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We study a multi-group SAIRS-type epidemic model with vaccination. The role
of asymptomatic and symptomatic infectious individuals is explicitly considered
in the transmission pattern of the disease among the groups in which the
population is divided. This is a natural extension of the homogeneous mixing
SAIRS model with vaccination studied in Ottaviano et. al (2021) to a network of
communities. We provide a global stability analysis for the model. We determine
the value of the basic reproduction number 0 and prove that the disease-free
equilibrium is globally asymptotically stable if 0 < 1. In the case of the
SAIRS model without vaccination, we prove the global asymptotic stability of the
disease-free equilibrium also when0 = 1. Moreover, if 0 > 1, the disease-free
equilibrium is unstable and a unique endemic equilibrium exists. First, we
investigate the local asymptotic stability of the endemic equilibrium and sub-
sequently its global stability, for two variations of the original model. Last, we
provide numerical simulations to compare the epidemic spreading on different
networks topologies.
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1 INTRODUCTION

One of the most common assumptions in classic population models is the homogeneity of interactions between
individuals, which then happen completely at random. While such an assumption significantly simplifies the analysis of
the models, it can be beneficial to renounce it and to formulate models with more realistic interactions. Heterogeneity in
the interactions among the population can depend on many factors. The most common division regards the geographical
distinction and the membership to different communities, cities or countries, in which the same infectious disease can
have a different behavior based on the group under study.

The division in groups can also depend on the specific disease under study. For example, individuals can be divided
into age groups to study children's diseases, such as measles, mumps, or rubella, or can be differentiated by the number
of sexual partners for sexually transmitted infections.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons, Ltd.
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Multi-group models can also be useful to study disease transmitted via vectors or multiple hosts, such as Malaria or
West Nile virus.

The concept of equitable partitions has been used to study networks partitioned into local communities with some
regularities in their structure, in the case of SIS and SIRS models [1–3], by means of the N-intertwined mean-field
approximation [4]. In the aforementioned works, the macroscopic structure of hierarchical networks is described by a
quotient graph and the stability of the endemic equilibrium can be investigated by a lower dimensional system with
respect to the starting one.

Several authors proposed multi-group models to describe the transmission behavior between different communities or
cities; see, for example, previous studies [5–7]. In this paper, we assume that each individual interacts within a network
of relationships, due to, for example, different social or spatial patterns; individuals are hence divided into groups, which
are not isolated from one another.

As in the homogeneous mixing case, the stability analysis of the equilibrium points of the system under investigation
allows to understand its long-term behavior and, hence, to obtain some insight into how the prevalence of an endemic
disease depends on the parameters of the model [8] and, in this case, on the network topology. However, the problem of
existence and global stability, especially for the endemic equilibrium, is often mathematical challenging; unfortunately,
for many complex multi-group models, it remains an open question or requires cumbersome conditions [9]. In this
framework, Guo et al. [10, 11] and Li and Shuai [12] developed a graph-theoretic method to find Lyapunov functions
for some multi-group epidemic models which has recently allowed to obtain various results on the global dynamics of
SIRS-type models [13, 14] and SEIRS-type models [15].

In this paper, we present a multi-group model, as extension of the SAIRS-type model proposed in Ottaviano et al.
[16], where the role of asymptomatic and symptomatic infectious individuals in the disease transmission has been
explicitly considered. Asymptomatic cases often remain unidentified and possibly have more contacts than symptomatic
individuals, allowing the virus to circulate widely in the population [17–20]. The so-called “silent spreaders” are playing
a significant role even in the current Covid-19 pandemic and numerous recent papers have considered their contribution
in the virus transmission (see, e.g., previous studies [21–25]). However, this contribution has proved relevant also for other
communicable diseases, such as influenza, cholera, and shigella [26–29].

Although models incorporating asymptomatic individuals already exist in the literature, they have not been analytically
investigated as thoroughly as more famous compartmental models. Since these types of models have been receiving much
more attention lately, we believe they deserve a deeper understanding from a theoretical point of view. Thus, we aim to
partially fill this gap and provide a stability analysis of the multi-group system under investigation.

In our model, we denote with Si, Ai, Ii, and Ri, i = 1, … ,n, the fraction of Susceptible, Asymptomatic infected,
symptomatic Infected, and Recovered individuals, respectively, in the ith group, such that Si +Ai + Ii +Ri = 1. We remark
that, from here on, we will use the terms community and group interchangeably.

The disease can be transmitted by individuals in the classes Ai and Ii, within their group, to the susceptible Si, with
transmission rate 𝛽A

ii and 𝛽I
ii, respectively, and between different groups: For example, individuals A𝑗 and I𝑗 , belonging

to the 𝑗th community, may infect susceptible individuals Si of group i with transmission rate 𝛽A
i𝑗 and 𝛽I

i𝑗 , respectively.
From the asymptomatic compartment, an individual can either progress to the class of symptomatic infectious or recover
without ever developing symptoms. We assume that the average time of the symptoms developing, denoted by 1∕𝛼, and
the recovery rates from both the infectious compartments, 𝛿A and 𝛿I , do not depend on the community of origin, that is,
these parameters depend only on the disease. Furthermore, the average time to return to the susceptible state, 1∕𝛾 , only
depends on the specific disease under study, and not on the community to which an individual belongs. The remaining
parameters of the model depend on the community's membership. First, the proportion of susceptible individuals who
receive the vaccine might be different for each group; we denote with 𝜈i, i = 1, … ,n, the proportion of susceptible in the
ith group who receive a vaccine-induced temporary immunity. Moreover, 𝜇i, i = 1, … ,n represent both the birth rates
and the natural death rates in community i. Finally, individuals of different communities may have contacts each other, by
direct transport, but they never permanently move to another community. Therefore, the total population in each group
may only change through births and natural deaths; we do not distinguish between natural deaths and disease-related
deaths.

1.1 Outline
The paper is organized as follows. In Section 2, we present the system of equations for the multi-group SAIRS model
with vaccination, providing its positive invariant set. In Section 3, we determine the basic reproduction number 0 and
prove that the disease-free equilibrium (DFE) is globally asymptotically stable (GAS) if 0 < 1 and unstable if 0 > 1.
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OTTAVIANO ET AL.

Moreover, we prove the GAS of the DFE also in the case 0 = 1, for the model in which no vaccination is administered
to the susceptible individuals. In Section 4, we prove the existence and uniqueness of an endemic equilibrium (EE) by a
fixed point argument, as in Thieme [8], since there is no explicit expression for 0. In Section 4.1, we provide sufficient
conditions for the local asymptotic stability of the EE. In Section 5, we discuss the uniform persistence of the disease and
we investigate the global asymptotic stability of the EE for two variations of the original model under study. Precisely, in
Theorem 14, we study the global stability of the SAIR model (i.e., 𝛾 = 0), and we prove that the EE is GAS if 0 > 1. In
Section 5.2, we establish sufficient conditions for the GAS of the EE for the SAIRS model (i.e., 𝛾 ≠ 0) with vaccination,
under the restriction that asymptomatic and symptomatic individuals have the same average recovery period, that is,
𝛿A = 𝛿I . The problem of the global stability of the EE in the most general case, that is, 𝛿A ≠ 𝛿I , remains open. In Section 6,
we provide some numerical simulations in which we simulate the evolution of the epidemics in four different structures
of community networks.

2 THE MODEL

The system of ODEs that describes the evolution of the disease in the ith community is the following:

dSi(t)
dt

= 𝜇i −
n∑

𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t) − (𝜇i + 𝜈i)Si(t) + 𝛾Ri(t),

dAi(t)
dt

=
n∑

𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t) − (𝛼 + 𝛿A + 𝜇i)Ai(t),

dIi(t)
dt

= 𝛼Ai(t) − (𝛿I + 𝜇i)Ii(t),

dRi(t)
dt

= 𝛿AAi(t) + 𝛿IIi(t) + 𝜈iSi(t) − (𝛾 + 𝜇i)Ri(t), i = 1, … ,n,

(1)

with initial condition (S1(0),A1(0), I1(0),R1(0), … , Sn(0),An(0), In(0),Rn(0)) belonging to the set

Γ̄ = {(S1,A1, I1,R1, … , Sn,An, In,Rn) ∈ R
4n
+ |Si + Ai + Ii + Ri = 1, i = 1, … ,n}, (2)

where R
4n
+ indicates the non-negative orthant of R4n. The flow diagram representing the interaction among two groups

of system (1), as well as their internal dynamics, is given in Figure 1.

FIGURE 1 Flow diagram for system (1), depicting the interaction between communities i and 𝑗, as well as their internal dynamics. The
solid lines represent internal dynamics within each group, whereas the dashed lines represent the inter-group influence of infected
individuals. [Colour figure can be viewed at wileyonlinelibrary.com]
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OTTAVIANO ET AL.

Assuming initial conditions in Γ̄, Si(t) + Ai(t) + Ii(t) + Ri(t) = 1, for all t ≥ 0 and i = 1, … ,n; hence, system (1) is
equivalent to the following 3n-dimensional dynamical system:

dSi(t)
dt

= 𝜇i −
n∑

𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t) − (𝜇i + 𝜈i + 𝛾)Si(t) + 𝛾(1 − Ai(t) − Ii(t)),

dAi(t)
dt

=
n∑

𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t) − (𝛼 + 𝛿A + 𝜇i)Ai(t),

dIi(t)
dt

= 𝛼Ai(t) − (𝛿I + 𝜇i)Ii(t), i = 1, … ,n,

(3)

with initial condition (S1(0),A1(0), I1(0), … , Sn(0),An(0), In(0)) belonging to the set

Γ =
{
(S1,A1, I1, … , Sn,An, In) ∈ R

3n
+ |Si + Ai + Ii ≤ 1, i = 1, … ,n

}
.

