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Review of Clustering Methods for 
Slow Coherency-Based Generator Grouping 

Gianfranco Chicco*

Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Torino, Italy

Abstract — Slow coherency is one of the most 
relevant concepts used in power systems dynamics 
to group generators that exhibit similar response to 
disturbances. Among the approaches developed for 
generator grouping based on slow coherency, clustering 
algorithms play a significant role. This paper reviews 
the clustering algorithms applied in model-based and 
data-driven approaches, highlighting the metrics used, 
the feature selection, the types of algorithms and the 
comparison among the results obtained considering 
simulated or measured data.

Index Terms: clustering, contingency screening, data-
driven, distance, feature selection, generator grouping, 
model-based, phasor measurement unit, power system 
dynamics, similarity metric, slow coherency, stability 
analysis.
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COIFD Centre of Inertia Frequency Deviation
DBI Davies–Bouldin Index
DBSCAN Density-Based Spatial Clustering of
 applications with Noise
DCD Dynamic Coherency Determination
DFT Discrete Fourier Transform
DMD Dynamic Mode Decomposition
DTW Dynamic Time Warping
FCM Fuzzy c-Means
FCMdd Fuzzy c-Medoids
ICA Independent Component Analysis
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KPCA Kernel Principal Component Analysis
PCA Principal Component Analysis
PMU Phasor Measurement Unit
SOM Self-Organising Maps
SVC Support Vector Clustering
SVD Singular Value Decomposition
WSSE Weighted Sum Squared Error

I. INtroductIoN

The evolution of the computational frameworks for 
applying efficient data analytics through machine learning 
has a significant impact on the formulation and update of 
the computational codes used in many applications. The 
power system sector is heavily affected by this evolution, 
which is marking new differences between the two most 
used approaches:
1. The model-based approach, in which a suitable model 

is constructed by connecting a number of elements 
that represent the physical components with different 
degrees of approximation. Suitable parameters have 
to be associated to each element, and the solution is 
determined through simulations. 

2. The data-driven approach (also indicated as 
measurement-based or signal-based approach), in 
which the computations are based on the available 
data gathered from the field in actual situations and are 
carried out by using machine learning approaches that 
do not need the construction of the system model nor 
the parameter setup, and do not depend on theoretical 
assumptions. 

Advantages and drawbacks of these approaches are 
summarised in [1], together with the characterisation of 
different aspects that explain data consistency in terms of 
data characteristics, data quality, and information quality. 
The scientific community is contributing to the debate 
about the convenience of one approach or the other, 
by developing new computational procedures in both 
directions. 

Concerning power system dynamics, both approaches 
share a major issue, given by the variability in time of the 
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data used in dynamic conditions. In particular:
 - Methods based on the model-based approach are highly 

sensible on the accuracy of the model and parameters 
used to represent dynamics at different time scales. 
Dynamic models are available at different levels of 
detail, and dynamic reduction methods are available 
and are incorporated in the dynamic simulation tools. 
Modal analysis is applied, where the power system 
model is linearised around an equilibrium point, and 
the oscillation modes are extracted by calculating 
eigenvalues and eigenvectors from the small-signal 
analysis of the linearised power system model [2]. 
Further insights may come from the application of 
Koopman mode analysis, which is a nonlinear technique 
that requires no linearisation nor assumptions of scale 
separation [3, 4].

 - Methods based on the data-driven approach require 
time series of data with appropriate resolution in time 
and data window length, to form a reasonable history, 
benchmark or comparative dataset. These methods are 
sensible to the consistency of the data gathered from 
the field. However, possible issues depend on accuracy 
of the measurements, sensitivity to disturbances, 
and in particular to the occurrence of major changes 
in the operational conditions of the network (e.g., 
changes in topology, loss of a generator, or large net 
power variations [5]). Following major disturbances, 
the dataset is typically partitioned into portions that 
represent the system operation before and after the 
change, by identifying the starting instant of the event 
and removing pre-event data. In particular, the methods 
based on similarities among time series can be adapted 
and used online, while the methods that carry out mode 
estimation or use information about the frequency 
spectrum (e.g., of inter-area oscillations) require longer 
computation time and are thus applied offline [6]. 
The determination of the dynamic equivalents of 

the generators connected to the power system power is 
a challenging and insightful line of research. Starting 
from dynamic models developed during the years, in 
the Seventies two main approaches emerged for the 
identification of similar behaviour of the generators 
in a multi-machine power system, especially during 
contingencies, and the formation of dynamic equivalents. 
One of these approaches is based on modal analysis [7]
[8], while the other approach is based on the notion of 
coherency [9]. Two (or more) generators are considered to 
be coherent if their rotor angles follow the same evolution 
in time, both in normal conditions and after the occurrence 
of disturbances. The identification of coherency requires to 
set up appropriate criteria based on distance measures [10]. 
Many algorithms have been formulated for both modal 
analysis [11] and for coherency assessment, with various 
approaches [12, 13], among which clustering algorithms 
that exploit time-series similarity-based techniques. 
The creation of reduced dynamic equivalent models of 

generators is a major asset to increase the computational 
speed and enable real-time applications. A discussion on 
methods for dynamic reduction can be found for example 
in [14]. Among these methods, the application of clustering 
techniques is an alternative to deal with this non-linear and 
large-scale problem in power system dynamics by using 
a suitable set of representative features (e.g., variables or 
indicators). Coherency-based generator grouping is the 
problem referring to power system dynamics for which 
most contributions that exploit clustering algorithms are 
available in the literature. 

This paper addresses the application of clustering 
algorithms in the methods used to deal with the generator 
grouping based on coherency aspects. The application of 
clustering algorithms deals with the need of identifying 
groups inside the system that exhibit some similarity, 
and this similarity may be useful for specific purposes. 
Clustering algorithms have shown particularly promising 
results, and more refined variants are under continuous 
development.

In general terms, the main requirements of the clustering 
algorithms include:
• The choice of appropriate features. 
• The incorporation of a suitable notion of distance for 

similarity assessment.
• The ability to operate with high-dimensional data set.
• The effectiveness of the clustering algorithm (assessed 

through clustering validity indices).
• The ability to discover possible outliers (when needed).
• The ability to estimate the best number of clusters.

In power system dynamic studies, clustering algorithms 
are applied to both model-based and data-driven approaches. 
In general, the challenging objective is to test and validate 
the proposed approaches as close as possible to real-time 
applications in actual systems. In model-based approaches, 
in addition to software simulation tools, examples oriented 
to practical validation have been explored with a hybrid 
analog-digital power system simulator [15], while solutions 
that incorporate the use of real-time data in power system 
models have recently emerged with the use of real-time 
simulators, which allow the implementation of hardware-
in-the-loop solutions [6].

