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A B S T R A C T

Performance in Speech Emotion Recognition (SER) on a single language has increased greatly in the last few
years thanks to the use of deep learning techniques. However, cross-lingual SER remains a challenge in real-
world applications due to two main factors: the first is the big gap among the source and the target domain
distributions; the second factor is the major availability of unlabeled utterances in contrast to the labeled ones
for the new language. Taking into account previous aspects, we propose a Semi-Supervised Learning (SSL)
method for cross-lingual emotion recognition when only few labeled examples in the target domain (i.e. the
new language) are available. Our method is based on a Transformer and it adapts to the new domain by
exploiting a pseudo-labeling strategy on the unlabeled utterances. In particular, the use of a hard and soft
pseudo-labels approach is investigated. We thoroughly evaluate the performance of the proposed method in
a speaker-independent setup on both the source and the new language and show its robustness across five
languages belonging to different linguistic strains. The experimental findings indicate that the unweighted
accuracy is increased by an average of 40% compared to state-of-the-art methods.
1. Introduction

SER is a fundamental aspect of computational paralinguistics as it
concerns the analysis of the non-verbal elements of speech (Schuller
& Batliner, 2013). SER, which aims to infer the emotional state of
a speaker (El Ayadi, Kamel, & Karray, 2011), could support a wide
range of domains, including human–computer interaction (Schuller &
Batliner, 2013), healthcare (Tumanova, Woods, & Wang, 2020), and
public safety (Lefter & Jonker, 2017). For instance, SER systems could
be employed in interactive dialogue systems to make them empa-
thetic (Bertero et al., 2016), in healthcare systems for the diagnosis
of disorders and diseases (Hansen et al., 2022), and in commercial
applications for detecting customer satisfaction in call-centers and by
employment agencies to find suitable candidates (Perez-Toro, Vasquez-
Correa, Bocklet, Noth, & Orozco-Arroyave, 2021). Existing SER models
have achieved satisfactory results for valence/arousal estimation (Xiao,
Wu, Zhang, & Tao, 2016) and emotion classification (Scheidwasser-
Clow, Kegler, Beckmann, & Cernak, 2022) when the training and test
data are from the same corpus. However, the performance of these
models degrades when applied to new corpora of same/different lan-
guages due to domain shift (Feraru, Schuller, et al., 2015). This problem
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occurs mainly in real-world scenarios where the people using a given
SER system may differ or speak languages other than those used to train
the system.

Over the years, several methodologies have been developed to speed
up the adaptation of a pre-trained system to new people or a new
language by leveraging semi-supervised/incremental learning (Zhang
et al., 2016) and transfer learning (Feraru et al., 2015). Numerous
approaches have been proposed to reduce the domain shift problem
for cross-corpus or cross-lingual SER, namely eliminate or reduce the
difference between the source and target data distribution (Cai et al.,
2021; Tamulevičius et al., 2020). Most of these approaches are based on
deep learning techniques as they generally prove to be more effective
than traditional machine learning techniques also for SER (Tamule-
vičius et al., 2020). Supervised Domain Adaptation (SDA) methods
for SER exploit labeled utterances of the target corpus to adapt the
recognition model to work properly on the new set of data (Neumann
et al., 2018; Tamulevičius et al., 2020; Zhou & Chen, 2019). However,
these methods require the new language utterances to be labeled, which
may not be possible as their collection is expensive. Therefore, a more
vailable online 3 September 2023
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practical solution is Unsupervised Domain Adaptation (UDA) which
only demands unlabeled utterances from the new language. Many UDA
methods try to reduce the distribution shift between the source and
target languages (Cai et al., 2021; Latif, Qadir, & Bilal, 2019; Li, Yan,
& Wang, 2021; Ocquaye, Mao, Xue, & Song, 2021).

In this paper we formulate the cross-lingual SER as a SSL problem.
This scenario assumes that for the new language there are few labeled
and many unlabeled utterances. We first train a deep learning based
SER model on the source language dataset in which all utterances
are annotated with the emotion label (see Fig. 1(a)). The SER model
is then adapted to a new language for which the emotion of most
training utterances is unknown. The labeled data of the first language
are available (see Fig. 1(b)). Pseudo-labeling is adopted to generate
labels for the unlabeled utterances and guide the learning process.
Unlike most cross-lingual SER methods which focus on the binary
classification of valence, our approach deals with the prediction of
five emotion categories. In our experiments we consider English as
the source language since it is the most widespread language in the
world (Berlitz, 2021).

The proposed method for cross-lingual SER based on pseudo-
labeling is suitable for use in all-day consumer technologies, such as
smartphones, smartmirrors, and smartwatches. These devices collect
massive amounts of unlabeled data, making traditional supervised
learning methods difficult to implement. The proposed method over-
comes this challenge by requiring only small amounts of labeled data
and large amounts of unlabeled data, lowering manual annotation costs
and shortening data preparation time. As a result, the method can be
used in consumer technologies at a much lower cost than traditional
supervised learning-based methods, making it a more practical and ac-
cessible solution. By implementing this method, consumer technologies
can accurately recognize and respond to emotions expressed in different
languages, improving communication and user experience. For exam-
ple, a smartmirror with cross-lingual SER could provide personalized
recommendations based on a user’s emotional state, or could adjust
lighting and temperature to create a more comfortable environment
based on the user’s emotions.

Apart from a method for cross-lingual SER, this work provides an
analysis of different models as utterance encoder. In particular, it is
demonstrated that a Transformer-based utterance encoder trained to
build meaningful representations of speech boosts the performance
compared to state of the art methods. Furthermore, in the adaptation
procedure it is verified that balancing pseudo-labeled vs. labeled utter-
ances helps to improve the generalization capabilities of the learned
model.

To summarize, the main contributions of this paper are:

• A cross-lingual SER framework spanning five languages.
• A SSL based cross-lingual SER method for emotion categorization.
• The experimentation of several utterance encoders, i.e. a CNN for

speech emotion classification, a CNN and a Transformer trained
for speech representation learning.

• Two different approaches for generating pseudo-labels are inves-
tigated.