System (3) can be written in vector notation as

dx(t)
dt

= 𝑓 (x(t)), (4)

where x(t) = (S1(t),A1(t), I1(t), … , Sn(t),An(t), In(t)) and 𝑓 (x(t)) = (𝑓1(x(t)), 𝑓2(x(t)), … , 𝑓3n(x(t))) is defined according
to (3).

We make the following assumptions:

Assumption 1.

• The matrices [𝛽A
i𝑗 ]i,𝑗=1,… ,n and [𝛽I

i𝑗]i,𝑗=1,… ,n are irreducible. This means that every pair of communities is connected
by a path.

• 𝛽A
ii ≠ 0, 𝛽I

ii ≠ 0, i = 1, … ,n. This means that infection can spread within each community.

Theorem 1. Γ is positively invariant for system (3). That is, for all initial values x(0) ∈ Γ, the solution x(t) of (3) will
remain in Γ for all t > 0.

Proof. Let us consider the boundary 𝜕Γ, as in Ottaviano et al. [16, Th. 1]. It consists of the following hyperplanes:

H1,i = {(S1,A1, I1, … , Sn,An, In) ∈ Γ | Si = 0},

H2,i = {(S1,A1, I1, … , Sn,An, In) ∈ Γ | Ai = 0},

H3,i = {(S1,A1, I1, … , Sn,An, In) ∈ Γ | Ii = 0},

H4,i = {(S1,A1, I1, … , Sn,An, In) ∈ Γ | Si + Ai + Ii = 1}, i = 1, … ,n.

Let us consider Hk,1, k = 1, 2, 3, 4. The outward normal vectors of H1,1, H2,1, H3,1, and H4,1 are, respectively,

𝜂1,1 = (−1, 0, 0, … , 0, 0, 0), 𝜂2,1 = (0,−1, 0, … , 0, 0, 0),

𝜂3,1 = (0, 0,−1, … , 0, 0, 0), 𝜂4,1 = (1, 1, 1, … , 0, 0, 0).

Let x ∈ Hk,1, k = 1, … , 4, and consider the following cases:

Case 1: S1 = 0. Then, since A1 + I1 ≤ 1,

⟨𝑓 (x), 𝜂1,1⟩ = −𝜇1 − 𝛾(1 − A1 − I1) ≤ 0.

14048
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OTTAVIANO ET AL.

Case 2: A1 = 0. Then, since S1 ≥ 0, Ai ≥ 0, Ii ≥ 0, i = 2, … ,n,

⟨𝑓 (x), 𝜂2,1⟩ = −

( n∑
𝑗=2

𝛽A
i𝑗A𝑗 +

n∑
𝑗=1

𝛽I
i𝑗I𝑗

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

S1 ≤ 0.

Case 3: I1 = 0. Then, since A1 ≥ 0,

⟨𝑓 (x), 𝜂3,1⟩ = −𝛼A1 ≤ 0.

Case 4: S1 + A1 + I1 = 1. Then, since S1 ≥ 0, A1 ≥ 0, I1 ≥ 0,

⟨𝑓 (x), 𝜂4,1⟩ = −𝜈1S1 − 𝛿AA1 − 𝛿II1 ≤ 0.

The proof for the hyperplanes Hk,i, k = 1, … , 4 and i = 2, … ,n is analogous. □

3 DISEASE ELIMINATION

System (3) always admits a DFE, whose expression is

x0 =
(

S0,1,A0,1, I0,1, … , S0,n,A0,n, I0,n
)
,

where

S0,i =
𝛾 + 𝜇i

𝛾 + 𝜇i + 𝜈i
, A0,i = I0,i = 0, i = 1, … ,n. (5)

Note that, in general, S0,i ≠ S0,𝑗 if i ≠ 𝑗.

Lemma 2. Consider the matrix

M1 =

((
𝛽A

i𝑗 +
𝛼𝛽I

i𝑗

𝛿I + 𝜇i

)
S0,i

𝛼 + 𝛿A + 𝜇i

)
i,𝑗=1,… ,n

.

The basic reproduction number 0 of (3) is

0 = 𝜌(M1) = 𝜌

(((
𝛽A

i𝑗 +
𝛼𝛽I

i𝑗

(𝛿I + 𝜇i)

)
𝛾 + 𝜇i

(𝛾 + 𝜇i + 𝜈i)(𝛼 + 𝛿A + 𝜇i)

)
i,𝑗=1,… ,n

)
, (6)

where 𝜌(M1) is the spectral radius of the matrix M1.

Proof. We shall use the next generation matrix method [30] to find 0. System (3) has 2n disease compartments,
namely Ai and Ii, i = 1, … ,n. Rearranging the order of the equations such that the disease compartments can be
written as x = (A1, … ,An, I1, … , In)T , we can rewrite the corresponding ODEs as

dAi(t)
dt

= 1i (Si(t),Ai(t), Ii(t)) − 1,i(Si(t),Ai(t), Ii(t)),

dIi(t)
dt

= 2,i(Si(t),Ai(t), Ii(t)) − 2,i(Si(t),Ai(t), Ii(t)),

where

1,i =
n∑

i=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t), 1,i = (𝛼 + 𝛿A + 𝜇i)Ai(t),

2,i = 0, 2,i = −𝛼Ai(t) + (𝛿I + 𝜇i)Ii(t).
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OTTAVIANO ET AL.

Thus, we obtain

F =

⎛⎜⎜⎜⎜⎝

(
𝜕1,i

𝜕A𝑗

(x0)
)

i,𝑗=1,… ,n

(
𝜕1,i

𝜕I𝑗
(x0)

)
i,𝑗=1,… ,n(

𝜕2,i

𝜕A𝑗

(x0)
)

i,𝑗=1,… ,n

(
𝜕2,i

𝜕I𝑗
(x0)

)
i,𝑗=1,… ,n

⎞⎟⎟⎟⎟⎠
, (7)

V =

⎛⎜⎜⎜⎜⎝

(
𝜕1,i

𝜕A𝑗

(x0)
)

i,𝑗=1,… ,n

(
𝜕1,i

𝜕I𝑗
(x0)

)
i,𝑗=1,… ,n(

𝜕2,i

𝜕A𝑗

(x0)
)

i,𝑗=1,… ,n

(
𝜕2,i

𝜕I𝑗
(x0)

)
i,𝑗=1,… ,n

⎞⎟⎟⎟⎟⎠
, (8)

which can be written in matrix notation

F =
(

B̃A B̃I

0 0

)
and V =

(
(𝛼 + 𝛿A)I + 𝜇 0

−𝛼I 𝛿II + 𝜇

)
,

where (B̃A)i𝑗 = 𝛽A
i𝑗S0,i, (B̃I)i𝑗 = 𝛽I

i𝑗S0,i, 𝜇 = diag(𝜇1, … , 𝜇n), and 0 and I are the zero matrix and the identity matrix of
order n, respectively. Since V is a block lower triangular matrix, its inverse is the 2n × 2n block matrix:

V−1 =
⎛⎜⎜⎝

diag
(

1
𝛼+𝛿A+𝜇i

)
i=1,… ,n

0

diag
(

𝛼

(𝛼+𝛿A+𝜇i)(𝛿I+𝜇i)

)
i=1,… ,n

diag
(

1
𝛿I+𝜇i

)
i=1,… ,n

⎞⎟⎟⎠ .
The next generation matrix is defined as M ∶= FV−1. By direct calculation, we obtain

M =
⎛⎜⎜⎝
((

𝛽A
i𝑗

𝛼+𝛿A+𝜇i
+

𝛼𝛽I
i𝑗

(𝛼+𝛿A+𝜇i)(𝛿I+𝜇i)

)
S0,i

)
i,𝑗=1,… ,n

(
𝛽I

i𝑗S0,i

𝛿I+𝜇i

)
i,𝑗=1,… ,n

0 0

⎞⎟⎟⎠ . (9)

The basic reproduction number 0 is defined as the spectral radius of M, denoted by 𝜌(M), that is, 𝜌(M) =
max{𝜌(M1), 0}, where

M1 =

((
𝛽A

i𝑗 +
𝛼𝛽I

i𝑗

𝛿I + 𝜇i

)
S0,i

𝛼 + 𝛿A + 𝜇i

)
i,𝑗=1,… ,n

. (10)

As a direct consequence of the Perron–Frobenius theorem [31], 𝜌(M1) > 0. This proves our claim. □

In the following, we present some results to prove the global asymptotic stability of the DFE x0.
Recall that a matrix M is called non-negative if each entry is non-negative; we simply write M ≥ 0 to indicate this. We

use the following results from van den Driessche and Watmough [32]:

Lemma 3 (van den Driessche and Watmough [32, Lemma 2]). If F is non-negative and V is a non-singular M-matrix,
then 0 = 𝜌(FV−1) < 1 if and only if all eigenvalues of (F − V) have negative real parts.

Note that the matrices F and V defined in Lemma 2 satisfy the hypotheses of Lemma 3; thus, the following result holds:

Theorem 4. The DFE of (3) is locally asymptotically stable if 0 < 1 and unstable if 0 > 1.

Proof. See van den Driessche and Watmough [32, Theorem 1]. □

Theorem 5. The DFE x0 of (3) is GAS in Γ if 0 < 1.
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OTTAVIANO ET AL.