The aim of this paper is to illustrate and discuss why, 
in which phase of the analysis and how the clustering 
algorithms are used for solving the generator grouping 
on the basis of their dynamic behaviour. A selected set 
of references is considered, including recent references 
together with a number of historical references, without 
the intention to provide an exhaustive list of literature 
contributions.  

The next sections of the paper are organised as follows. 
Section II discusses the notions of distance and metrics used 
in the clustering algorithms for analysing power system 
dynamics. Section III recalls the notion of slow coherency 
and its use for generator grouping. Section IV addresses 
in more details the feature selection stage. Section V deals 
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with the clustering algorithms used. Section 6 illustrates 
the comparisons carried out among the results obtained 
from literature contributions. The last section contains the 
concluding remarks. 

II. metrIcs used IN the clusterINg algorIthms

For the purpose of the contents presented in this paper, 
the input dataset is composed of M time series with T 
data points each, corresponding to a given feature. For 
m = 1, …, M, the time series of the individual feature ψm is 
represented as 

  ψm = {ψmt, t = 1,…,T}. (1)

The metrics used are based on determining the distance 
between two time series. Since the dataset is discrete, 
discrete versions of the metrics are used. Without loss 
of generality, the distances are indicated in the sequel by 
considering two feature vectors. The same formulations 
are applicable to calculate the distance between a feature 
vector and a centroid, by replacing one of the feature 
vectors with the centroid.

In a clustering procedure, the choice of the metric to 
calculate the distances between time series is crucial [16]. 
In particular, four types of metrics can be identified:
1  Metrics based on the calculation of the distance for 

points located at the same instant: these metrics are 
relevant if it is important to maintain the identity of the 
individual time instants, calculating distances between 
time series on the vertical axis. The most classical 
metrics of this type are based on the Minkowski 
distances, defined for an integer parameter p > 0:

 
 ( ) ( )

1/

1

, ψ ψ
pT pp

M i j it jt
t

d
=

æ ö
= -ç ÷
è ø
åψ ψ , (2)

where in particular the distance for p = 2 is the Euclidean 
distance:

 
 ( ) ( ) ( ) 22

1

, , ψ ψ
T

M i j E i j it jt
t

d d
=

= = -åψ ψ ψ ψ . (3)

When a weight factor wijt is introduced, which 
depends on the features, time, or combinations of them, 
the weighted versions of the Minkowski distances 
become: 

 
 ( ) ( )

1/

1

, ψ ψ
pT pp

Mw i j ijt it jt
t

d w
=

æ ö
= -ç ÷
è ø
åψ ψ . (4)

In particular,  ( ) ( )2 ,Mw i jd ψ ψ  is the weighted sum 
squared error (WSSE). 

2  Metrics based on the proximity between points in the 
time series. These distances are used if comparing 
the time series without the constraint of maintaining 
the correspondence between the instants of time is 
acceptable. The distance obtained is a single value that 
depends on the overall evolution of the trajectories. 
In this way, time series with similar shape but (slight) 
shift in time can be characterised by a small distance. 
Among these metrics, the Hausdorff distance is given 

by the largest distance from a point belonging to the 
time series ψi to the closest point belonging to the other 
time series ψj. Let us first define the minimum distance 
between a point  ψit iÎψ  for a given value of t and the 
points  ψ jq jÎψ , q = 1,…, T, as follows:

 
 ( ) ( ){ }

ψ
ψ , min ψ ,ψ

jq j
it j E it jqd d

Î
=

ψ
ψ . (5)

Likewise,

 
 ( ) ( ){ }

ψ
ψ , min ψ ,ψ

iq i
jt i E ij iqd d

Î
=

ψ
ψ . (6)

The Hausdorff distance is then computed as:

  ( ),H i jd =ψ ψ

  ( ){ } ( ){ }{ }ψ ψ
max min ψ , , min ψ ,

it i jt j
it j jt id d

Î Î
=

ψ ψ
ψ ψ

. (7)

Moreover, the Fréchet distance is the maximum 
pairwise distance between the points located on the 
two time series [17]. It is also known as the person-
dog metric, being based on the concept of considering a 
person who walks a dog on a leash. Both the person and 
the dog follow a separate trajectory but cannot move 
backwards (this is a conceptual difference with respect 
to the Hausdorff distance). The Fréchet distance is the 
length of the shortest leash needed to follow the entire 
trajectories. 

The Dynamic time warping (DTW) distance is 
another possibility to determining the distance between 
two time series. In DTW, the differences between two 
time series are determined by changing the connections 
between the corresponding points in the time series. 
DTW creates a warping path of minimum local 
distances and computes the final distance as the mean 
distance along this path. The length of the warping path 
may be higher than the length of the time series.  

The need for considering a distance notion that does 
not strictly refer to the same time instants is recognised 
as well in [18], where an integrated weighted distance 
is used. This distance is based on the definition of three 
distance functions: (i) “horizontal absolute value”; 
(ii) weighted distance of “rate of change at adjacent 
time points”; (iii) weighted distance of “coefficient 
of variation’’. The values obtained for each distance 
function are then subject to min-max normalisation. 
Finally, the weighted distance matrix is formed by 
weighting the matrices that contain the entries of the 
normalised distance functions, by using entropy-based 
weights.

3  Metrics that consider the global behaviour of the 
time series. These metrics are based on determining 
the similarity between the time series on the [0,1] 
scale, then defining the distances as the complement 
to unity of the similarity. The correlation coefficient 
is the most classical notion of similarity. Since the 
correlation coefficient ρ varies from –1 to 1, it is 
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needed to reconduct it to the [0,1] range by calculating  
(ρ + 1)/2. In addition, the cosine similarity derives 
from the definition of the Euclidean internal product 
and is the ratio between the internal product and the 
product of the magnitudes. The cosine distance is then 
calculated as:

 

 ( ) 1

1 1

2 2

ψ ψ
, 1  

ψ  ψ

it j

T

t

C i j

it

t

jt

T T

t t

d =

= =

= -
å

å å
ψ ψ . (8)

In the calculation of the cosine similarity, if the 
vectors are changed by subtracting the vector means, 
the resulting version is called centred cosine similarity, 
which corresponds to the Pearson correlation 
coefficient. Another way to calculate correlations by 
excluding the mean value is to take only non-zero 
F harmonic components of the spectrum computed 
from the Discrete Fourier Transform (DFT), in which 
the zero-order harmonic component, proportional to 
the mean value, is not considered [19]. In this case, 
the features ζm for m = 1,…, M are expressed as a 
complex number, which can be written with the real 
part  { }ζRe Re

m mn=ζ  and the imaginary part  { }ζIm Im
m m=ζ n  for 

ν = 1, …, F. The correlation coefficient between  Re
iζ  

and  Re
jζ  is expressed as Re

ijc  (and with Im
ijc  considering 

the imaginary parts). The density function δSm, based 
on the dissimilarity between two entries expressed in 
an exponential form and depending on the user-defined 
parameter r that represents the neighbouring radius, is 
formulated as 