• An utterance rebalancing strategy to reduce the cardinality gap
between the labeled utterances available for the source language
and the labeled or pseudo-labeled utterances for the new lan-
guage.

• A thorough analysis of how the variation in the number of labeled
utterances for the new language impacts performance.

The rest of the paper is organized as follows. Section 2 introduces some
previous works on cross-lingual emotion recognition. In Section 3, SSL
based cross-lingual SER is formalized and then the proposed method
is described. Experimental setup and result analysis are presented in
Sections 4 and 5, respectively. Finally, we conclude in Section 6.
2

2. Related work

Cross-lingual SER methods involve the use of two languages, the
source language for which the emotion information is available for all
the samples and the target language, for which only few labeled sam-
ples are available. The aim of cross-lingual SER is then to learn from the
source language and extend the learned knowledge on the unlabeled
samples of the target language. This propagation is an active process
that involves the use of the few samples available and, if present, of
auxiliary information available for both languages. At each learning
episode, unlabeled samples of the target language which are believed
to belong to an emotional class, are labeled. This process is called
pseudo-labeling and in turn will support future learning episodes for
evaluating the remaining samples. The choice of the acoustic features
is quite important and must be kept into account (Tamulevičius et al.,
2020).

The primary taxonomy of cross-lingual SER methods is given by the
strategy used to convey knowledge on the new language. Two are the
main schemes used in the state of the art. The first one is the use of
auxiliary information that is available on both languages to learn a
shared feature space. In this context, the emotion recognition task and
the side task are performed simultaneously through a joint-training. Cai
et al. (Cai et al., 2021) proposed a neural network with two branches,
leading respectively to emotion and language classification. During
training, the first branch is trained only with the source language
corpus with emotion labels while the second by both languages. This
training schema allows to exploit all existing information of the first
and the second language to create a shared feature space. Gradient
Reversal Layer (GRL) is adopted to force the features to be meaningful
for the primary task (emotion classification) and at the same time
to be indistinguishable for the auxiliary task (language classification).
Performance is measured in terms of valence and arousal on Urdu,
Estonian, IEMOCAP, Persian, and German (4 emotions). Li et al. (Li
et al., 2021) proposed an SSDA memory-based system called Neural
Network with Pseudo Multilabel (NNPM). In first place, they use a
siamese network with self attention for projecting source and target
utterances in a learned feature space. Then, the source-domain features
are dynamically stored in the dynamic external memory. Emotion simi-
larity is gained through cosine distance between features in the memory
and of the target utterance. Pseudo-labels are given to the target
domain utterances based on the similarity score. Hard negative sample
mining strategy is used to improve the learning whereas the features
result less representative. Performance is measured with weighted and
unweighted accuracy. Ocquaye et al. (Ocquaye et al., 2021) exploited
joint training to perform SSDA. A neural network with one common
branch and a set of task-specific branches is proposed. Two branches
perform emotion recognition respectively on the source samples and
the pseudo-labeled target samples. The evaluation has been conducted
on SAVEE, IEMOCAP, EMO-DB, FAU-AIBO (German), and EMOVO for
valence classification.

The second strategy widely used in the context of cross-lingual SER
is the use of adversarial training. This technology showed great ability
in domain transfer and thus is very effective in this scenario. Latif
et al. (Latif et al., 2019) proposed a method for learning a language-
independent emotion recognition feature vector in the context of UDA.
This system is based on Generative Adversarial Networks (GANs) as this
technology has shown great potential in learning the underlying data
distribution. Specifically, the proposed method has two generators to
project respectively the source and the target utterance in a common
feature space that is later evaluated through a critic. The feature space
is then constrained to carry emotion information through a classifi-
cation loss. In other words, the adversarial loss makes the feature
space homogeneous both for the source and the target languages while
the classification loss makes the features meaningful for the task of
emotion recognition. Performance assessed on EMOVO, SAVEE, Urdu,
and EMO-DB for valence classification.
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Fig. 1. Pipeline of the proposed cross-lingual SER method. (a) The model is first trained on the source language and (b) it is then adapted to the new language for which a few
labeled utterances are available.
Domain Adversarial Neural Network (DANN) is a method that gen-
erates domain invariant feature representations. This allows to reduce
the gap among source and target domain features (Abdelwahab &
Busso, 2018).

However, the effectiveness of domain adversarial training strongly
depends on the distribution of the two databases: in fact, adversarial
attacks and instabilities may occur in the training phase if the data
points are significantly different from each other. Aggregate multi-task
Learning (AL) is another technique that has been used to improve the
generalization of the trained model by incorporating information of
gender and naturalness (Kim, Englebienne, Truong, & Evers, 2017).

Extending the work of Sung et al. (Sung et al., 2018), Ahn
et al. (Ahn, Lee, & Shin, 2021) presented Few-shot Learning and
Unsupervised Domain Adaptation (FLUDA), which aims to train an
embedding and a metric module that respectively project the utterances
in a meaningful shared feature space and learn the differences among
classes. The embedding and metric module are optimized to predict
class similarity for each episode by exploiting few samples composing
the support set and pseudo-labels assigned in the previous episode.
During training, an auxiliary module is used to determine whether
the labeled sample is real or pseudo-labeled. The proposed method
estimates four categorical emotions (neutral, happy, sad and angry) and
uses IEMOCAP and CREMA-D as source corpora while MSP-IMPROV,
EMO-DB or KME were used as target corpus. However, the samples
in few-shot learning significantly depend on the choice of the support
set, that can make its application challenging to a practical setup.
Furthermore, the strong assumption that the support set is uniformly
sampled from a single distribution, leads to the selection of an unstable
number of samples for each class during training. With the aim of
solving the previous challenges, Zhou et al. (Zhou & Chen, 2019)
used adversarial network to perform SSDA. Specifically, a GAN is
modified such that the generator projects the utterance in a feature
space carrying emotion information and the critic has to determine
which emotion class belongs the input feature and the used language.
This stage is trained with the source language for which the labels are
known. In second place the critic is frozen and the encoder is adapted
to the new language. This second step forces the encoder to adapt and
generate compatible features with the ones obtained in the first step.
The method has been benchmarked on EMO-DB and Aibo in terms of
positive and negative emotions.