Proof. Let x(t) = (S1(t), … , Sn(t),A1(t), … ,An(t), I1(t) … , In(t)) be the solutions of system (3) with initial condition
x(0) ∈ Γ, in which we have rearranged the order of the equations. In view of Theorem 4, it is sufficient to prove that
for all i = 1, … ,n,

lim
t→∞

Si(t) = S0,i, lim
t→∞

Ai(t) = 0, and lim
t→∞

Ii(t) = 0,

with S0,i as in (5). From the first n equations of (3), it follows that

dSi(t)
dt

≤ 𝜇i + 𝛾 − (𝜇i + 𝜈i + 𝛾)Si(t), i = 1, … ,n.

Thus, S0,i is a global asymptotically stable equilibrium for the comparison equation

dzi(t)
dt

= 𝜇i + 𝛾 − (𝜇i + 𝜈i + 𝛾)zi(t), i = 1, … ,n.

Then, for any 𝜀 > 0, there exists t̄i > 0, such that for all t ≥ t̄i, it holds

Si(t) ≤ S0,i + 𝜀, (11)

hence,

limsup
t→∞

Si(t) ≤ S0,i, i = 1, … ,n. (12)

Let t̄ = max{t1, … , tn}, then for all t ≥ t̄, from (11) and the remaining 2n equations of (3), it follows that

dAi(t)
dt

≤

n∑
𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗Ii(t)

)
(S0,i + 𝜀) − (𝛼 + 𝛿A + 𝜇i)Ai(t), i = 1, … ,n,

dIi(t)
dt

= 𝛼Ai(t) − (𝛿I + 𝜇i)Ii(t), i = 1, … ,n.

Let us now consider the comparison system

dvi(t)
dt

=
n∑

𝑗=1

(
𝛽A

i𝑗v𝑗(t) + 𝛽I
i𝑗ui(t)

)
(S0,i + 𝜀) − (𝛼 + 𝛿A + 𝜇i)vi(t),

dui(t)
dt

= 𝛼vi(t) − (𝛿I + 𝜇)ui(t), vi(t̄) = Ai(t̄), ui(t̄) = Ii(t̄), i = 1, … ,n.

Let w = (v1, … , vn,u1, … ,un)T , then one can rewrite this system as

dw(t)
dt

= (F𝜀 − V𝜀)w(t),

where F𝜀 and V𝜀 are the matrices defined in (7) and (8), respectively, evaluated in x0(𝜀) whose components are S0,i + 𝜀

for i = 1, … ,n and 0 in the remaining 2n components.
Notice that we can choose 𝜀 > 0 sufficient small such that 𝜌(F𝜀V−1

𝜀 ) < 1, and then, from Lemma 3, all the eigenvalues
of matrix (F𝜀−V𝜀) have negative real parts. It follows that limt→∞ wi(t) = 0 from any initial conditions in Γ, from which

lim
t→∞

Ai(t) = 0 and lim
t→∞

Ii(t) = 0.

Thus, for any 𝜀 > 0, there exists t̄1 > 0 such that, for all t ≥ t̄1, we have

Ai(t) < 𝜀 and Ii(t) < 𝜀, i = 1, … ,n.

14051

 10991476, 2023, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9303 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [17/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OTTAVIANO ET AL.

From that and the first n equations of system (3), we get that for all i = 1, … ,n and for t ≥ t̄1

dSi(t)
dt

≥ 𝜇i − 𝜀

n∑
𝑗=1

(
𝛽A

i𝑗 + 𝛽I
i𝑗

)
Si(t) − (𝜇i + 𝜈i + 𝛾)Si(t) + 𝛾(1 − 2𝜀).

The comparison system

dzi(t)
dt

= 𝜇i − 𝜀

n∑
𝑗=1

(
𝛽A

i𝑗 + 𝛽I
i𝑗

)
zi(t) − (𝜇i + 𝜈i + 𝛾)zi(t) + 𝛾(1 − 2𝜀), i = 1, … ,n,

has a GAS equilibrium

z0 =
⎛⎜⎜⎜⎝

𝜇1 + 𝛾(1 − 2𝜀)

𝜀
(∑n

𝑗=1 𝛽
A
1𝑗 + 𝛽I

1𝑗

)
+ (𝜇1 + 𝜈1 + 𝛾)

, … ,
𝜇n + 𝛾(1 − 2𝜀)

𝜀
(∑n

𝑗=1 𝛽
A
n𝑗 + 𝛽I

n𝑗

)
+ (𝜇n + 𝜈n + 𝛾)

⎞⎟⎟⎟⎠ .
Thus, we get that for any 𝜁 > 0, there exists t̄2 > 0 such that for all t ≥ t̄2,

Si(t) ≥
𝜇i + 𝛾(1 − 2𝜀)

𝜀
(∑n

𝑗=1 𝛽
A
i𝑗 + 𝛽I

i𝑗

)
+ (𝜇i + 𝜈i + 𝛾)

− 𝜁, i = 1, … ,n.

This implies that for all 𝜀 > 0

lim inf
t→∞

Si(t) ≥
𝜇i + 𝛾(1 − 2𝜀)

𝜀

( n∑
𝑗=1

𝛽A
i𝑗 + 𝛽I

i𝑗

)
+ (𝜇i + 𝜈i + 𝛾)

, i = 1, … ,n.

Letting 𝜀 go to 0, we have lim inft→∞ Si(t) ≥ S0,i for all i = 1, … ,n, which combined with (12) gives us

lim
t→∞

Si(t) = S0,i, i = 1, … ,n.

□

3.1 SAIRS without vaccination
Let us consider the SAIRS model without vaccination, that is, (3) with 𝜈i = 0, i = 1, … ,n. From (6), the expression of the
basic reproduction number is

0 = 𝜌

(((
𝛽A

i𝑗 +
𝛼𝛽I

i𝑗

𝛿I + 𝜇i

)
1

𝛼 + 𝛿A + 𝜇i

)
i,𝑗=1,… ,n

)
, (13)

and the components of the DFE (5) become S0,i = 1, A0,i = I0,i = 0, for all i = 1, … ,n.
In Theorems 4 and 5, we proved that the DFE is GAS if R0 < 1 and unstable if R0 > 1. In the following theorem, which

describe the case when we do not have any vaccination, we are able to prove that the DFE is GAS also when R0 = 1.

Theorem 6. The DFE x0 is GAS in Γ for (3) if 0 ≤ 1.

Proof. To prove the statement, we use the method presented in Shuai and van den Driessche [33].
Rearranging the order of the equations such that the disease compartments can be written as x =

(A1, … ,An, I1, … , In), system (3), restricted to these compartments, can be rewritten as

x′ = (F − V)x − 𝑓 (x, S),
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OTTAVIANO ET AL.

where

𝑓 (x, S) =

( n∑
𝑗=1

(
𝛽A

1𝑗A𝑗 + 𝛽I
1𝑗I𝑗

)
(S0,1 − S1), … ,

n∑
𝑗=1

(
𝛽A

n𝑗A𝑗 + 𝛽I
n𝑗I𝑗

)
(S0,n − Sn), 0, … , 0

)
≥ 0,

and 𝑓 (x, S) is a vector with non-negative elements for all (x, S) ∈ Γ and 𝑓 (x, S0) = 0, for all (x, S0) ∈ Γ.
Let 𝜔T be the left eigenvector of M corresponding to the eigenvalue 0. Note that in our case, the irreducibility

assumption for M in Shuai and van den Driessche [33, Theorem 2.2] fails. However, we can show that 𝜔 > 0. Indeed,
let 𝜔T = (𝜔1, 𝜔2), where 𝜔1 and 𝜔2 are both vectors with n components. It is easy to see that 𝜔1 is the left eigenvector
of the non-negative matrix M1 (10) corresponding to its spectral radius 𝜌(M1) = 0. Since M1 is irreducible and
non-negative, it follows by the Perron–Frobenius theorem that 𝜔1 > 0. Moreover, from (9), let

M2 =

(
𝛽I

i𝑗S0,i

𝛿I + 𝜇i

)
i,𝑗=1,… ,n

,

then, we have 𝜔1M2 = 0𝜔2; since 𝜔1M2 > 0 it follows that 𝜔2 > 0. Hence, 𝜔 > 0. Now, consider the following
Lyapunov function:

Q = 𝜔TV−1x.

By differentiating Q along the solution of (3), we obtain

Q′ =𝜔TV−1x′

=𝜔TV−1 (F − V) x − 𝜔TV−1𝑓 (x, S)

= (0 − 1)𝜔Tx − 𝜔TV−1𝑓 (x, S).

Since 𝜔T > 0, V−1 ≥ 0 and 𝑓 (x, S) ≥ 0, it follows that Q′ ≤ (0 − 1)𝜔Tx, Hence, Q′ ≤ 0 provided 0 ≤ 1. Moreover,
Q′ = 0 if x = 0 or Si = S0,i, for all i = 1, … ,n, but this last case still implies x = 0. It can be verified that the
only invariant set where x = 0 is the singleton {x0}. Hence, by LaSalle's invariance principle, the DFE x0 is GAS if
0 ≤ 1. □

4 EXISTENCE AND UNIQUENESS OF EE

To prove the existence and uniqueness of an EE point, we recall the following definition and theorem from Hethcote and
Thieme [34].

Definition 7. A function F(x) ∶ R
n
+ → R

n
+ is called strictly sublinear if for fixed x ∈ (0,∞)n and fixed r ∈ (0, 1)n,

there exists an 𝜀 > 0 such that F(rx) ≥ (1 + 𝜀)rF(x), where ≥ denotes the pointwise ordering in R
n.