  

( ) ( )
( )

2 2

2

1 1

/2

1

δ

Re Im
im imc c

M r

Sm
m

e

æ ö- -ç ÷
-ç ÷
ç ÷
è ø

=

=å
. (9)

The Jaccard similarity between two sets is generally 
defined as the ratio of the intersection over the union 
of the two sets. For two datasets formed by the same 
number of discrete points, the Jaccard distance is:

 

 ( )
{ }

{ }
1

1

min ψ ,ψ
, 1

max ψ ,ψ

T

it jt
t

J i j T

it jt
t

d =

=

= -
å

å
ψ ψ . (10)

4) Metrics that exploit global information on the dataset. 
In general, when it is acceptable to compare two time 
series without taking into account the relationships 
between the instants of time, by observing only the 
global behaviour, it is possible to define metrics based 
on the probabilistic distribution of the data belonging to 
the time series. Both probability density functions and 
cumulative distribution functions can be constructed. 
In these cases, the connection with time is completely 
lost, and only the distribution of the amplitudes is 
relevant. This kind of metrics have not been used in the 
cases discussed in this paper.

III. slow cohereNcy aNd geNerator groupINg

A. Slow coherency
In large power systems, a distinction is made between 

slow dynamics (due to low frequency oscillations between 
groups of coherent generators) are fast dynamics (with 
oscillations at higher frequencies that occur among the 
generators of the same group). Slow coherency is then 
considered when the oscillatory frequency varies in an 
indicative range from 0.1 to 0.8 Hz [6], while the transient 
dynamics of the system are not considered by the slow 
coherency theory. In [20] slow coherency is associated 
to the weak coupling among coherent areas, due to low 
connection or high impedance of the lines among coherent 
areas, or transmission lines with heavy load. Moreover, in 
the present systems with distributed generator and load 
dynamics, the causes of disturbances are increasing with 
respect to the classical power system supplied by large 
synchronous generators [21, 22]. Hence, the use of a model-
based approach that incorporates all the variables needed 
becomes more and more challenging. This increases the 
interest towards exploiting measurement-based (data-
driven) approaches. 

The rotor angle gives a direct information on the 
machine dynamics [23]. The speed deviation of generators 
represents the energy absorbed or delivered by the 
generator [24]. Particularly relevant are the quantities that 
can be measured by using data taken from PMUs. A PMU 
installed at the generator terminals can provide positive 
sequence voltage measurements. However, the rotor angle 
cannot be measured directly nor estimated accurately with 
a PMU [6]. Hence, the rotor angles can be used in model-
based approaches, in which they can be calculated by 
simulations, while for a data-driven approach it could be 
needed to find other variables. 

The calculation of dynamic equivalents based on 
coherency by considering a model-based approach, in 
which the relevant variables are the voltage phase angles 
at the generator terminal nodes or at the generator internal 
nodes, is described in [25]. In this respect, two generator 
nodes are defined as coherent if the angular difference 
of their voltages does not exceed a certain tolerance 
over a given time interval. The corresponding automatic 
formation of dynamic equivalents is addressed in [26].

The identification of coherent generators enables the 
grouping of coherent terminal buses, which is at the basis 
of numerical procedures for power system model reduction 
in the model-based approach. In these procedures, after 
the determination of the coherent generator groups, the 
network is partitioned into an internal area (in which 
detailed modelling is desired) and in an external area (the 
rest of the network, where resorting to reduced modelling 
is of interest) [14, 27]. In the external area, each coherent 
generator group is aggregated by maintaining an equivalent 
generator, and the nodes in that area are reduced by using 
suitable techniques to form equivalent circuits [28]. 
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B. Slow coherency-based clustering algorithms for 
generator grouping

Following the above concepts, the application of 
clustering algorithms has become a viable way to form 
groups of generators characterised by slow coherency. In 
[25], a greedy clustering algorithm (i.e., an algorithm that 
makes direct choices at each step, following a predefined 
strategy) is applied to the terminal voltage angles (voltage 
swing curves). Starting from a reference generator, another 
generator is compared with it by calculating whether all 
terminal voltage angle variations in a given time interval do 
not differ more than a certain threshold from the terminal 
voltage angle variations at the reference generator. If this 
happens, the new generator is added to the same cluster of 
the reference generator, otherwise it becomes the reference 
generator of a new cluster. The process continues until 
all generators have been compared with the reference 
generators of the existing clusters. A successive check 
is made on the coherency of the generator internal bus 
voltages, looking for possible reallocations among the 
clusters. This contribution is based on the simulation of 
the power system by using a simplified linear model. With 
the evolution of the computational speed and resources, 
more contributions emerged to carry out calculations 
considering non-linear models or data-driven machine 
learning approaches.

Table I shows the features, the notions of distance, 
the clustering algorithms adopted, and additional notes 
on contributions presented in a number of selected 
publications. The main concepts that emerge from these 
applications are discussed in the next sections.

IV. Feature selectIoN

The feature selection stage has the objective to form 
a matrix with dimensions (M, H), where M is the number 
of generators, and H is the number of features. A plurality 
of features has been used in the literature. The various 
contributions have used the features directly coming from 
actual or simulated data or have created customised features 
by including specific knowledge about slow coherency. 

The rotor angle and speed of the generators are the 
most used features, especially in the model-based approach 
in which all variables can be assumed to be available. In 
these approaches, the solution method for computing the 
variables of interest is based on simulations, assuming full 
observability by the measurements that could be provided 
by PMUs [29, 30]. In addition, the time window with 
which the data are available is long enough to represent the 
slow oscillations of the generators, and the data resolution 
inside the time window is appropriate. In general, 
PMUs cannot record the rotor angles and speeds of the 
synchronous generators. In some solutions the data on 
rotor angles and speeds are reconstructed from theoretical 
calculations based on electrical measurements [31, 32]. In 
[6] it is assumed that the generator terminal frequency is 
available from PMUs installed at each generator terminal 

node. Higher frequency components are suppressed by 
using digital low-pass filtering with 0.8 Hz band. The time 
window is different in the case of normal operation and 
of the occurrence of transient phenomena due to topology 
variations or contingencies. In the presence of transient 
events, pre-event data are separated from post-event data. 
For the definition of the features to be used in the clustering 
algorithm, the distances among pairs of generators are 
calculated by using the cosine distance and the Minkowski 
distance. Then, the generator distance feature is formed 
by computing the weighted combination of the squared 
normalised distance matrices formed by the cosine and 
Minkowski metrics, taking user-defined weights. 