Recently, Das et al. (Das, Lønfeldt, Pagsberg, & Clemmensen, 2022)
presented a Variational AutoEncoder (VAE) for learning a latent space
able to discriminate emotions and to generalize on different languages
simultaneously. They achieved this goal by (i) exploiting a Kullback–
Leibler (KL) loss annealing using cyclic scheduling to improve emotion
discrimination, (ii) employing semi-supervised training of the VAE by
incorporating a clustering loss in the learning function. Experimental
results have been collected for IEMOCAP, SAVEE, EMO-DB, CaFE, and
AESD in terms of four emotions. Kshirsagar et al. (Kshirsagar & Falk,
2022) explored the combined use of Bag-of-Words (BoW) methodology,
domain adaptation and data augmentation as strategies to counter
the damaging effects of cross-lingual SER. The authors also proposed
3

a new method called N-CORAL in which all languages are mapped
to a common distribution. Experiments with the German, Hungarian,
Chinese, and French languages show the advantages of the proposed
N-CORAL method, combined with data augmentation and BoW for
valence-arousal estimation.

The related works can be thus summarized as follows:

• Several studies in the literature demonstrate that it is possible
to perform cross-language SER without labeled utterances for the
new language using auxiliary information, generative methods, or
adversarial and few-shot learning.

• Domain adaptation approaches based on adversarial neural net-
works are widely used for cross-lingual SER; however, there is
still room for performance improvement.

• The use of the newer Transformer architectures for utterance
encoding has not been explored and used for cross-lingual SER.

3. Method

The problem of cross-lingual SER is first formulated in Section 3.1
and then the proposed SSL method for cross-lingual SER is described in
Section 3.2.

3.1. Problem formulation

We represent sets with special Latin characters (e.g., ). Lower
or uppercase normal fonts, e.g., 𝐾 denote scalars. Matrices are in
uppercase bold letters (e.g., 𝐌), while lowercase bold letters represent
vectors as in 𝐯. We use lowercase Latin letters to represent indices
(e.g., 𝑖).

We formulate our cross-lingual SER as the following domain adapta-
tion task. We have a source language corpus with 𝑁𝑠 labeled utterances
as source domain, 𝑠 = {(𝐗𝑠

𝑖 , 𝑦
𝑠
𝑖 )}

𝑁𝑠
𝑖=1, and a new language corpus, 𝑡, as

target domain. The new language corpus, 𝑡 = {𝑡 ∪𝑡}, consists of a
set 𝑁𝑢 of unlabeled utterances 𝑡 = {𝐗𝑡

𝑖}
𝑁𝑢
𝑖=1, and a set 𝑁𝑘 of labeled

utterances 𝑡 = {𝐗𝑡
𝑖, 𝑦

𝑡
𝑖}

𝑁𝑘
𝑖=1. The number of utterances of the source

language 𝑁𝑠 is much higher than the number of labeled utterances for
the new language 𝑁𝑘, i.e. 𝑁𝑠 ≫ 𝑁𝑘. Utterances 𝐗𝑠

𝑖 and 𝐗𝑡
𝑖 are elements

of R𝐹×𝑇 , where 𝐹 and 𝑇 are the number of frequency bins and the
number of time frames, respectively. The utterance labels 𝑦𝑠𝑖 and 𝑦𝑡𝑖 are
scalar values such that 𝑦 ∈ Z ∶ 1 ≤ 𝑦 ≤ 𝐶 where 𝐶 is the number of
emotion categories within the corpora. We consider that the source and
target corpora contain the same number 𝐶 of emotion categories.

Our goal is to learn a reliable emotion classifier on 𝑠, 𝑡, and 𝑡,
which preserves performance on source language 𝑠 and generalizes
well on 𝑡.

3.2. SSL for cross-lingual SER

The proposed semi-supervised cross-lingual SER is a deep learning
model 𝑓 parameterized with 𝜃 that maps an input utterance 𝐗 into a
basic emotion 𝑦, 𝑦 = 𝑓 (𝐗, 𝜃).

As depicted in Fig. 2, our method consists of two modules, namely
the SER recognition backbone and the adaptation module. The SER recog-

nition backbone (𝑓𝜃) classifies emotions for both the source and new
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Fig. 2. The pipeline of our method.
language utterances. During the training phase, we introduce the adap-
tation module to improve the discriminative power and generalization
ability of 𝑓 on the new language. The adaptation module relies on
a pseudo-labeling strategy to allow model training on the unlabeled
utterances of the new language. Furthermore, we include an utterance
rebalancing mechanism to avoid that the model is biased on the source
language due to the higher cardinality of utterances compared to those
of the new language.

In the next sections we detail the previously introduced modules.