Theorem 8 (Theorem 2.2 [34]). Let F(x) ∶ R
n
+ → R

n
+ be a continuous, monotone nondecreasing, strictly sublinear, and

bounded function. Let F(0) = 0 and JF(0) exist and be irreducible, where JF is the Jacobian matrix of F. Then, F(x) does not
have a nontrivial fixed point on the boundary of Rn

+. Moreover, F(x) has a positive fixed point if and only if 𝜌(JF(0)) > 1.
If there is a positive fixed point, then it is unique.

By using the above result, we can prove the following theorem.

Theorem 9. System (3) admits a unique EE x∗ ∶=
(

S∗
1,A∗

1, I∗1 , … , S∗
n,A∗

n, I∗n
)

in Γ̈ if and only if 0 > 1.

Proof. An equilibrium point is a solution of the nonlinear equations obtained by setting the right-hand side of
Equation (3) equal to zero. Then, the following must hold:

𝜇i −
n∑

𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i − (𝜇i + 𝜈i + 𝛾)S∗
i + 𝛾(1 − A∗

i − I∗i ) = 0, (14)
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OTTAVIANO ET AL.

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i − (𝛼 + 𝛿A + 𝜇i)A∗
i = 0, (15)

𝛼A∗
i − (𝛿I + 𝜇i)I∗i = 0, (16)

for i = 1, 2, … ,n. By excluding as solution the DFE (5), we assume A∗
i > 0, for some 1 ≤ i ≤ n. From (16), we

immediately obtain

I∗i = 𝛼

𝛿I + 𝜇i
A∗

i =∶ KiA∗
i , (17)

for all i = 1, 2, … ,n. Substituting (17) in (15), we obtain

S∗
i =

(𝛼 + 𝛿A + 𝜇i)A∗
i∑n

𝑗=1

(
𝛽A

i𝑗 + 𝛽I
i𝑗K𝑗

)
A∗
𝑗

. (18)

By our assumption on x∗, the denominator of (18) is strictly positive. Lastly, substituting (17) and (18) into (14), we
obtain

𝜇i − (𝛼 + 𝛿A + 𝜇i)A∗
i − (𝜇i + 𝜈i + 𝛾)

(𝛼 + 𝛿A + 𝜇i)A∗
i∑n

𝑗=1

(
𝛽A

i𝑗 + 𝛽I
i𝑗K𝑗

)
A∗
𝑗

+ 𝛾
(
1 − (1 + Ki)A∗

i
)
= 0,

which can be rearranged to give

A∗
i =

(𝜇i + 𝛾)
∑n

𝑗=1(𝛽A
i𝑗 + 𝛽I

i𝑗K𝑗)A∗
𝑗

(𝜇i + 𝜈i + 𝛾)(𝛼 + 𝛿A + 𝜇i) + (𝛼 + 𝛿A + 𝜇i + 𝛾 + 𝛾Ki)
∑n

𝑗=1

(
𝛽A

i𝑗 + 𝛽I
i𝑗K𝑗

)
A∗
𝑗

.

We can collect (𝜇i + 𝜈i + 𝛾)(𝛼 + 𝛿A + 𝜇i) and (𝜇i + 𝛾) in both the numerator and denominator, to obtain

A∗
i =

∑n
𝑗=1 (M1)i,𝑗A∗

𝑗

1 + (𝜇i + 𝛾)−1(𝛼 + 𝛿A + 𝜇i + 𝛾 + 𝛾Ki)
∑n

𝑗=1 (M1)i,𝑗A∗
𝑗

, (19)

with M1 as in (6).
Define a function H = (h1, … , hn) ∶ R

n
+ → R

n
+, in the following way:

hi(𝑦) =
∑n

𝑗=1 (M1)i,𝑗𝑦𝑗

1 + (𝜇i + 𝛾)−1(𝛼 + 𝛿A + 𝜇i + 𝛾 + 𝛾Ki)
∑n

𝑗=1 (M1)i,𝑗𝑦𝑗
, i = 1, 2, … ,n.

Then, since

𝜕h𝑗

𝜕𝑦i
> 0,

for all i, 𝑗 = 1, 2, … ,n, H is monotonically increasing in all its components. Moreover, JH(0) = M1 that is a
non-negative and irreducible matrix and the function H(x) is bounded and strictly sublinear with

𝜀 = min
i

(1 − r)𝜉i
∑n

𝑗=1 (M1)i,𝑗𝑦𝑗

1 + r𝜉i
∑n

𝑗=1 (M1)i,𝑗𝑦𝑗
,

where

𝜉i = (𝜇i + 𝛾)−1(𝛼 + 𝛿A + 𝜇i + 𝛾 + 𝛾Ki).

Thus, by Theorem 8, we have that system (3) has an unique EE in Γ̈. □

14054

 10991476, 2023, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9303 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [17/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OTTAVIANO ET AL.

Remark 1. From Equation (17), we can note that since I∗i < 1, we have that A∗
i <

𝛿I+𝜇i
𝛼

.

4.1 Local asymptotic stability
In this section, we investigate the local asymptotic stability of the EE.

Theorem 10. Assume 0 > 1 and that for any fixed 𝑗, 𝛽I
i𝑗 = h𝑗𝛽

A
i𝑗 for all i = 1, … ,n. Moreover, let us assume that

𝛿A > 𝜈i, 𝛿I > 𝜈i, and (𝛿I − 𝜈i)𝛼 ≤ 2(𝜇i + 2𝜈i + 𝛾 + 𝛿I)
√
((𝜇i + 𝜈i + 𝛾)(𝛿I + 𝜈i)) + (𝜇i + 2𝜈i + 𝛾 + 𝛿I)2,

for i = 1, … ,n. Then, the EE x∗ ∶=
(

S∗
1,A∗

1, I∗1 , … , S∗
n,A∗

n, I∗n
)

is local asymptotically stable.

Proof. Usually, the asymptotic local stability of the EE point is studied by linearizing system (4) around that point.
However, it is known that the EE is asymptotically stable if the linearized system d𝑦

dt
= J𝑓 (x∗)𝑦 has no solution of the

form 𝑦(t) = Yezt with

Y = (U1, … ,Un,V1, … ,Vn,W1, … ,Wn) ∈ C
3n,

z ∈ C, Rez ≥ 0, that is, it means that zY = J𝑓 (x∗)Y with Y ∈ C
n∖{0}, z ∈ C implies Rez < 0 [8, 34]. To prove our

statement with this strategy, we consider the following system, equivalent to (4):

dx
dt

= 𝑓 (x(t)),

where x(t) = (A1(t), I1(t),R1(t), … ,An(t), In(t),Rn(t)) and 𝑓 (x(t)) = (𝑓1(x(t)), 𝑓2(x(t)), … , 𝑓3n(x(t))), with

𝑓 (x1(t)) =
n∑

𝑗=1
(𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t))(1 − Ai(t) − Ii(t) − Ri(t)) − (𝛼 + 𝜇i + 𝛿A)Ai(t),

𝑓 (x2(t)) = 𝛼Ai(t) − (𝜇i + 𝛿I)Ii(t),

𝑓 (x3(t)) = 𝛿AAi(t) + 𝛿IIi(t) + 𝜈i(1 − Ai(t) − Ii(t) − Ri(t)) − (𝜇i + 𝛾)Ri(t).

Now, to prove the asymptotic local stability of x∗, we consider the following equations:

zUi =
(
1 − A∗

i − I∗i − R∗
i
) n∑

𝑗=1

(
𝛽A

i𝑗U𝑗 + 𝛽I
i𝑗V𝑗

)
−

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
(Ui + Vi + Wi) − (𝛼 + 𝜇i + 𝛿A)Ui,

zVi = 𝛼Ui − (𝛿I + 𝜇i)Vi,

zWi = (𝛿A − 𝜈i)Ui + (𝛿I − 𝜈i)Vi − (𝜇i + 𝜈i + 𝛾)Wi, i = 1, … ,n,

(20)

with Ui,Vi,Wi, z ∈ C. We proceed by assuming that Rez ≥ 0 and showing that this assumption leads to a contradiction.
From the second and third equation of (20), we have, respectively,

Vi =
𝛼

z + 𝛿I + 𝜇i
Ui ∶= K1

i (z)Ui, (21)

and

Wi =
[

1
z + 𝜇i + 𝜈i + 𝛾

(
(𝛿A − 𝜈i) +

(𝛿I − 𝜈i)𝛼
z + 𝛿I + 𝜈i

)]
Ui ∶= K2

i (z)Ui. (22)

Now, considering the assumption that fixed 𝑗, 𝛽I
i𝑗 = h𝑗𝛽

A
i𝑗 for all i = 1, … ,n, and replacing (21) and (22) in the first

equation of (20), we obtain

zUi = S∗
i

n∑
𝑗=1

𝛽A
i𝑗
(
1 + h𝑗K1

𝑗 (z)
)

U𝑗 −

[ n∑
𝑗=1

𝛽A
i𝑗
(

A∗
𝑗 + h𝑗I∗𝑗

) (
1 + K1

i (z) + K2
i (z)

)
+ (𝛼 + 𝜇i + 𝛿A)

]
Ui,

14055
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OTTAVIANO ET AL.

from which[
1 + 1

𝛼 + 𝜇i + 𝛿A

(
z +

n∑
𝑗=1

𝛽A
i𝑗
(

A∗
𝑗 + h𝑗I∗𝑗

) (
1 + K1

i (z) + K2
i (z)

))]
Ui =

S∗
i

𝛼 + 𝜇i + 𝛿A

n∑
𝑗=1

𝛽A
i𝑗
(
1 + h𝑗K1

𝑗 (z)
)

U𝑗 . (23)

Now, let

𝜂i(z) =
1

𝛼 + 𝜇i + 𝛿A

(
z +

n∑
𝑗=1

𝛽A
i𝑗
(

A∗
𝑗 + h𝑗I∗𝑗

) (
1 + K1

i (z) + K2
i (z)

))
,

and consider the following transformation:

U𝑗 =
(

1 +
h𝑗𝛼

z + 𝛿I + 𝜇𝑗

)−1 (
1 +

h𝑗𝛼

𝛿I + 𝜇𝑗

)
Ũ𝑗 .