Considering the variations of voltage angle Δθmt, radian 
frequency Δωmt and voltage magnitude with respect to 
equilibrium conditions of the power system [33], for the 
generator m = 1,…, M at discrete points in time t = 1,…, 
T, the root-mean square coherency criteria [34] can be 
written, concerning voltage angle and radian frequency, as:

 
 ( )2 2

1

1α  Δθ Δθ Δω Δω
T

ij it jt it jt
tT =

= - + -å . (11)

and for voltage magnitudes, as:

 
 

2

1

1β  Δ Δ
T

ij it jt
t

V V
T =

= -å . (12)

On these bases, it is possible to form the coherency 
matrices A = {αij} for angles and B = {βij} for voltages 
[35].

When the evolution in time of the rotor angles and 
speeds are available, a classical way to address dynamic 
problems is to convert the variables with respect to the 
Centre of Inertia (COI). In this case, the COI is conceptually 
considered as an infinite bus and is taken as the reference 
for rotor angle and speed variations. By considering the 
constant of inertia Hm, the rotor angle δmt and the rotor 
speed ωmt for the generator m = 1,…, M at time t, the 
corresponding quantities reported to the COI are:

 

 ( ) 1

1

δ
 δ δ

m mt
COI
mt mt

m
M

m
m

M

H

H

=

=

= -
å

å
, (13)

 

 ( ) 1

1

ω
ω ω

m mt
COI
mt mt

m

M

m
M

m

H

H

=

=

= -
å

å
, (14)

Since the evolution in time of the rotor angle and speed 
has a different starting point after the occurrence of an 
event, rotor angles and speeds have been further elaborated 
in [21] by calculating the differences with respect to the 
first instant of interest (t = 1):

  ( ) ( ) ( )
1δ̂ δ δCOI COI COI

mt mt m= - , (15)

  ( ) ( ) ( )
1ω̂ ω ωCOI COI COI

mt mt m= - . (16)
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The evolution of these new variables starts from the 
same point and allow easier application of Jaccard similarity 
principles (10), based on the definition of areas calculated 
on the basis of the trajectories to be compared. This pre-
processing step is rarely carried out. It seems promising 
for comparing the evolution of the time series that have 
different initial values, e.g., when the distances considered 
do not include explicit information about correlations. In 
addition, the initial difference has a negative impact on 
methods that use Euclidean distances between the time 
series [36]. However, if the initial difference is caused by 
far location of the generators, while the type of generator 
indicates similar behaviour, it has to be verified whether 
the connection point is relevant for establishing reduced 
dynamic models.

The centre of inertia frequency deviation (COIFD) is 
defined in [37] by considering the vector that contains the 
average frequency deviation for the group of Mg generators 
that belong to a coherent group g:

 
 ( ) 1

Δ
Δ

gM

gm
COIFD m
g

g

f
f

M
==
å

. (17)

Considering voltages, a relevant quantity is the voltage 
angle θ(COA) of the Centre of Angle (COA), calculated by 
considering the constant of inertia Hm and the voltage angle 
θm of the generator m = 1,…, M: 

 

 ( ) 1

1

θ
θ

m m
COA m

m
m

M

M

H

H

=

=

=
å

å
. (18)

Once defined, the COA is taken as the angle reference 
[15]. The difference between the voltage phase angle θm 
of the mth generator and the angle θ(COA) gives the angle 
variation at each individual generator m = 1,…, M, denoted 
as:
 δm = θm – θ(COA). (19)

The principal component analysis (PCA) has been 
used in [38] to reduce the number of features from a 
dynamic model in which the rotor angles and speeds of 
the generators are taken as input variables. Results have 
been presented for simulations carried out on a system with 
244 generators. The application of PCA to identify the first 
three principal components of generator speed and node 
voltage angles was suggested in [39], where some results 
were provided on a 16-machine 68-bus test system in the 
form of scattered data plots, without executing a clustering 
algorithm. 

In [40] the extraction of the principal components 
of the rotor angles is enhanced by using the projection 
pursuit theory, with which optimal projection directions 
are identified and the signs of the entries of the projection 
direction vector are considered to assess the coherency 
of the generators. In particular, the generators for which 
the same combination of signs is found in all dominant 

projection directions are grouped together.
A dynamic coupling-based criterion taken from [41] 

is used in [30] to define the following similarity function 
between generators:

 
 ( )01 1ξ   cos δij i j ij ij

i j

E E B
H H

æ ö
= +ç ÷ç ÷
è ø

, (20)

where, for the generators i and j, Hi and Hj are the inertia 
constants, Ei and Ej are the internal node voltages, δij0 is the 
relative voltage angle, and Bij is the imaginary part of the 
bus admittance entry. The similarity values are then includ-
ed in the matrix Ξ = {ξij} and are used to form the diagonal 

matrix Gξ with entries  
1
ξM

im imm
g

=
=å . A normalised La-

placian matrix is then formed as the positive semi-definite 
matrix

 
 ( )1/2 1/2 - -

x x x x= -L G G GXX . (21)

and its entries are used to calculate a matrix of 
Euclidean distances. This matrix is then processed with 
a method based on Kernel Principal Component Analysis 
(KPCA), to obtain the features embedded into a Euclidean 
space, which are used in the clustering algorithm. The 
embedding strategy used has the advantage to allow the 
incorporation of non-Euclidean distance measures in the 
clustering procedure. KPCA is also used in [21] to create 
a similarity matrix by using the eight outcomes obtained 
from the calculation of four indices (based on Euclidean 
distance, Fréchet distance, cosine similarity and Jaccard 
similarity) on the variables (15) and (16), taking the 
correlations among these indices as weights. Spectral 
independent component analysis (ICA) is applied to form a 
set of features starting from the generator speeds and node 
voltage angles in the data-driven technique presented in 
[42], without following with a clustering algorithm. ICA 
has been used to overcome the drawbacks of PCA, which 
linear-type decomposition is considered to be insufficient 
for grouping the coherent generators on the basis of the 
measured data [42]. 