3.2.1. SER recognition backbone
It is the core of our method that deals with utterance classification.

It consists of two modules, i.e., the utterance encoder 𝑒 and the classifi-
cation head ℎ. The utterance encoder 𝑒 is a deep architecture like a CNN
or a Transformer that takes a raw waveform or an audio representation
as input, 𝐗, and returns a 𝑑-dimensional feature vector 𝐱 ∈ R𝐷. The
choice of the utterance encoder is important for the performance of
the proposed method. Therefore, three different deep architectures are
considered, namely EmotionCNN (Tamulevičius et al., 2020), Boot-
strapping Your Own Latent for Speech (BYOL-S) (Scheidwasser-Clow
et al., 2022), and Hidden-unit BERT (HuBERT) (Hsu et al., 2021). Emo-
tionCNN is a CNN architecture for cross-lingual speech emotion recog-
nition. It is composed of three convolutional layers. Each convolutional
layer is followed by a ReLU, a batch normalization layer, and 3 × 3 max
pooling, respectively. The model is fed with a cochleagram-based repre-
sentation of the raw waveform and outputs a 128-dimensional feature
vector. BYOL-S is a CNN model for audio representation inspired by
the Bootstrapping Your Own Latent (BYOL) model initially proposed
for self-supervised image classification (Grill et al., 2020). It is trained
on the speech utterances of the AudioSet (Gemmeke et al., 2017)
dataset. BYOL-S is currently the state of the art in SER (Scheidwasser-
Clow et al., 2022). The model accepts input utterances of variable
length and returns a single 1024-dimensional feature vector per input
utterance. All utterances are converted to a log-scaled Mel spectrogram
with a window size of 64 ms, hop size of 10 ms, and mel-spaced
frequency bins 𝐹 = 64 in the range 60–7800 Hz. Each spectrogram
is normalized by subtracting the mean and dividing by the estimated
standard deviation for the frames of the spectrogram. HuBERT is a
Transformer-based approach for self-supervised speech representation
learning. It consists of a convolutional waveform encoder, a BERT-
Base encoder (Devlin, Chang, Lee, & Toutanova, 2019), a projection
layer, and a code embedding layer. It is trained on the Librispeech
960h dataset (Panayotov, Chen, Povey, & Khudanpur, 2015) to classify
randomly masked frames to pseudo-labels. The labels are generated by
running K-Means clustering with 100 clusters on 39-dimensional MFCC
features. The model accepts raw waveforms of variable length as input
and returns a single 768-dimensional feature vector per input utterance.
The main characteristics of the three architectures are summarized in
Table 1.
4

The feature vector obtained from one of the previously described
utterance encoders is processed by the classification head ℎ to predict
𝐩 ∈ R𝐶 , i.e., the probability distribution over the 𝐶 emotion categories.
The classification head consists of a linear layer followed by a softmax:

𝐩 = Sof tmax(ℎ(𝐱, 𝜃ℎ)), (1)

where 𝜃ℎ is the set of weights 𝐖 ∈ R𝐷×𝐶 and bias 𝐛 ∈ R𝐶 .

3.2.2. Adaptation module
This module aims to exploit the unlabeled utterances of the new

language in the model training. To this purpose, an SSL approach is
used to generate pseudo-labels �̃� for the unlabeled utterances of the
new language dataset, 𝑡. This operation is repeated at each step to
take advantage of the knowledge learned in previous steps and results
in the creation of a hybrid dataset ̃ composed by real samples (𝐗𝑖, 𝑦𝑖)
and samples with generated ground truth (𝐗𝑖, �̃�𝑖).

A key decision is how to generate the pseudo-labels �̃� for the 𝑁𝑢
unlabeled utterances. In this paper, we experiment with the use of hard
pseudo-labels and soft pseudo-labels.

Hard pseudo-labels. In this approach hard pseudo-labels are directly
obtained from network predictions. Let 𝐩𝑖 be the probability outputs
of our trained ℎ𝜃 model for the utterance. Using the probability vector,
the pseudo-label for the utterance 𝐗𝑖 corresponds to �̃�𝑖 = arg max(𝐩𝑖).
We select the subset of pseudo-labels which are less noisy to limit
the confirmation bias, i.e. the overfitting of incorrect pseudo-labels
predicted by the model. In particular, we select only the pseudo-labels
corresponding to high-confidence predictions. Let 𝐠 = {𝑔𝑏}𝐵𝑏=1 be a
binary vector representing the selected pseudo-labels in a mini-batch
𝐵. This vector is obtained as follows:

𝑔𝑏 = 1
[

max(𝑝𝑏) ≥ 𝜏
]

, (2)

where 𝜏 ∈ (0, 1) is a confidence threshold.

Soft pseudo-labels. We investigate the use of soft pseudo-label inspired
by Arazo, Ortego, Albert, O’Connor, and McGuinness (2020) since it
has demonstrated in some cases to perform better than hard pseudo-
labels (Tanaka, Ikami, Yamasaki, & Aizawa, 2018).

Let 𝐩𝑖 be the probability outputs of our trained ℎ𝜃 model for the
utterance 𝐗𝑖. Two regularization terms are used to improve conver-
gence. The first regularization term discourages the model to assign all
samples to a single class by adding:

𝑅𝐴 =
𝐶
∑

𝑐=1
𝐩𝑐 log

(𝐩𝑐
�̄�𝑐

)

, (3)

where 𝐩𝑐 is the prior probability distribution for class 𝑐 assumed as
a uniform distribution 𝐩𝑐 = 1∕𝐶 and �̄�𝑐 denotes the mean softmax
probability of the model for class 𝑐 across batch utterances.
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Table 1
Utterance encoder architectures considered within the proposed method.

EmotionCNN
(Tamulevičius et al., 2020)

BYOL-S
(Scheidwasser-Clow et al., 2022)

HuBERT
(Hsu et al., 2021)

Input Cochleagrams MFCC Waveform
Architecture CNN CNN Transformer
Feature vector dim. 128 1024 768
Pretraining – AudioSet Librispeech 960h
ML paradigm – self-supervised self-supervised
Num. of params 35,584 1.6M 95M
t

b
b
l

The second regularization is the average per-sample entropy (𝑅𝐻
tands for entropy regularization) that forces the probability distribu-
ion to peak on a single class:

𝐻 = −
𝐵
∑

𝑖=1

𝐶
∑

𝑐=1
ℎ𝑐𝜃(𝐗𝑖) log(ℎ𝑐𝜃(𝐗𝑖)), (4)

here ℎ𝑐𝜃(𝐗𝑖) denotes the 𝑐 class value of the softmax output ℎ𝜃(𝐗𝑖) and
t is estimated on a mini-batch 𝐵. The total loss is the following:

= 𝐶𝐸 + 𝜆𝐴𝑅𝐴 + 𝜆𝐻𝑅𝐻 , (5)

here 𝜆𝐴 and 𝜆𝐻 control the contribution of each regularization term.
To limit the confirmation bias problem, we exploit the mixup data

ugmentation technique proposed in Zhang, Cisse, Dauphin, and Lopez-
az (2018). It combines data augmentation with label smoothing to
educe the confidence of the model on its predictions. Mixup trains on
onvex combinations of sample pairs (𝐗𝑝 and 𝐗𝑞) and corresponding
abels (𝑦𝑝 and 𝑦𝑞):

= 𝛼𝐗𝑝 + (1 − 𝛼)𝐗𝑞 , (6)

= 𝛼𝑦𝑝 + (1 − 𝛼)𝑦𝑞 , (7)

here 𝛼 is randomly sampled in the range (0, 1).