Then, we get

(1 + 𝜂i(z))
(

1 + hi𝛼

z + 𝛿I + 𝜇i

)−1 (
1 + hi𝛼

𝛿I + 𝜇i

)
Ũi =

S∗
i

𝛼 + 𝜇i + 𝛿A

n∑
𝑗=1

𝛽A
i𝑗

(
1 +

h𝑗𝛼

𝛿I + 𝜇𝑗

)
Ũ𝑗 . (24)

Now, let us note that if Rez ≥ 0, then

Re

((
1 + hi𝛼

z + 𝛿I + 𝜇i

)−1 (
1 + hi𝛼

𝛿I + 𝜇i

))
≥ 1. (25)

Hence, we can rewrite (24) in the following form:

(1 + 𝜂i(z)) (1 + 𝜂̃i(z))Ũi = (CŨ)i, (26)

where C = (ci𝑗) with

ci𝑗 =
S∗

i

𝛼 + 𝜇i + 𝛿A

n∑
𝑗=1

𝛽A
i𝑗

(
1 +

h𝑗𝛼

𝛿I + 𝜇𝑗

)
, i, 𝑗 = 1, … ,n.

From (25), we have that Re𝜂̃i(z) ≥ 0. Moreover, the following claim, whose proof is given in Appendix A1, holds:

Claim 11. If Rez ≥ 0, then Re𝜂i(z) > 0.

Now, let us note that C is a non-negative matrix and that A∗ = CA∗, where A∗ = (A∗
1, … ,A∗

n). Let

𝜂(z) = inf{Re𝜂i(z), i = 1, … ,n}, and |Ũ| = (|Ũ1|, … , |Ũn|),
and taking the absolute values in (26), we get

(1 + 𝜂(z))|Ũ| ≤ C|Ũ|. (27)

It is easy to verify that if Rez ≥ 0, then Re𝜂i(z) > 0 for all i, hence 𝜂(z) > 0. Now, we define 𝜖 to be the minimum
value for which |Ũ| ≤ 𝜖A∗. Since the components of A∗ belong to (0, 1), 𝜖 < ∞. Hence, by (27), (1+𝜂(z))|Ũ| ≤ C|Ũ| ≤
𝜖CA∗ = 𝜖A∗. This inequality contradicts the minimality of 𝜖 because 𝜂(z) > 0 if Rez ≥ 0; thus, we can conclude that
Rez < 0 and the equilibrium is stable. □

As in Ottaviano et al. [16], we conjecture that some, if not all, these technical assumptions could be relaxed, as our
numerical simulations suggest. However, the techniques we use in this paper require such assumptions on the parameters
in order to reach a result, and multi-group models often require cumbersome hypotheses [35–37].
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OTTAVIANO ET AL.

5 GLOBAL STABILITY OF THE EE

In this section, we first discuss the persistence of the disease, then we investigate the global stability property of the EE
for some variations of the original model (1).

Definition 12. System (3) is said to be uniformly persistent if there exists a constant 0 < 𝜀 < 1 such that any solution
x(t) with x(0) ∈ Γ̈ satisfies

min
{

lim inf
t→∞

Si(t), lim inf
t→∞

Ai(t), lim inf
t→∞

Ii(t)
}
≥ 𝜀, i = 1, … ,n. (28)

Theorem 13. If 0 > 1, system (3) is uniformly persistent.

Proof. From Theorem 9, we know that DFE x0 is the unique equilibrium of (3) on 𝜕Γ, that is, the largest invariant
set on 𝜕Γ is the singleton {x0}, which is isolated. If 0 > 1, we know from Theorem 4 that x0 is unstable. Then, by
using Freedman et al. [38, Theorem 4.3], and similar arguments in Li et al. [39, Proposition 3.3], we can assert that
the instability of x0 implies the uniform persistence of (3). □

5.1 Global stability of the EE in the SAIR model
In this section, we study the global asymptotic stability of the EE of the SAIR model, which describes the dynamic of a
disease which confers permanent immunity (i.e., 𝛾 = 0). The dynamic of an SAIR model of this type is described by the
following system of equations:

dSi(t)
dt

= 𝜇i −
n∑

𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t) − (𝜇i + 𝜈i)Si(t),

dAi(t)
dt

=
n∑

𝑗=1

(
𝛽A

i𝑗A𝑗(t) + 𝛽I
i𝑗I𝑗(t)

)
Si(t) − (𝛼 + 𝛿A + 𝜇i)Ai(t),

dIi(t)
dt

= 𝛼Ai(t) − (𝛿I + 𝜇i)Ii(t), i = 1, … ,n.

(29)

The basic reproduction number is derived by substituting 𝛾 with 0 in (6):

0 = 𝜌

(((
𝛽A

i𝑗 +
𝛼𝛽I

i𝑗

(𝛿I + 𝜇i)

)
𝜇i

(𝜇i + 𝜈i)(𝛼 + 𝛿A + 𝜇i)

)
i,𝑗=1,… ,n

)
.

If 0 > 1, system (29) has a unique equilibrium in Γ̈, which satisfies

𝜇i =
n∑

𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i + (𝜇i + 𝜈i)S∗
i , (30)

(𝛼 + 𝛿A + 𝜇i)A∗
i =

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i , (31)

𝛼A∗
i = (𝛿I + 𝜇i)I∗i . (32)

Theorem 14. The EE x∗ is GAS in Γ̈ if 0 > 1.

Proof. In order to prove the statement, we use a graph-theoretic approach as in Shuai and van den Driessche [33] to
establish the existence of a Lyapunov function. Let us define

s̃i =
Si

S∗
i
, ãi =

Ai

A∗
i
, ζ̃i =

Ii

I∗i
,
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OTTAVIANO ET AL.

and g(x) ∶= x−1−ln(x) ≥ 0 for all x > 0. Let Vi = Vi,1+Vi,2,where Vi,1 = S∗
i ·g (s̃i) ,Vi,2 = A∗

i ·g (ãi) , and Vn+i = I∗i ·g(ζ̃i),
for i = 1, … ,n.

Define h(x) ∶= −g(x) − 1 = −x + ln(x) and note that

(
1 − 1

x

)
(x − 1) = −2 + x + 1

x
= −1 + x − ln x − 1 + 1

x
− ln 1

x
= g(x) + g

(1
x

)
. (33)

Substituting (30), (31), and (32) in (29), we obtain

dSi(t)
dt

= − S∗
i (𝜇i + 𝜈i)(s̃i − 1) +

n∑
𝑗=1

(
𝛽A

i𝑗
(

A∗
𝑗 S∗

i − A𝑗Si
)
+ 𝛽I

i𝑗
(

I∗𝑗 S∗
i − I𝑗Si

))
,

dAi(t)
dt

=
n∑

𝑗=1

((
𝛽A

i𝑗A𝑗 + 𝛽I
i𝑗I𝑗

)
Si −

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i
Ai

A∗
i

)
,

dIi(t)
dt

= 𝛼

(
Ai − A∗

i
Ii

I∗i

)
, i = 1, … ,n.

For i = 1, … ,n, differentiating Vi along the solutions of (29) and using (33), we have

dVi,1

dt
=

(
1 − 1

s̃i

)
dSi(t)

dt

=
(

1 − 1
s̃i

)[
−S∗

i (𝜇i + 𝜈i)(s̃i − 1) +
n∑

𝑗=1

(
𝛽A

i𝑗
(

A∗
𝑗 S∗

i − A𝑗Si
)
+ 𝛽I

i𝑗
(

I∗𝑗 S∗
i − I𝑗Si

))]

=
(

1 − 1
s̃i

)[
−S∗

i (𝜇i + 𝜈i)(s̃i − 1) +
n∑

𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i
(
1 − ã𝑗 s̃i

)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i
(
1 − ζ̃𝑗 s̃i

))]

= − S∗
i (𝜇i + 𝜈i)

(s̃i − 1)2

Si
+

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i

(
1 − ã𝑗 s̃i −

1
s̃i
+ ã𝑗

)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i

(
1 − ζ̃𝑗 s̃i −

1
s̃i
+ ζ̃𝑗

))
,

(34)

dVi,2

dt
=

(
1 − 1

ãi

)
dAi(t)

dt

=
(

1 − 1
ãi

)[ n∑
𝑗=1

((
𝛽A

i𝑗A𝑗 + 𝛽I
i𝑗I𝑗

)
Si −

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i
Ai

A∗
i

)]

=
(

1 − 1
ãi

)[ n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗S∗

i
(

ã𝑗 s̃i − ãi
)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i
(
ζ̃𝑗 s̃i − ãi

))]

=
n∑

𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i

(
ã𝑗 s̃i − ãi −

ã𝑗 s̃i

ãi
+ 1

)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i

(
ζ̃𝑗 s̃i − ãi −

ζ̃𝑗 s̃i

ãi
+ 1

))
.