Ten similarity indices are calculated in [32], constructed 
on the basis of characteristic indicators defined for the 
angle trajectories in the COI coordinate, such as the 
dissimilarity of amplitude deviation, location deviation, 
corner deviation, swing direction, and correlation of the 
trajectories. Then, multicriteria decision-making principles 
are used to synthesise a single similarity matrix Γ to send 
to the clustering algorithm. For this purpose, starting from 
the entries of the qth index normalised similarity matrix Γq, 
the similarity matrix Γ is obtained as

 
 

1

 
Q

q q
q

c
=

=åΓ Γ , (22)

Where cq is the normalised weight coefficient 
determined from the combination of two coefficients 
(the Gini coefficient and the Kendall rank correlation 
coefficient), such that  

1
1Q

qq
c

=
=å . In particular, the Gini 
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coefficient measures the inequality among the indices, 
while the Kendall rank correlation coefficient measures 
the correlations. The exploitation of multiple indicators 
is also addressed in [18], where a multi-indicator panel 
data is constructed by considering, for each generator 
m = 1,…, M, the amplitude of the voltage at the generator 
terminal, the increment of the rotor kinetic energy (with 
respect to the initial instant t0), and the voltage phase angle 
variation Δδmt at time t with respect to the voltage phase 
angle 

0
ämt  at the initial instant t0:

 
 

0
δ δ δmt mt mtD = - . (23)

Another aspect included in [18] is the use of a 
monotonically decreasing function of time to weight the 
variables considered, in such a way that the importance of 
the variable decreases during time. 

In some contributions, the Fourier coefficients of the 
generator speed deviations are determined through the 
Discrete Fourier transform (DFT) [15]. The rationale of 
using the DFT is that in normal operating conditions the 
rotor speed deviations of the generators are null, and after 
a disturbance there are oscillations that introduce non-
zero frequency components (in amplitude and phase) of 
the rotor speed deviations with respect to the fundamental 
speed, from which it is possible to recognise the coherent 
behaviour of some groups of generators. In [15], the features 
constructed are the DFT coefficients (in amplitude and 
phase) of the angle variation at each individual generator 
with respect to the COA. Positive or negative variations of 
the phase spectrum components determined from the DFT 
are taken to identify possible generator groups, without 
explicitly indicating a clustering algorithm. Another use 
of the evolution of the voltage phase angle variations is 
to consider the correlations between the real parts and 
the imaginary parts of the frequencies, found from the 
DFT, of the velocity variation of the voltage phasors [19]. 
These correlations are calculated individually, and the 
cosine distances obtained from these correlations are then 
summed up in the Euclidean way.

The Discrete Cosine Stockwell Transform is used in 
[22] to transform the data taken from generator speed and 
frequency into data in the time-frequency domain. The 
features are prepared by defining a feature matrix with 
five indicators: cumulative energy of spectral difference, 
relative spectral flatness, relative spectral flux, relative 
spectral coherence, and relative linear correlation. The 
feature matrix is then subject to min-max normalisation 
before sending it to the clustering procedure. Wavelet-
based coefficients have been used as features in [36], 
where the dominant frequency components of the 
generator rotor angles are identified, and the difference in 
their instantaneous phase is included in a phase difference 
matrix, which is used as input data for clustering. Features 
defined in the Taylor-Fourier subspace [43] are used in 
[44], with the possibility of constructing band-pass filters 
with different window lengths. 

Simulated samples of the generator frequency, extracted 
with time window 0.25 s and sampling time 100 ms, are 
used in [45] to form the input data matrix. The data matrix 
dimension is then reduced by using the Singular Value 
Decomposition (SVD), and the reduced data are then sent 
to the clustering process.

The definition of the coherent generator groups could 
depend on the specific event considered, even though the 
identification of an overall coherency could be useful. For 
this purpose, in [34] multiple disturbances and weighted 
scenarios are considered, calculating the overall coherency 
matrix as the expected value of the coherency matrices 
formed with the coefficients αij from Equation (11) or βij 
from Equation (12), determined by applying the same set 
of disturbances to randomly selected operating conditions. 
Likewise, in [46] an equivalent rotor speed deviation is 
determined by considering multiple events and calculating 
the weighted sum of the generator rotor speed deviations, 
assuming the active power of the generator as the weighting 
factor. 

Further coherency indices have been defined by using 
specific data, such as:
 - the average angular speed deviation of generators i 

and j [47]:

 χωij = f0 max{|Δωi(t) – Δωj(t)|}; (24)

 - the similarity measure between generators i and j 
[29, 48]:

 

 
{ }{ }

(1)

(1)

,

( , )
χ 1

max max ( , )
M i j

Mij

M i ji j

d

d
= -

ψ ψ

ψ ψ
. (25)

A key point in the identification of the data to be 
used to form the features is the possible incorporation of 
information on the network topology. In principle, in the 
analysis of a network-based problem, a mere comparison 
among time series, without considering additional 
information referring to the network connections, could 
provide groupings in which some generators located into 
different portions of the network could be included in the 
same cluster. However, the nature itself of the power system 
dynamics tends to create groups in which similar types of 
generators located in a zone close to the large disturbance 
tend to have a coherent response, while the same type of 
generators located far from the area tend to have another 
response. These concepts are discussed in [49] with an 
algebraic characterisation of coherency, indicating that a 
generator with small inertia located far from a disturbance 
could be coherent with a generator with larger inertia but 
closer to the disturbance. This result also clarifies that using 
only the electrical distance for determining the coherency 
is not sufficient. These aspects are also discussed in [50], 
indicating that for each fault the coherent generators are 
not always electrically close. Hence, even though the role 
of the network can remain “hidden”, it is significant also 
when only the time series are analysed. This aspect may 
be helpful to justify the use of data-driven approaches for 
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the creation of the generator groups, in which network data 
and modelling of generators and their control systems are 
not needed [51]. Refined versions of these methods will be 
useful for online applications.

V. clusterINg algorIthms

A. Clustering algorithms for coherency-based 
generator or node grouping

In general, a clustering algorithm is applied starting 

from the matrix of features with dimensions (M, H), to form 
an output vector of dimensions (M, 1) in which each entry 
contains the number of the cluster to which the generator m 
= 1,…, M has been assigned.

Different clustering algorithms have been used in the 
literature. Most papers have implemented classical versions 
of known clustering algorithms, including new algorithms 
that have become available during time. In general, the 
authors have tried to get benefits from the advances of 

Reference Features Distance Algorithm Notes 
Agrawal & 
Thukaram 
(2013) [29] 

Generator rotor measurement 
(angle or speed), simulated 

Similarity measure  
χMij between 
generators i and j 

SVC Initial number of clusters not 
required. 
Specific clustering validity ratio for 
SVC and statistical assessment. 

Alsafih & 
Dunn (2010) 
[46]  

Equivalent rotor speed deviation, 
simulated 

Euclidean Hierarchical 
(average linkage) 

Multiple events are weighted to 
define the equivalent rotor speed 
deviation. 