.2.3. Utterance rebalancing
As stated in Section 3.1, the number of labeled utterances for the

ew language 𝑁𝑘 is much lower than the number of labeled utterances
or the source language 𝑁𝑠. The use of pseudo-labeling to adapt the
odel to the new language can only partially reduce the imbalance

etween source and new language corpus. The imbalanced ratio 𝛾𝑙
etween the number of source utterances, 𝑁𝑠, and the number of
abeled utterances for the new language, 𝑁𝑘, is defined as 𝑁𝑘∕𝑁𝑠 and

a 𝛾𝑙 far from 1 indicates more severe utterance imbalance.
To tackle the utterance imbalance and get 𝛾𝑙 = 1 we exploit random

oversampling. Specifically, the utterances of the new language are
randomly replicated to match the number of utterances of the source
language.

The rebalancing algorithm is run at the end of each pseudo-labeling
iteration during the adaptation procedure. Furthermore, it is performed
at the beginning of the training procedure if the number of labeled
utterances for the new language is non-zero.

3.2.4. Training procedure
The proposed model 𝑓𝜃(𝐗) is trained end-to-end for 𝐸 epochs using

a set of 𝑁 training utterances belonging to the joint domain  =
{𝑠 ∪ 𝑡}.  contains a set of 𝑁𝑠 + 𝑁𝑘 labeled utterances {𝑠,𝑡}
coming from both the source and the target language. Every 𝑊 epochs,
the model adaptation procedure is performed, in which supervised
learning is accompanied by pseudo-labeling on the set 𝑡 of unlabeled
utterances for the new language. The set  is then expanded with
the generated pseudo-labels ′

𝑡}. The complete training procedure is
presented in Algorithm 1.

The parameters 𝜃 of the model are optimized using categorical
cross-entropy:

𝐶𝐸 = −
𝐵
∑

𝑦𝑖 log(𝑓𝜃(𝐗𝑖)), (8)
5

𝑖=1
where 𝑓𝜃(𝑥) are the softmax probabilities predicted by the model, log(⋅)
is applied element-wise and 𝑦𝑖 can be a real or pseudo label, and 𝐵 is
he number of batch utterances.

To mitigate the risk of overfitting, early stopping is implemented
y selecting the model weights from the epoch that achieves the
est performance on the validation set for both the source and new
anguages.

Algorithm 1 Our training procedure.
1: Input: Total training epochs 𝐸, interval of epochs for pseudo-

labeling 𝑊 , source language corpus 𝑠, labeled utterances for the
new language 𝑡, unlabeled utterances for the new language 𝑡.

2: Initialize the model 𝑓𝜃 .
3: Initialize labeled corpus  = 𝑠 ∪𝑡.
4: for e = 1 to E do
5: Train and update 𝑓𝜃 on .
6: if mod(e, W ) = 0 then
7: Generate pseudo-labels for 𝑡 using 𝑓𝜃 .
8: Form ′

𝑡 by applying pseudo-label policy on 𝑡.
9: Expand labeled set by  =  ∪′

𝑡.
10: end if
11: end for
12: Return: 𝑓𝜃

4. Experiments

In this section the datasets considered for experiments and the
experimental setup are presented.

4.1. Datasets

A summary of the datasets used for our experiments is presented
in Table 2. We consider seven speech emotion classification datasets
in five languages: three in English (RAVDESS, SAVEE and TESS), one
in French (CaFE), German (EmoDB), Italian (EMOVO), and Persian
(ShEMO). In each dataset, speech samples have three attributes: audio
data (i.e., the raw waveform, in mono), speaker identifier, and emotion
label (e.g., angry, happy, sad). The datasets comprise scripted and acted
utterances and vary in size (i.e., number of utterances), number of
speakers, sample rate, and number of classes. All of them comprise
utterances in which the speaker acts a specific emotion.

The considered datasets share the same five primary emotions,
which are anger (A), fear (F), happiness (H), neutral (N), and sadness
(S). Following Tamulevičius et al. (2020), in this study we consider only
utterances annotated with one of the previous five emotions and discard
the remaining utterances. Thus, the number of emotion categories is
𝐶 = 5. TESS, SAVEE, and RAVDESS datasets are merged to obtain
a large English language dataset. A summary of the distributions of
utterances by emotion for each language is shown in the Table 3.

4.2. Experimental setup

Each dataset was split into training, validation, and testing sets to
respectively train, optimize and evaluate task-specific emotion speech
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Table 2
List of considered datasets for speaker emotion recognition.

Name Spkrs Emot. SR (Hz) Utter. Lang. Avg. dur. (s) Tot. dur. (h)

CaFE (Gournay, Lahaie, & Lefebvre, 2018) 12 7 48,000 864 French 4.5 1.1
EMO-DB (Burkhardt, Paeschke, Rolfes, Sendlmeier, & Weiss, 2005) 10 7 16,000 535 German 2.8 0.4
EMOVO (Costantini, Iaderola, Paoloni, & Todisco, 2014) 6 7 48,000 588 Italian 3.1 0.5
RAVDESS (Livingstone & Russo, 2018) 24 8 48,000 1,440 English 3.7 1.5
SAVEE (Wang, 2010) 4 7 44,100 480 English 3.8 0.5
ShEMO (Nezami, Lou, & Karami, 2019) 87 6 44,100 3,000 Persian 4.0 3.3
TESS (Pichora-Fuller & Dupuis, 2020) 2 7 24,414 2,800 English 2.0 1.6
Table 3
Utterance distribution of the selected datasets across emotion classes.