(35)

Thus, from (34) and (35), we obtain

dVi

dt
≤

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i

(
2 − 1

s̃i
+ ã𝑗 − ãi −

ã𝑗 s̃i

ãi

)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i

(
2 − 1

s̃i
+ ζ̃𝑗 − ãi −

ζ̃𝑗 s̃i

ãi

))
. (36)
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OTTAVIANO ET AL.

Using the fact that 1 − x ≤ − ln(x), we can write

2 − 1
s̃i
+ ã𝑗 − ãi −

ã𝑗 s̃i

ãi
≤ ã𝑗 − ãi − ln

(
1
s̃i

)
− ln

( ã𝑗 s̃i

ãi

)
= h(ãi) − h(ã𝑗),

2 − 1
s̃i
+ ζ̃𝑗 − ãi −

ζ̃𝑗 s̃i

ãi
≤ ζ̃𝑗 − ãi − ln

(
1
s̃i

)
− ln

(
ζ̃𝑗 s̃i

ãi

)
= h(ãi) − h(ζ̃𝑗).

Thus, we obtain

dVi

dt
≤

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i (h(ãi) − h(ã𝑗)) + 𝛽I
i𝑗I

∗
𝑗 S∗

i (h(ãi) − h(ĩ𝑗))
)
=∶

2n∑
𝑗=1

𝛽i𝑗Gi,𝑗 ,

where

𝛽i𝑗 =

{
𝛽A

i𝑗A∗
𝑗
S∗

i , 1 ≤ 𝑗 ≤ n,
𝛽I

i 𝑗−nI∗
𝑗−nS∗

i , n + 1 ≤ 𝑗 ≤ 2n,
and Gi𝑗 =

{ h(ãi) − h(ã𝑗), 1 ≤ 𝑗 ≤ n,
h(ãi) − h(ζ̃𝑗−n), n + 1 ≤ 𝑗 ≤ 2n.

Moreover, for all i = 1, … ,n,

dVn+i

dt
=

(
1 − 1

ζ̃i

)
dIi

dt
= 𝛼

(
1 − 1

ζ̃i

)[
Ai − A∗

i
Ii

I∗i

]
= 𝛼A∗

i

(
1 − 1

ζ̃i

)(
ãi − ζ̃i

)
= 𝛼A∗

i

(
ãi − ζ̃i −

ãi

ζ̃i
+ 1

)
,

(37)

and again, using the fact that 1 − x ≤ − ln(x), we have

1 + ãi − ζ̃i −
ãi

ζ̃i
≤ ãi − ζ̃i − ln

(
ãi

ζ̃i

)
= h(ζ̃i) − h(ãi).

Thus,

dVn+i

dt
≤ 𝛼A∗

i (h(ζ̃i) − h(ãi)) =∶ 𝛽n+i iGn+i i. (38)

We can construct a weighted digraph , associated with the weight matrix B̃ = (𝛽i𝑗)i,𝑗=1,… ,2n, with 𝛽i𝑗 > 0 as defined
above and zero otherwise; see Figure 2. Let us note that, from Assumption 1, the digraph (, B̃) is strongly connected.
Since Gi n+𝑗 + Gn+𝑗 𝑗 = −ãi + ln(ãi) + ã𝑗 − ln(ã𝑗) = Gi𝑗 , i, 𝑗 = 1, … ,n, it can be verified that each directed cycle 

of (, B̃) has
∑

(s,r)∈()Grs = 0, where () denotes the arc set of the directed cycle . Thus, the assumptions of Shuai
and van den Driessche [33, Theorem 3.5] hold; hence, the function

V =
n∑

i=1
(ciVi + cn+iVn+i) ,

for constants ci > 0 defined as in Shuai and van den Driessche [33, Proposition 3.1], satisfies dV
dt

≤ 0, meaning that V
is a Lyapunov function for system (29). It can be verified that the largest compact invariant set in which dV

dt
= 0 is the

singleton {x∗}. Hence, our claim follows by LaSalle's invariance principle [40]. □

Remark 2. We observe that the proof of Theorem 14 also holds for the case 𝛿A = 0 in system (3). That is to say, for
a model with two stages of infection I1 and I2, in which from the first class of infection one passes to the second at
the rate 𝛼 and one cannot directly pass into the compartment of recovered individuals. Then, from the second stage
of infection, one can recover at the rate 𝛿I2 . It is known that, if 𝛼 = 𝛿I2 , the length of the infectious period follows a
gamma distribution; otherwise, the resulting distribution is not a standard one. Moreover, we remark that Theorem
14 only requires 0 > 1, and no additional conditions on the parameters, despite the complexity of the model under
study. Models with multiple infected compartments have been studied, for example, in previous studies [41–43].
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OTTAVIANO ET AL.

5.2 Global stability of the SAIRS model when 𝛿A = 𝛿I =∶ 𝛿

In the 𝛿A = 𝛿I =∶ 𝛿 case, from (6), we have

0 = 𝜌

(((
𝛽A

i𝑗 +
𝛼𝛽I

i𝑗

(𝛿 + 𝜇i)

)
𝛾 + 𝜇i

(𝛾 + 𝜇i + 𝜈i)(𝛼 + 𝛿 + 𝜇i)

)
i,𝑗=1,… ,n

)
.

If 0 > 1, system (1) with 𝛿A = 𝛿I =∶ 𝛿 has a unique equilibrium in Γ̈, which satisfies

𝜇i =
n∑

𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i + (𝜇i + 𝜈i)S∗
i − 𝛾R∗

i ,

(𝛼 + 𝛿 + 𝜇i)A∗
i =

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 + 𝛽I

i𝑗I
∗
𝑗

)
S∗

i ,

𝛼A∗
i = (𝛿 + 𝜇i)I∗i ,

𝜈iS∗
i = − 𝛿(A∗

i + I∗i ) + (𝛾 + 𝜇i)R∗
i .

(39)

Theorem 15. Assume that (𝜇i + 𝜈i)S∗
i ≥ 𝛾R∗

i and 𝛿 > 𝜈i, for each i = 1, … ,n. Then, the EE x∗ is GAS in Γ̈ if 0 > 1.

Proof. Let s̃i, ãi, ζ̃i, Vi, and Vn+i as in Theorem 14. Let us define r̃i =
Ri
R∗

i
and

Wi =
𝛾

S∗
i (𝛿 − 𝜈i)

(
Ri − R∗

i

)2

2
, i = 1, … ,n.

FIGURE 2 The weighted digraph (G, B̃) constructed for system (29)

TABLE 1 Values of the parameters used in the simulations: 𝛽A
ii = 0.8, which we reduced to 𝛽A

i𝑗 = 0.4 if i ≠ 𝑗, to
model a lower inter-community spreading; 𝛽I

ii = 0.95 and 𝛽I
i𝑗 = 0.475 if i ≠ 𝑗; 𝜇i = 1∕(70 · 365), meaning an

average lifespan of 70 years for all i; 𝜈i = 0.01, meaning 1% of the susceptible population is vaccinated every day
for all i; 𝛾 = 0.02, meaning an average immunity of 50 days; 𝛿A = 0.1, 𝛿I = 0.51, 𝛼 = 0.8.

𝜷A
ii

𝜷A
i𝒋

𝜷I
ii

𝜷I
i𝒋

𝝁i 𝝂i 𝜸 𝜹A 𝜹I 𝜶

0.8 0.4 0.95 0.475 1∕(70 · 365) 0.01 0.02 0.1 0.51 0.8
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OTTAVIANO ET AL.

By using Equation (39), and differentiating along the solution of (1) with 𝛿A = 𝛿I =∶ 𝛿, we obtain

dVi,1

dt
=

(
1 − 1

s̃i

)
dSi(t)

dt
=

(
1 − 1

s̃i

)[
−S∗

i (𝜇i + 𝜈i)(s̃i − 1) + 𝛾R∗
i (r̃i − 1) +

n∑
𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i
(
1 − ã𝑗 s̃i

)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i
(
1 − ζ̃𝑗 s̃i

))]
= − S∗

i (𝜇i + 𝜈i)
(

1 − 1
s̃i

)
(s̃i − 1) + 𝛾R∗

i

(
1 − 1

s̃i

)
(r̃i − 1)

+
n∑

𝑗=1

(
𝛽A

i𝑗A∗
𝑗 S∗

i

(
1 − ã𝑗 s̃i −

1
s̃i
+ ã𝑗

)
+ 𝛽I

i𝑗I
∗
𝑗 S∗

i

(
1 − ζ̃𝑗 s̃i −

1
s̃i
+ ζ̃𝑗

))
,

(40)
and the derivatives dVi,2

dt
and dVn+i

dt
as in (35) and (37), respectively. Moreover,

dWi

dt
= 𝛾

S∗
i (𝛿 − 𝜈i)

(
Ri − R∗

i
) dRi

dt
= 𝛾

S∗
i (𝛿 − 𝜈i)

(
Ri − R∗

i
) [

𝛿
(

Ai − A∗
i + Ii − I∗i

)
+ 𝜈i(Si − S∗

i ) − (𝛾 + 𝜇i)
(

Ri − R∗
i
)]

= 𝛾

S∗
i (𝛿 − 𝜈i)

(
Ri − R∗

i
) [

𝛿(S∗
i − Si + R∗

i − Ri) + 𝜈i(Si − S∗
i ) − (𝛾 + 𝜇i)

(
Ri − R∗

i
)]