Babaei et al. 
(2019) [30] 

Components of a distance matrix 
calculated from the simulated 
generator rotor angles and 
voltages 

Euclidean, based on  
an embedding strategy to 
incorporate non-Euclidean 
distance 
measures 
 

SVC Initial number of clusters not 
required. Total number of iterations 
reduced. 
Cluster validity measure  
defined based on the cluster 
compactness and 
separation between clusters. 

Barocio et al. 
(2019)  
[45] 

Generator frequency samples, 
simulated, reduced by SVD 

Euclidean kmeans New concept based on clustering 
slopes.  
Simple global measure for stability 
condition. 

Chen et al. 
(2019) [18] 
 

Weighted distance matrix from a 
multi-indicator panel of 
simulated data (generator 
terminal voltage amplitude, 
increment of the rotor kinetic 
energy, and voltage phase angle 
variation with respect to the first 
instant, weighted with respect to 
time and indicators) 

Weighted distance function 
with three indicators 
(horizontal absolute value, 
rate of change at adjacent 
time points, and coefficient 
of variation between two 
generators) 

Hierarchical 
(Ward linkage 
criterion)  

DBI for determining the number of 
clusters.  

Joo et al. 
(2001) [52] 

Modal responses of the 
generators from a linearised 
system model, simulated 

Euclidean kmeans Calculation of centroids for each 
cluster. 

Kamwa et al. 
(2007) [34]  

Coherency matrix,  
calculated from simulated phase 
angle and radian frequency 
variation signals at the relevant 
nodes  

Euclidean Fuzzy c-medoids Medoids are real time series. 

Khalil & 
Iravani (2016) 
[37] 

Simulated frequency deviations, 
with respect to the system rated 
frequency, at generator and non-
generator nodes 

Coherency coefficient 
(cosine similarity) 

Threshold-based 
DCD 

Initial number of clusters not 
required.  
Non-generator buses are associated 
with generator groups, forming 
electrical areas. 
Suitable for online applications. 

Lin et al. 
(2018) [21] 

Similarity matrix formed through 
KPCA, based on four indices 
defined from  
generator rotor angles and 
speeds, reported to the COI 

Four indices: 
- Euclidean distance  
- Fréchet distance  
- Cosine similarity  
- Jaccard similarity 
Correlations among 
the indices are used as 
weights in KPCA 

Affinity 
propagation  

Initial number of clusters not 
required. 
 

Lin et al. 
(2018) [32] 

Generator rotor angles and 
speeds, recorded or simulated 

Ten indices, integrated 
through a decision-making 
method based on the Gini 
and Kendall rank 
correlation coefficients  

Spectral  Initial number of clusters not 
required. 
Average silhouette index used for 
determining the best number of 
clusters. 

 

Table 1. Characteristics of Selected Clustering Algorithms for Slow Coherency-based Generator Grouping.

http://esrj.ru/


Energy Systems Research, Vol. 4, No. 2, 2021G. Chicco

13

the state of the art, tying to discover clustering algorithms 
most suitable for the structure of the problem with data 
available as time series. In a few cases (e.g., [37] and [54]), 
the proposed versions include come characteristics of the 
technical problem in the solution technique.

A classical distinguishing aspect among the clustering 
algorithms is the need for setting up the number of clusters 
as an input. In this respect, with reference to the selected 
contributions shown in Table I:
- The number of clusters has to be preliminarily 

defined in many classical methods, such as kmeans 
[55], hierarchical clustering [18, 46, 53], and fuzzy 
c-medoids [34]. 

- Methods that do not require the preliminary definition 
of the number of clusters include non-parametric 
clustering methods, such as support vector clustering 
[29, 30], the mean shift spectral clustering [22], the 
affinity propagation clustering versions [6, 21], the 
spectral clustering versions [32, 54], the threshold-
based clustering [37], the subtractive clustering [19], 

and the density-based spatial clustering of applications 
with noise (DBSCAN) [36].

Another typical distinction among clustering methods 
is based on their ability to isolate uncommon behaviours as 
outliers. The following cases can be identified, where the 
first two cases represent extreme situations:
a) Methods that tend to isolate the outliers into small 

groups and to merge all the other cases into one or a 
few clusters. These methods have not been exploited 
for slow coherency studies. 

b) Methods that tend to create relatively uniform groups, 
in which the outliers are aggregated inside one of the 
groups. 

c) Methods in which the outliers are identified and singled 
out during the clustering process. 

The situation b) may occur for clustering methods 
such as kmeans, k-medoids and their fuzzy logic-based 
versions, which tend to create a group that includes the 

Table 1 (continued). Characteristics of selected clustering algorithms for slow coherency-based generator grouping.
Reference Features Distance Algorithm Notes 
Mei et al. 
(2008) [53] 

Simulated generator rotor angle 
speeds 

WSSE, considering the 
distance from each 
cluster element to the 
centroid, with inertia of 
the generator as the 
weight factor 

Hierarchical (Ward 
linkage criterion) 

 

Naglic et al. 
(2020) [6]  

Simulated frequency values at 
generator nodes, used to form a 
generator distance (weighted 
combination of the squared 
normalised distance matrices 
with cosine and Minkowski 
metrics, and user-defined 
weights)  

Max-product algorithm Affinity propagation  Initial number of clusters not 
required. 
Hardware in-the-loop 
implementation. 

Rezaeian et al. 
(2018) [19] 

Simulated frequency components 
existing in the angular velocity 
variation of voltage phasors, in 
the range of interarea and local 
oscillation modes  

Euclidean sum of the 
correlations between the 
real parts and the 
imaginary parts of the 
features  

Subtractive 
clustering  

Initial number of clusters not 
required. 
Coherency assessed in two 
dimensions (real and imaginary 
parts).  

Singh & 
Fozdar (2019) 
[36] 

Rotor angles of the generators, 
used to form a phase difference 
matrix based on the outcomes of 
the complex wavelet transform 

Euclidean DBSCAN Determines the instantaneous phase 
difference between rotor angles using 
the complex wavelet transform. 

Tyuryukanov 
et al. (2021) 
[54] 
 

Normalised eigenvectors of a 
matrix obtained from the second-
order electromechanical model 
with neglected damping, 
simulated 

Normalised graph cuts Spectral 
clustering and 
classical coherency  

Initial number of clusters not 
required. 
Model improvement for the second-
order model of aggregated generators, 
to reduce the stiffening effect. 