A F H 𝑁 S Total

English (RAVDESS, SAVEE, TESS) 652 652 652 652 616 3224
French (CaFE) 144 144 144 144 72 648
German (EMO-DB) 127 69 71 79 62 408
Italian (EMOVO) 84 84 84 84 84 420
Persian (ShEMO) 1059 38 201 1028 449 2775

classifiers. Following SERAB (Scheidwasser-Clow et al., 2022), each
dataset is split into 60% training, 20% validation, and 20% testing sets.
Each data partition is speaker-independent, i.e., the sets of speakers
included in each part are mutually disjoint.

Importantly, the utterances of the various datasets have different
sampling rates, for this reason they were all resampled to 16 kHz before
any processing. During training a sequence of 2 seconds is randomly
sampled from the whole utterance for augmentation, while the whole
utterance is used at testing time. Voice Activity Detection (VAD) is
not used in training and testing. The linear layer for emotion speech
classification is randomly initialized.

All experiments are run three times with different random seeds,
and the unweighted accuracy is chosen as our evaluation criterion.

4.2.1. Hyperparameters
In our experiments, we train the model for a total of 100 epochs

using the Adam optimizer with an initial learning rate equal to 1×10−3

which decays by a factor of 0.95 every 10 epochs, a batch of 100
utterances, and exponential decay rates 𝛽1 and 𝛽2 equal to 0.9 and
0.999. The pseudo-labeling procedure is executed every 30 epochs,
i.e. 𝑊 = 30. We experiment with different values of 𝜏 (see Section 5.6.2
for a study of this hyperparameter) which lead to the choice of 𝜏 = 0.50,
but do not attempt a careful adjustment of the regularization weights
𝜆𝐴 and 𝜆𝐻 and simply set them to 0.8 and 0.4 as done in Tanaka et al.
(2018).

5. Results

In this section the results achieved for different configurations are
described. In all the experiments we consider English as the first
language while the other languages were chosen one at a time as the
second language.

5.1. Cross-lingual results

In this section the performance obtainable by our method on a
totally unknown new language is measured. These results give an idea
of the worst accuracy, defined as the lower bound, achievable for cross-
lingual SER. To this end, experiments using only the training set of
the source language (i.e. English) and testing on the new language
data are performed. Table 4 reports accuracy results achieved by the
three utterance encoders for the four new languages. As it is possible
to see, HuBERT achieves the best accuracy for all the languages, while
the EmotionCNN obtains the worst performance. Regarding HuBERT,
the highest accuracy equal to 78.87% is achieved for the German
language while the lowest accuracy of 33.24% is obtained for Persian.
6
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Table 4
SER accuracy on new languages by training only on the source language (English).
Results are reported for three different versions of the proposed model in which a
different utterance encoder is exploited. Best result for each utterance encoder is in
bold.

Accuracy (%)

EmotionCNN BYOL-S HuBERT

French 29.63 54.32 58.02
German 29.58 60.56 78.87
Italian 26.43 49.28 52.14
Persian 15.15 18.28 33.24

The same gap is registered for all utterance encoders and depends
on the fact that as stated by several linguistic distances (Chiswick &
Miller, 2005; Gamallo, Pichel, & Alegria, 2017; Petroni & Serva, 2008)
Persian belongs to a linguistic strain very different from the English
one. Therefore, it is conceivable that learning on utterance in Persian
will produce an important gain in performance.

5.2. Multi-lingual results

In this section, multi-lingual SER experiments are performed fol-
lowing a supervised training that uses all data of the source and the
new language. The results obtained give the upper bound for cross-
lingual SER, i.e. the best accuracy obtainable having all the labels of
the new language available. Since we want to evaluate whether the
SER classifier generalizes on the new language but also if it preserves
the performance on the source language. Table 5 shows the accuracy
on the source language (i.e. first column of the table) and the accuracy
on the new language (i.e. second column of the table) achieved by the
three utterance encoders.

From the results it is possible to make various considerations. First,
as expected, there is an increase in performance on the new language
by using the training data of both the source language and the new one.
This result is particularly evident for Persian, where the performance
increases of about 50% for all the utterance encoders. Second, Emo-
tionCNN achieves significantly lower performance than the other two
encoders, i.e. about 20% less than BYOL-S and 30% less than HuBERT.
Third, the performance on English, which is the source language, does
not degrade by adding the training data of the new language. For
HuBERT, which confirms itself as the best encoder, starting from the
81.50% of accuracy obtained by training only on English, we obtain a
loss of about 3% for both French and Persian. On the other hand, for
Italian and German, the variation in accuracy is less than 1%.

5.3. Pseudo-labeling results

In this subsection, the results of using the proposed method with
HuBERT for cross-lingual SER are presented. Performance is reported
while changing the number of labeled utterances for the new language.
The numbers of labeled utterances considered for the new language are
0, 25, 50, and 100, while all the utterances for the source language are
labeled (i.e. 1682 utterances). From the previous numbers we obtain
the imbalanced ratios, 𝛾𝑙, equal to 0, 0.01, 0.03 and 0.06. Fig. 3 shows
he performance achieved by using hard pseudo-labels (see Fig. 3(a))
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Table 5
SER accuracy on new languages by training on the combination of source and new language training sets. Results are reported for three different
versions of the proposed model in which a different utterance encoder is exploited. Best result for each utterance encoder is in bold.

Accuracy on the source language (%) Accuracy on the new language (%)

EmotionCNN BYOL-S HuBERT EmotionCNN BYOL-S HuBERT

English 58.50 79.13 81.50 – – –

English & French 57.32 60.08 78.19 39.63 58.02 77.78
English & German 52.68 75.04 82.44 54.93 73.24 94.37
English & Italian 53.31 73.78 81.02 32.86 59.28 74.29
English & Persian 51.57 71.26 78.50 62.02 86.43 92.24
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ig. 3. SER accuracy by varying the number of labeled utterances for the new language
nd using (a) hard pseudo-labels and (b) soft pseudo-labels for the unlabeled utterances.
lack bars indicate the accuracy on the source language (i.e. English).

nd soft pseudo-labels (see Fig. 3(b)). Each colored bar represents the
ccuracy of a given pseudo-label approach with a given number of
vailable labels for the new language. Black narrow bars represent the
ccuracy on the source language.