= 𝛾

S∗
i (𝛿 − 𝜈i)

R∗
i S∗

i (𝜈i − 𝛿)(s̃i − 1)(r̃i − 1) − (𝛾 + 𝜇i + 𝛿)R∗
i (r̃i − 1)2,

(41)

FIGURE 3 The four different network structures we consider in our numerical simulations. Circles represent the communities, numbered
from 1 to 9, corresponding to C1 to C9 in Figures 4–7. Lines represent the links between the various communities. We use lines instead of
arrows, since all networks are considered as undirected.
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by assumption 𝛿 > 𝜈i, thus

dWi

dt
≤ −𝛾R∗

i (s̃i − 1)(r̃i − 1). (42)

Let us consider the weighted digraph , the weight matrix B̃, and the functions Gi,𝑗 , for i, 𝑗 = 1, … , 2n defined as
in Theorem 14. Consider the following function:

V =
n∑

i=1
(ciVi + cn+iVn+i) +

n∑
i=1

ciWi,

where the constant ci > 0 are defined as in Shuai and van den Driessche [33, Proposition 3.1]. Then, by following
similar steps as in Theorem 14 and from (42), we obtain

dV
dt

≤

2n∑
i=1

2n∑
𝑗=1

ci𝛽i𝑗Gi,𝑗 −
n∑

i=1
ci(𝜇i + 𝜈i)S∗

i

(
1 − 1

s̃

)
(s̃i − 1) +

n∑
i=1

ci𝛾R∗
i (r̃i − 1)

[(
1 − 1

s̃i

)
− (s̃i − 1)

]
=

2n∑
i=1

2n∑
𝑗=1

ci𝛽i𝑗Gi,𝑗 −
n∑

i=1
ci(𝜇i + 𝜈i)S∗

i

(
1 − 1

s̃

)
(s̃i − 1) +

n∑
i=1

ci𝛾R∗
i (r̃i − 1)

(
1 − 1

s̃i

)
(1 − s̃i)

=
2n∑
i=1

2n∑
𝑗=1

ci𝛽i𝑗Gi,𝑗 −
n∑

i=1
ci

[
(𝜇i + 𝜈i)S∗

i + 𝛾R∗
i (r̃i − 1)

] (
1 − 1

s̃

)
(s̃i − 1).

(43)

FIGURE 4 Evolution of the epidemic in each community of the cycle-tree network, see Figure 3A. The title of each subplot indicates the
community it represents, as well as the peak time of infected individuals. In this setting, from (6), we obtain 0 = 4.37. Refer to Table 1 for
the values of the parameters. [Colour figure can be viewed at wileyonlinelibrary.com]
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OTTAVIANO ET AL.

Now, since it can be verified that over each directed cycle  of (, B̃),
∑

(s,r)∈()Grs = 0, by following the same
arguments in the proof of Shuai and van den Driessche [33, Theorem 3.5], we have that

∑2n
i=1

∑2n
𝑗=1 ci𝛽i𝑗Gi,𝑗 = 0.

Moreover, by assumption (𝜇i + 𝜈i)S∗
i ≥ 𝛾R∗

i , for each i = 1, … ,n, hence

(𝜇i + 𝜈i)S∗
i + 𝛾R∗

i (ri − 1) ≥ (𝜇i + 𝜈i)S∗
i − 𝛾R∗

i ≥ 0, i = 1, … ,n.

Thus, we have dV
dt

≤ 0.
Since the largest compact invariant set in which dV

dt
= 0 is the singleton {x∗}, by LaSalle invariance principle, our

claim follows. □

Remark 3. Note that if 𝜈i = 0 for all i, we obtain the same sufficient conditions for the GAS of the EE found for the
SIRS model in Muroya et al. [13].

6 NUMERICAL ANALYSIS

In this section, we explore the role of the network structures in the evolution of the epidemics. The primary criterion for
parameter selection is the clarity of the resulting plot. Hence, the simulations were carried out with a set of parameters
considered in Ottaviano et al. [16]. These parameters, summarized in Table 1, ensure that 0 > 1 in all the networks, we
consider, whose shapes are represented in Figure 3.

FIGURE 5 Evolution of the epidemic in each community of the star network, see Figure 3B. The title of each subplot indicates the
community it represents, as well as the peak time of infected individuals. In this setting, from (6), we obtain 0 = 4.91. Refer to Table 1 for
the values of the parameters. [Colour figure can be viewed at wileyonlinelibrary.com]
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OTTAVIANO ET AL.

In particular, we remark on how sensitive 0 is on the topology of the network, which is reflected in its adjacency
matrix. Indeed, let us consider (6) and let

𝛽1 = min
i,𝑗

(M1)i,𝑗 , and 𝛽2 = max
i,𝑗

(M1)i,𝑗 .

Let us define ̄ =  + In, where  is the adjacency matrix and n the number of nodes of the network we are consid-
ering, respectively. Then, as a consequence of the Perron–Frobenius theorem, the following lower and upper bounds for
0 hold:

𝛽1𝜌(̄) ≤ 0 ≤ 𝛽2𝜌(̄). (44)

In the case of the cycle-tree network in Figure 3A, we have 𝜌() = 3.2877, for the star network in Figure 3B, 𝜌() =
3.8284, in the case of the ring network in Figure 3C, 𝜌() = 3, and for the line network in Figure 3D, we have 𝜌() =
2.9021. Consequently, in the star network, we found the largest 0 = 4.91, for the cycle-tree network, we have 0 = 4.37.
In the other two networks, that is, the ring and the line, we find 0 = 4.07 and 0 = 3.97, respectively; we can see that the
presence of one additional link in the ring increases the spectral radius of the transmission matrices and thus facilitates
the spread of the disease.

We provide numerical simulations of the evolution of an epidemics for the different networks considered, showing the
dynamics of the fraction of asymptomatic and symptomatic infected individuals (see Figures 4–7). In each simulations,

FIGURE 6 Evolution of the epidemic in each community of the ring network, see Figure 3C. The title of each subplot indicates the
community it represents, as well as the peak time of infected individuals. In this setting, from (6), we obtain 0 = 4.07. Refer to Table 1 for
the values of the parameters. [Colour figure can be viewed at wileyonlinelibrary.com]
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OTTAVIANO ET AL.

in order to depict a realistic scenario, the epidemics starts in only one of the communities (Community 1), with a small
asymptomatic fraction of the population and no symptomatic individuals, while the rest of the population is entirely
susceptible. We obtain a delay in the start of the epidemics, directly proportional to the path distance of any community
from Community 1: This is particularly visible in Figure 7. We observe a delay in the time of the peak, as well, although
this is often less pronounced; this is clear in in Figure 6, in which communities with the same distance (path length)
from Community 1 reach the peak at the same time. We underline that the time and the magnitude of the peak are
directly proportional to the number of links of each community. Indeed, we can see that in the star network, the peak of
the non-central communities happens exactly at the same time and has the same magnitude, as one would expect, see
Figure 5. In the ring network (Figure 6), all the communities only have two links, thus the time and the magnitude of the
peak are the same for communities at the same path distance from Community 1. In Figure 7, instead, the magnitude is
the same for Communities 2–8 and is lower in Communities 1 and 9, which are less connected with the others. The peak
is reached faster in Community 1, in which the epidemic starts, and occurs later in Community 9, since it is the further
and the less connected of the network. We remark that this predictable behavior of the peak of infected individuals is due
to the deterministic nature of the model, and thus of the numerical simulations.

For ease of interpretation, we plot the total number of asymptomatic infected individuals and symptomatic Infected
individuals in all four cases; see Figure 8. The qualitative behavior of all simulations is the same: After a first spike, the
dynamics converges towards the EE, through quickly damping oscillations. In all our simulations, the EE values of I are
greater than the ones of A, as we expected from (17) and our choice of the parameters involved in the formula.

Notice the significantly lower peaks in Figure 8D, when compared to Figure 8C, even though the corresponding net-
works only differ for one edge, connecting Community 9 to Community 1, in which the epidemics start. Tables B1–B8

FIGURE 7 Evolution of the epidemic in each community of the line network, see Figure 3D. The title of each subplot indicates the
community it represents, as well as the peak time of infected individuals. In this setting, from (6), we obtain 0 = 3.97. Refer to Table 1 for
the values of the parameters. [Colour figure can be viewed at wileyonlinelibrary.com]
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OTTAVIANO ET AL.

FIGURE 8 Total amount of Asymptomatic infected
(∑

A(t)
)

and symptomatic Infected
(∑

I(t)
)

in the four networks we simulate.
Respectively, (A) cycle-tree network, see Figure 3A; (B) star network, see Figure 3B; (C) ring network, see Figure 3C; and (D) line network,
see Figure 3D. The qualitative behavior is the same, that is, convergence towards the endemic equilibrium through damped oscillations.
Refer to Table 1 for the values of the parameters. [Colour figure can be viewed at wileyonlinelibrary.com]

show the times in which the epidemic starts in each community, as well as the magnitude and the times of the peaks,
both for asymptomatic (A) and symptomatic (I) infected individuals, for all the networks under investigations.

7 CONCLUSION

We analyzed a multi-group SAIRS-type epidemic model with vaccination. In this model, susceptible individuals can be
infected by both asymptomatic and symptomatic infectious individuals, belonging to their communities and to other
adjacent communities.

