.4 89.2 ± 2.3
3.0 87.7 ± 5.2 91.0 ± 4.2 93.7 ± 2.5
5.0 96.0 ± 2.6 95.4 ± 2.5 96.7 ± 1.7
10.0 98.9 ± 1.0 - 99.4 ± 1.2

eralized to every users.

IV. CONCLUSION

This work provides a review about the latest advance-

ment on single-channel Brain-Computer Interfaces based

on Steady-State Visually Evoked Potentials and Extended

Reality. The proposed BCI instrumentation with the adop-

tion of XR guarantees greater immersivity and engagement

with respect to traditional setups. Over the years, three

different algorithms were implemented to classify users

SSVEPs. The current algorithm is based on a combined

processing in time and frequency domains and on a ML

classification. It reaches a classification accuracy up to

90 % with at least 2 s of acquisition time. These results

outperformed the previous ones obtained with traditional

processing strategies like Power Spectral Density Analysis

and Canonical Correlation Analysis. Moreover, an addi-

tional advantage in using ML was the decrease in the inter-

individual 2-σ uncertainty. Therefore, such approach can

facilitate future developments of ready-to-use systems.
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