Several considerations can be made. First, overall hard pseudo-
abels obtain better performance than soft pseudo-labels. Second, soft
seudo-labels not only result in worse performance than hard pseudo-
abels, but also cause significant performance degradation on the source
anguage. This behavior can be due to the effect of mixup augmentation
hich results in too noisy pseudo-labels that do not allow the model to

onverge properly. Third, for both pseudo-label approaches and for all
anguages, having more available labels for the new language allows to
chieve higher accuracy. The pseudo-label approaches cannot reach the
pper bound in any language but in any case they manage to improve
7
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ig. 4. Comparison of the results on new languages between the cross-lingual,
ulti-lingual and the best SSL (hard pseudo-labels considering 100 labeled utterances).

he performance of the lower bound (for the Persian language it is even
ossible to have an increase of about 60%).

Fig. 5 illustrates the accuracy trends of the SER model with HuBERT
nd 100 labeled utterances across training epochs, depicting the perfor-
ance of the training and validation sets. Each plot showcases accuracy

urves for both the source and new languages. Despite having disjoint
ets of speakers, the accuracy remains relatively consistent across the
rain and validation sets. However, the French and Italian languages,
dentified as the weakest performers, exhibit a tendency to overfit the
odel.

.4. Discussion

Fig. 4 summarizes the results achieved by our best method with
uBERT in the different configurations evaluated for the recognition of
motions on new languages. The aim is to highlight the gap between
raining the method with all the data labeled or with the use of pseudo-
abeled samples. In the chart we compare the performance for (i) the
ross-lingual experiment (results collected from the Table 4), (ii) the
ulti-lingual experiment (accuracy reported in the Table 5), and (iii)

he SSL cross-lingual experiment based on the use of hard pseudo-labels
aving 100 labeled utterances for the new language (see Fig. 3(a)). As
xpected, multi-lingual SER with all the utterances labeled results in a
oticeable increase in performance compared to the cross-lingual SER.
his increase is particularly significant for Persian (+60%), a language
hat has very different linguistic traits from those of English and for
his reason the adaptation of the model is very important. Cross-lingual
SL based on hard pseudo-labels improves the performance of the cross-
ingual configuration for all the considered languages (the increase is
0% for the Persian language).

An analysis of the feature space before and after the adaptation
o the new language is also provided. The analysis aims to verify



Expert Systems With Applications 237 (2024) 121368M. Agarla et al.
Fig. 5. Accuracy curves for training and validation sets over the training of HuBERT with 100 labeled utterances for the new language. Each plot reports the accuracy on both
the source language, i.e. English, and on each of the languages considered (better see in color and magnified).
whether the pseudo-label approach can effectively reduce the varia-
tions between different languages while retaining information related
to emotions. To illustrate this, we use Principal Component Analysis
(PCA) to project the learned feature representation, i.e., the output
of the utterance encoder into 3D space. Furthermore, the silhouette
score (Rousseeuw, 1987) is exploited to estimate the ability of the
learned representation to discriminate emotions independently of lan-
guage. The silhouette’s best score value is 1 and the worst value is −1.
Values close to 0 indicate overlapping clusters.

The first row of Fig. 6 displays the test utterances for both English
and the new language encoded using HuBERT trained solely on English.
Conversely, the second row shows the test utterances for both English
and the new language encoded using HuBERT adapted on the new
language via hard pseudo-labeling, and without any labeled utterances
for the new language. The results indicate that the representation
learned solely on English is unable to capture emotions for the new lan-
guage, resulting in a very low silhouette score of approximately 0.07.
In contrast, the adaptation procedure produces well-defined clusters
based on emotion, independent of language, as evidenced by an average
increase in the silhouette index of 0.36.

5.5. Comparison with state-of-the-art

In this section, we compare the performance of the proposed method
with four recent state-of-the-art methods, AL (Kim et al., 2017),
DANN (Abdelwahab & Busso, 2018), FLUDA (Ahn et al., 2021), and
NNPM (Li et al., 2021). The above methods are trained for discriminat-
ing 4 emotion categories namely anger, happiness, neutral, and sadness.
Implementations of the methods are not publicly available so we first
report their performance on the German language from the original
documents or reimplementations. For a more in-depth comparative
analysis we reimplemented the considered methods in order to be able
to estimate the performance also on the other three languages, namely
French, Italian and Persian. We only report the results obtained for
DANN and NNPM, for which the performance are in line with those
declared. For a fair comparison with previous methods, we exclude
from the all corpus the utterances labeled with emotion of fear and
train the methods.

Our method is retrained without using labeled utterances of the
new language and taking advantage of hard pseudo-labels. Table 6
shows the comparison between two versions of the proposed method,
i.e. with the backbone based on BYOL-S and HuBERT, and other
methods. The results achieved for our implementations are respectively
‘‘DANN (our reimplementation)’’ and ‘‘NNPM (our reimplementation)’’.
Results show that both versions of the proposed method perform better
than recent state-of-the-art methods. More specifically, our HuBERT-
based method outperforms the second best method, which is also based
8

Table 6
Comparison with other state-of-the-art methods on new languages. Best result for each
language is in bold.

Method French German Italian Persian

DANN (Ahn et al., 2021) – 28.5 – –
DANN (our reimplementation) 31.5 32.6 25.9 30.7
FLUDA (Ahn et al., 2021) – 34.9 – –
AL (Ahn et al., 2021) – 42.5 – –
NNPM (Li et al., 2021) – 50.6 – –
NNPM (our reimplementation) 39.7 52. 40.2 56.0

Our (BYOL-S) 52.8 66.7 48.4 68.4
Our (HuBERT) 70.7 89.0 66.9 79.6

on pseudo-labeling, namely NNPM, with an improvement in relative
accuracy of 30%. We get better performance than the multi-task learn-
ing method, i.e. AL, with 57% better accuracy, and the unsupervised
cross-corpus SER model based on few-shot learning (i.e., FLUDA) of an
increase of 64%.