Wilfert et al. 
(2001) [38]  

Simulated time responses of the 
rotor motions 

Membership of the 
generators with their 
clusters, based on 
normalised principal 
components 

Self-organising 
maps 

 

Yadav et al. 
(2019) [22] 

Min-max normalised feature 
matrix with five indicators: 
cumulative energy of spectral 
difference, relative spectral 
flatness, relative spectral flux, 
relative spectral coherence, and 
relative linear correlation 

Least mean Mean shift spectral 
clustering 

Useful for data-driven application, 
independent of changes in system 
structure and operating conditions.  
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outliers. The classical kmeans clustering algorithm [56] 
is used in [52] to determine the groups of generators and 
calculate the centroids on the basis of an input vector that 
contains the modal responses of the generators taken from 
a linearised system model. Furthermore, kmeans is used 
in [45] in conjunction with the SVD, taking int account 
the acceleration and deceleration of the synchronous 
machines. The kmeans method is probabilistic and 
needs the initialisation of the centroids based on random 
numbers (or other specific criteria), so that multiple 
executions should be carried out to obtain a statistically 
significant analysis of the results. The k-harmonic means 
clustering used in [57] and [58] has been formulated to 
be non-sensitive to the initialisation of the centroids. The 
fuzzy c-means (FCM) algorithm [59] has been applied in 
[60]. The interest towards a fuzzy logic-based approach 
is the possibility of defining the degree of membership 
with which one generator belongs to different clusters. 
This is appropriate for interconnected power systems in 
which there are connections among the nodes that result 
in stronger or weaker coupling among the generators [34]. 
However, also FCM depends on some randomness in the 
initialisation. The subtractive clustering proposed in [19] 
on the basis of the method formulated in [61] to form the 
cluster centres can be used a pre-processing step to avoid 
the dependence on random initialisation. Medoid-based 
clustering algorithms (e.g., k-medoids and fuzzy c-medoids) 
are preferable to their centroid-based counterparts (kmeans 
and FCM), because the centroid is a fictitious output and 
does not represent any of the actual generators or nodes 
[34]. Conversely, the medoid gives by definition one of the 
actual generators or nodes per group, which can be taken 
as the representative element of the group. For this reason, 
the fuzzy c-medoids (FCMdd) algorithm developed in [62] 
has been used in [34], where the medoids are initialised by 
using the sequential PMU placement technique described 
in [35]. The concept of partitioning around medoids has 
also been used in [63], where the initial medoids are 
determined taking into account also information on the 
nodes to which the generators are connected and on the 
control systems of the generators. 

Other clustering algorithms provide more balanced 
solutions, in which some outliers can be recognised, while 
the other generators are located into an appropriate number 
of clusters. Specific notes are indicated below.

DBSCAN [64] is a density-based method that 
defines the neighbourhood with a maximum radius and 
creates groups with a minimum number of points in the 
neighbourhood. DBSCAN is a deterministic algorithm, in 
which the number of groups is not fixed a priori. In [36], 
DBSCAN is applied by considering a phase difference 
matrix determined from the results of the complex wavelet 
transform (also considered in [65]). Because of these 
thresholds, some generators could not be included in any 
group and are considered as outliers. 

Self-organising maps (SOM) [66] have been used in 

[38] with the use of normalised principal components, and 
[67] with PCA-based features. The maximum number of 
clusters is given by the dimension of the map. For a two-
dimensional SOM, the output has to be post-processed 
to identify the groups (e.g., with the kmeans algorithm). 
A one-dimensional self-organising map can be used if the 
number of clusters is relatively small (e.g., lower than 6 or 
7) to avoid post-processing.

The affinity propagation clustering [68] requires in 
input a similarity matrix, and there is no need to specify 
the number of groups a priori. It has been used in [21] with 
a similarity matrix formed through KPCA, composed of 
four indices, whose correlations have been used as weights 
in KPCA. It has also been used in [6] to select the post-
event measurements and identify groups of slow coherent 
generators after the occurrence of a disturbance, by using a 
max-product algorithm. Outliers are included into specific 
clusters. 

In subtractive clustering [19], the cluster centres are 
selected on the basis of the density function δSm from 
Equation (9), where the index m is extended to all the 
system nodes. The first cluster centre (centroid) is chosen 
on the basis of the highest density. The effect of the first 
centroid is then removed from the other nodes through a 
subtraction process. The procedure is continued to find the 
next centroids, until the stop criterion based on the ratio 
between the density at the current step and the density at 
the first step is satisfied. 

Hierarchical clustering [69] is another typical 
algorithm, which can be used in the agglomerative or 
divisive version. In the agglomerative case, initially 
all nodes are taken as independent clusters, a distance 
metric is used, and the clusters with the lowest distance 
are progressively merged, until the user-defined number 
of clusters is reached. In the divisive version there 
is initially a single cluster, which is partitioned into 
two clusters by considering the relevant metric, then 
successive partitions are created until reaching the user-
defined number of clusters. All contributions that use the 
hierarchical clustering have chosen the agglomerative 
version. The distances are defined by using the linkage 
criterion, with different solutions. The single linkage 
(based on the distance between the closest components 
of pairs of clusters) is used in [70], the average linkage 
(based on the average distances among the components 
of pairs of clusters) in [46], the complete linkage (based 
on the distance between the farthest components of pairs 
of clusters) in [71], which also considers unstable rotor 
angle trajectories, and the centroid linkage (based on the 
distances among the centroids) in [44]. The Ward linkage 
criterion [72] is used in [53], with the customised option of 
using the total inertia of the generators during the update of 
the dissimilarity matrix. In [73] the distance used to decide 
which pairs of clusters have to be merged is replaced by 
the dissimilarity coefficient constructed on the basis of ten 
normalised indicators.
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Support vector clustering (SVC) [74] is a non-
parametric clustering method that does not need to define 
the number of clusters a priori. It is able to find suitable 
clusters of arbitrary shape by determining boundaries of 
any type. The SVC procedure includes two steps, namely, 
(i) the mapping of the data points into a higher-dimensional 
vector space, with the identification of a number of support 
vectors that depend on a user-defined parameter, and (ii) 
the formation of the clusters by considering the support 
vectors to define the cluster boundaries. In [29] the SVC is 
applied by considering a non-Euclidean distance measure 
χMij between the generators i and j. The SVC is also applied 
in [55], where an embedding strategy is developed for 
making it possible to deal with non-Euclidean distance 
measures.

The spectral clustering algorithm [75] has gained 
interest in recent years in power system applications 
[76], also because it is possible to include user-defined 
similarities [77]. For this purpose, it is applied in [21] to a 
feature set that includes ten similarity indices. The spectral 
clustering is based on the definition of nodes in a connected 
graph, in which the branches are assigned suitable weights. 
For slow coherency studies, the generators are associated 
with the nodes, and the dissimilarity among the time series 
referring to appropriate variables referring to the dynamic 
behaviour (e.g., rotor angles and speeds) are considered 
as weights. The average silhouette index is used to assess 
the most appropriate number of clusters. The mean shift 
spectral clustering is used in [22] in a data-driven approach 
in which inertia is not used in the input dataset. Because 
of this, the method is suitable to deal with the intermittent 
variations in the renewable energy sources and is not 
affected by the changes of inertia due to the diffusion of 
converter-interfaced generators.