We provided a stability analysis of the multi-group system under investigation; to the best of the authors' knowledge,
this kind of analytical results was lacking in the literature. Precisely, we derived the expression of the basic reproduction
number 0, which depends on the matrices which encode the transmission rates between and within communities. We
showed that if 0 < 1, the DFE is GAS, that is, the disease will be eliminated in the long run, whereas if 0 > 1, it is
unstable. Moreover, in the SAIRS model without vaccination (𝜈i = 0, for all i = 1, … ,n), we were able to generalize
the result on the global asymptotic stability of the DFE also in the case 0 = 1. We proved the existence of a unique
EE if 0 > 1. We gave sufficient conditions for the local asymptotic stability of the EE; then, we investigated the global
asymptotic stability of the EE in two cases. The first one regards the SAIR model (i.e., 𝛾 = 0) and does not requires any
further conditions on the parameters besides 0 > 1.

The second is the case of the SAIRS model, with the restriction that asymptomatic and symptomatic individuals have
the same mean recovery period, that is, 𝛿A = 𝛿I . In this case, we provided sufficient conditions for the GAS of the EE.

We leave as open problem the study of the global asymptotic stability of the EE for the SAIRS model with vaccination,
in the case 𝛽A ≠ 𝛽I and 𝛿A ≠ 𝛿I . Lastly, we conjecture that the conditions we derived to prove the asymptotic behavior of
the model are sufficient but not necessary conditions, as our numerical exploration of various settings seems to indicate.

In this paper, we focused on a generalization of the SAIRS compartmental model proposed in Ottaviano et al. [16], by
considering a network where each node represents a community; however, many others elements could be included in fur-
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OTTAVIANO ET AL.

ther generalizations to increase realism. For example, we may consider a greater number of compartments, for example,
including the “Exposed,” “Hospitalized,” or “Quarantined” groups, or consider a nonlinear incidence rate; one could also
introduce an additional disease-induced mortality or an imperfect vaccination. We leave these as future research outlook.
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APPENDIX A

Proof of Claim 11. We recall that

𝜂i(z) =
1

𝛼 + 𝜇i + 𝛿A

(
z +

n∑
𝑗=1

𝛽A
i𝑗
(

A∗
𝑗 + h𝑗I∗𝑗

) (
1 + K1

i (z) + K2
i (z)

))
.
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It is easy to see that if Re(z) ≥ 0, then Re(K1
i (z)) > 0. Now, we show that if Re(z) ≥ 0, then

Re
(
1 + K2

i (z)
)
= Re

(
1 + 1

z + 𝜇i + 𝜈i + 𝛾

(
(𝛿A − 𝜈i) +

(𝛿I − 𝜈i)𝛼
z + 𝛿I + 𝜈i

))
≥ 0. (A1)

For ease of notation, we define

𝜀 = (𝛿I − 𝜈i)𝛼, h1 = 𝜇i + 𝜈i + 𝛾, h2 = 𝛿I + 𝜈i,

and let z = a + ib in (A1). If 𝛿A ≥ 𝜈i, again, it is easy to see that if Re(z) ≥ 0, then

Re
(

1
z + h1

(𝛿A − 𝜈i)
)

≥ 0.

Now, let us show that

Re
(

1 + 𝜀

(z + h1)(z + h2)

)
≥ 0. (A2)

We have that

Re
(

𝜀

(z + h1)(z + h2)

)
= Re

(
𝜀

(a + h1)(a + h2) − b2 + ib(2a + h1 + h2)

)
= Re

(
𝜀

(a + h1)(a + h2) − b2 − ib(2a + h1 + h2)
((a + h1)(a + h2) − b2)2 + b2(2a + h1 + h2)

)
= 𝜀

(a + h1)(a + h2) − b2

((a + h1)(a + h2) − b2)2 + b2(2a + h1 + h2)

= 𝜀
(P − b2)

(P − b2)2 + b2S2 = g(b),

(A3)

where we have introduced the notation

P = (a + h1)(a + h2) and S = (2a + h1 + h2).

Since we assume 𝛿I ≥ 𝜈i, we can see that the minimum of g(b) is equal to
−𝜀

2S
√

P + S2
,

and that

−𝜀
2S

√
P + S2

≥
−(𝛿I − 𝜈i)𝛼

2(2a + 𝜇i + 2𝜈i + 𝛾 + 𝛿I)
√
((a + 𝜇i + 𝜈i + 𝛾)(a + 𝛿I + 𝜈i)) + (2a + 𝜇i + 2𝜈i + 𝛾 + 𝛿I)2

≥
−(𝛿I − 𝜈i)𝛼

2(𝜇i + 2𝜈i + 𝛾 + 𝛿I)
√
((𝜇i + 𝜈i + 𝛾)(𝛿I + 𝜈i)) + (𝜇i + 2𝜈i + 𝛾 + 𝛿I)2

≥ −1.

The last inequality holds since by hypothesis

(𝛿I − 𝜈i)𝛼 ≤ 2(𝜇i + 2𝜈i + 𝛾 + 𝛿I)
√
(𝜇i + 𝜈i + 𝛾)(𝛿I + 𝜈i) + (𝜇i + 2𝜈i + 𝛾 + 𝛿I)2,

thus, (A2) holds and the claim is proved.

APPENDIX B

In the following tables, we show the times in which the epidemic starts in each community, as well as the magnitude and
the times of the peaks, both for asymptomatic (A) and symptomatic (I) infected individuals, for all the networks under
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investigations. We consider an epidemic to have started in a community when the variable (either I(t) or A(t)) exceeds
the threshold value of 10−5. We remark that the quantity I, meaning the fraction of symptomatic individuals, is the one
which is more realistically and accurately tracked, in a real-world scenario.

TABLE B1 Values of the starting time of the
epidemic and time and magnitude of the peak
in each community for the cycle-tree network
in Figure 3A for symptomatic infected I.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 6.07 0.3011
2 0.006 6.07 0.3080
3 0.006 6.07 0.3291
4 0.1 6.75 0.3220
5 0.006 6.07 0.3268
6 0.65 7.64 0.2826
7 0.65 7.64 0.2826
8 0.17 7.10 0.2839
9 0.006 6.07 0.3077

Note: See also Figures 4 and 8A.

TABLE B2 Values of the starting time of the
epidemic and time and magnitude of the peak
in each community for the cycle-tree network
in Figure 3A for asymptomatic infected A.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 4.72 0.2773
2 0 4.72 0.2884
3 0.005 4.93 0.3222
4 0.12 5.33 0.3098
5 0.005 4.93 0.3188
6 0.4 6.24 0.2582
7 0.4 6.24 0.2582
8 0.2 5.54 0.2602
9 0 4.72 0.2878

Note: See also Figures 4 and 8A.

TABLE B3 Values of the starting time of the epidemic and time and magnitude of the
peak in each community for the star network in Figure 3B for symptomatic infected I.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 4.63 0.3581
2 0.08 5.64 0.2915
3 0.08 5.64 0.2915
4 0.08 5.64 0.2915
5 0.08 5.64 0.2915
6 0.08 5.64 0.2915
7 0.08 5.64 0.2915
8 0.08 5.64 0.2915
9 0.08 5.64 0.2915

Note: See also Figures 5 and 8B.

TABLE B4 Values of the starting time of the epidemic and time and magnitude of the
peak in each community for the star network in Figure 3B for asymptomatic infected A.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 3.48 0.3759
2 0 4.24 0.2727
3 0 4.24 0.2727
4 0 4.24 0.2727
5 0 4.24 0.2727
6 0 4.24 0.2727
7 0 4.24 0.2727
8 0 4.24 0.2727
9 0 4.24 0.2727

Note: See also Figures 5 and 8B.
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TABLE B5 Values of the starting time of the epidemic and time and magnitude of the
peak in each community for the ring network in Figure 3C for symptomatic infected I.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 6.13 0.2981
2 0.01 6.33 0.3015
3 0.4 6.73 0.3041
4 0.5 7.13 0.3074
5 1.7 7.52 0.3117
6 1.7 7.52 0.3117
7 0.5 7.13 0.3074
8 0.4 6.73 0.3041
9 0.01 6.33 0.3015

Note: See also Figures 6 and 8C.

TABLE B6 Values of the starting time of the epidemic and time and magnitude of the
peak in each community for the ring network in Figure 3C for asymptomatic infected A.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 4.76 0.2718
2 0 4.95 0.2771
3 0.15 5.34 0.2822
4 0.27 5.72 0.2882
5 1.23 6.13 0.2985
6 1.23 6.13 0.2985
7 0.27 5.72 0.2882
8 0.15 5.34 0.2822
9 0 4.95 0.2771

Note: See also Figures 6 and 8C.

TABLE B7 Values of the starting time of the epidemic and time and magnitude of the
peak in each community for the line network in Figure 3D for symptomatic infected I.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 6.81 0.2629
2 0.02 6.61 0.2941
3 0.2 6.81 0.3015
4 0.81 7.19 0.3029
5 1.73 7.79 0.3031
6 1.88 8.39 0.3023
7 1.91 8.99 0.3011
8 2.03 9.59 0.2975
9 4.19 10.41 0.2728

Note: See also Figures 7 and 8D.

TABLE B8 Values of the starting time of the epidemic and time and magnitude of the
peak in each community for the line network in Figure 3D for asymptomatic infected A.

Community Starting time of epidemic Time of peak Magnitude of peak
1 0 5.40 0.2263
2 0 5.26 0.2650
3 0.08 5.54 0.2771
4 0.53 5.96 0.2811
5 1.26 6.42 0.2814
6 1.42 6.99 0.2807
7 1.57 7.58 0.2791
8 1.73 8.39 0.2751
9 3.64 8.99 0.2450

Note: See also Figures 7 and 8D.
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