This high gain in performance with respect to previous methods is
due to three main aspects. First, the state-of-the-art methods consist
of very simple architectures compared to that of HuBERT. Second, the
model training procedure is profoundly different between the previous
methods and that used for HuBERT. While the purpose of previous
methods is to directly learn a specialized mapping of a speech signal
into an emotion category, HuBERT and BYOL-S are trained to learn a
general-purpose and robust representation of a speech signal. This last
aspect allows the obtained representation to be more effective for the
different tasks, including the recognition of emotions. Ultimately, the
difference between HuBERT and BYOL-S is due to both the architectural
aspect of the model and the cardinality of the dataset used for the pre-
training. In fact, HuBERT is trained on a much larger and challenging
dataset than the one used for BYOL-S.

5.6. Ablation study

This section presents an ablation study of the main design choices
that led to the definition of the final method. The adaptability to the
new language of CNN vs. Transformer based utterance encoders is
evaluated. The effect of different values for the hard pseudo-labeling 𝜏
parameter is investigated. Finally, the impact of utterance rebalancing
on the performance is estimated.

5.6.1. Utterance encoder comparison
Cross- and multi-lingual results demonstrate that HuBERT and

BYOL-S provide more effective utterance encoding for emotion classi-

fication than EmotionCNN (see Sections 5.1 and 5.2). In this section
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Fig. 6. PCA plot of the learned feature representation with emotion and language labels after training on the English language only (first row) and after adaptation on the new
language (second row) (better see in color and magnified).
Fig. 7. HuBERT vs. BYOL-S. Results for each new language using one or the other
utterance embedding model and hard pseudo-labels. The number of utterances labeled
for the new language is varied from 0 to 100.

we perform the comparison for the different languages using hard
pseudo-labels. The results for cross-lingual SER by varying the number
of utterances labeled for the new language from 0 to 100 are shown in
Fig. 7. As it is possible to see, HuBERT outperforms BYOL-S by a large
gap (about +20% accuracy). This gap might be motivated by several
reasons. First, HuBERT is trained on a larger and more diverse speech
corpus (i.e. Librispeech), with both spontaneous and anechoic scripted
speech, while BYOL-S is trained on a subset of AudioSet (Elbanna
et al., 2022). Second, HuBERT’s transformer-based architecture coupled
with direct encoding of the raw waveform provides a more robust and
powerful representation of speech.
9

Table 7
SER accuracy obtained using 100 labeled utterances for the new lan-
guage and varying 𝜏 values for hard pseudo-labeling. Best result for
each language is in bold.

𝜏 = 0.50 𝜏 = 0.65 𝜏 = 0.85

English 66.98 68.92 75.91
French 75.10 73.86 74.28

English 78.35 76.56 75.87
German 93.95 94.37 93.90

English 79.19 81.89 77.69
Italian 74.24 68.81 73.10

English 79.21 81.47 79.13
Persian 88.53 88.27 88.18

5.6.2. Effect of 𝜏
Among all the hyperparameters, the confidence threshold 𝜏 used

for hard pseudo-labels (see Section 3.2.2) is the one that needs to be
carefully tuned. This subsection studies the effects of 𝜏 on our hard
pseudo-labeling approach. Table 7 reports the cross-lingual SER results
by considering 100 labeled utterance for the new language and varying
𝜏. From the results it is possible to observe that the choice of the
best 𝜏 does not generalize to all languages. However, for 0.50 the
best performance is obtained in most cases and for this reason it was
chosen.

5.6.3. Effect of utterance rebalancing
Here we quantitatively evaluate the contribution of the utterance

rebalancing procedure on the performance of our method (see Sec-
tion 3.2.3 for details). Table 8 shows the cross-lingual SER results of
our method without utterance rebalance ‘‘w/o rebalance’’ and with
utterance rebalance ‘‘w rebalance’’. As it is possible to see, the version
of the method with utterance rebalancing outperforms the version
without utterance rebalancing for all languages. The highest accuracy
improvement corresponding to 40% is registered for the Persian lan-
guage. The lowest gaps of 8% and 15% between the two versions are
obtained for French and Italian, respectively.
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Table 8
SER accuracy obtained using 100 labeled utterances for the new lan-
guage and hard pseudo-labeling with 𝜏 = 0.5. Performance without and
with utterance rebalancing is compared. Best result for each language
is in bold.

w/o rebalance w rebalance

English 67.85 68.92
French 65.64 73.86

English 74.13 76.56
German 78.37 94.37

English 73.14 81.89
Italian 53.64 68.81

English 74.34 81.47
Persian 47.42 88.27

6. Conclusions

In cross-lingual SER it is common to have many labeled utterances
for the English language and a lower availability of labels for other lan-
guages. Based on this consideration, an SSL approach for cross-lingual
speech emotion recognition is proposed.

The proposed method consists of a transformer able to classify an
utterance into an emotion category. For SSL, we experimented with
the use of hard and soft pseudo-labels for unlabeled utterances. The
proposed method is evaluated using English as source language and
four different languages (French, German, Italian and Persian) as new
languages. It is revealed that the use of hard over soft pseudo-labels
allows for better results on the new language at the expense of a drop
in performance on the source language.

Experimental results show that the average accuracy has increased
by 40% in comparison with state-of-the-art methods.

The proposed method has some limitations, of course. First, the
method assumes that the number of emotions in the source and the new
language is the same. Nonetheless, in real-wold applications this con-
straint could be too stringent. To overcome this limitation, prototypes
could be learned from representations for newly-introduced emotion
categories in the target language, using a methodology similar to the
one described in Bucher, Vu, Cord, and Pérez (2021). Second, for the
hard-pseudo labeling approach there is no handling of confirmation
bias, i.e. overfitting to incorrect pseudo-labels predicted by the net-
work. In fact, if the model makes several wrong unlabeled predictions,
pseudo-labeling can act like a bad feedback loop and deteriorate per-
formance. As future work we plan to handle the confirmation bias issue
by averaging the predictions for different views of the unlabeled data as
done in Berthelot et al. (2019) or by using reinforcement learning (Latif
et al., 2022).
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