The threshold-based dynamic coherency determination 
(DCD) procedure presented in [37] includes two steps. In 
the first step the generators are partitioned into groups by 
imposing a minimum threshold on the cosine similarity, 
and the COIFD is calculated for each group. In the second 
step the threshold is relaxed to merge pairs of groups, 
recalculating the COIFD for the new groups as the 
weighted mean of the COIFD values of the two groups, 
using the number of generators as the weighting factor. 
Then, non-generator buses are associated to the groups 
formed on the basis of the cosine similarity between each 
bus and the groups formed, assuming full observability 
at the non-generator nodes. The DCD is extended in [78] 
by taking into account the impact of wind generators, 
highlighting how the coherent groups can change because 
of the presence of wind power plants. 

B. New findings for enhancing model-based 
approaches 

Close relations between the notion of slow coherency 
and the use of normalised graph cuts have been shown in 
[54]. Starting from the second-order electromechanical 

model with neglected damping, the matrix that contains the 
synchronising torque coefficients between the generators 
is simplified by neglecting the components associated 
with the transfer conductances. In this way, the resulting 
matrix denoted as KB has the structure of a negated 
graph Laplacian matrix. Moreover, the scaled inertias of 
the generators are considered as weight factors and are 
included in a diagonal matrix called M. By using these 
two matrices, it is shown that the solution of minimising 
the normalised graph cuts with relaxed constraints is equal 
to the negated sum of the K eigenvalues of M-1KB with 
smallest magnitude, where K is the number of groups 
formed, and the groups are determined on the basis of the 
corresponding eigenvectors. On these bases, a customised 
spectral clustering algorithm is developed, together with a 
refined algorithm for aggregating the generators belonging 
to the same group. The results shown indicate further 
improvements in the accuracy of model-based approaches 
based on the calculation of eigenvectors for dynamic 
model reduction, leading to renewing the interest towards 
these approaches. 

Probabilistic clustering is a challenging perspective 
that is emerging to deal with the uncertain nature of the 
power output from wind generators. The identification 
of common characteristics for wind generators has been 
handled in [79] by using probabilistic clustering based on 
SVC, and in [80] by applying a practical four-machine wind 
turbine clustering method. In the presence of the sources 
of uncertainty in the power system operation, probabilistic 
methods associated with clustering techniques may provide 
more insights on the creation of the generator groups, 
also with the possible identification of critical generators 
[81]. The computational burden of the probabilistic 
power system dynamics analysis is still high, making the 
computations suitable for offline analysis. In addition, the 
power system models used have to be very detailed. The 
probabilistic assessment of multiple operational scenarios 
may provide more detailed information on the creation 
of the generator groups, in line with future developments 
towards probabilistic stability studies [82]. 

VI. comparIsoNs amoNg clusterINg algorIthms For 
geNerator groupINg

Wide comparisons among the solution methods are not 
generally easy to be carried out. For clustering applications, 
the network to be used should be large enough and include 
enough generators to create a significant number of groups. 
Some IEEE test systems (e.g., the IEEE 68-bus 16-machine 
power system [83]) provide significant benchmarks, 
needed in model-based approaches to reproduce the results 
on the same network, using the same type of model of 
the synchronous machines, and with the testing carried 
out on the same contingency. In some cases, the authors 
have reimplemented the algorithms proposed in the 
selected reference methods. For data-driven approaches, 
the situation may become more complex because of data 
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property issues. Data management by large international 
organisations opens the possibility of carrying out extended 
applications to real cases [13].

Considering the selected methods reported in Table 1, 
different types of comparison have been carried out, as 
summarised below by considering the progressive year of 
publication of the related papers.

The earliest example considered here is the successful 
comparison reported in [34] for the use of FCMdd with 
respect to the FCM used in [60], also confirmed in [84] 
for a real system with 160 generators. For the hierarchical 
clustering described in [53] there is just a qualitative 
comparison with real data. Another hierarchical clustering 
algorithm proposed in [46] provides the same results of 
the calculation of eigenvalues and eigenvectors for the 
linearised model on a 16-machine system. The authors 
conclude that their proposed method has the advantage of 
its applicability to a wide-area measurement system, also 
considering the effects of the occurrence of different events 
on the clustering results. A more extended comparison 
is provided in [29], where the proposed SVC method is 
compared with kmeans [52], FCM [48], hierarchical 
(average and Ward linkages) [53, 70]. The comparison is 
carried out by using the cluster validity indicators Davies–
Bouldin index (DBI) [85], silhouette coefficient [86] and 
Xie-Beni index [87], as well as the minimum average 
absolute angle difference over all the coherent groups. The 
results consistently show that the SVC method provides 
the best results, followed by the hierarchical method with 
average linkage criterion. The DCD method introduced in 
[37] exhibits a lower computation burden as compared to 
other measurements-based methods [42] by using the same 
system and disturbance. 

The spectral clustering method presented in [32] is 
compared with three methods by using the average silhouette 
indicator [86], where the compared methods are executed 
with given parameters. Positive results are reported for the 
proposed method (with overall better results) and for the 
methods reported in [40] and [39]. Sensitivity analyses 
would be needed to perform more detailed verification. In 
[21] the affinity propagation method is compared with four 
methods, for three of which ([39, 42], and [40]) and for the 
proposed method the results are considered acceptable. The 
proposed method is then considered more appropriate by 
the authors because of the possibility of using it for online 
monitoring. The subtractive clustering proposed in [19] 
is compared with the re-implemented versions of kmeans 
and FCMdd from [34] on a 16-machine test system. The 
authors conclude that appropriate setting of the parameters 
of the subtractive clustering can provide better results. 

The discussion in [36] is focused on indicating why 
DBSCAN is better than kmeans. The weighted clustering 
of multi-indicator panel data proposed in [18] is compared 
with other methods such as max-min, kmeans, coherence 
clustering based on feature extraction of wavelet transform 
and PCA, and provides better results by considering 

the DBI indicator. In [30], the proposed SVC method is 
compared with FCM [60] and spectral clustering [77] by 
using the average silhouette indicator [86] and leads to 
better results, with the advantage that can identify in an 
automatic way the suitable number of clusters. 

More extensive comparisons are carried out in some 
papers. The clustering algorithm presented in [55] is 
compared with PCA [39], the determination of Koopman 
modes [3] and the dynamic mode decomposition (DMD) 
introduced in [45]. The PCA is unable to provide 
information on damping, modes and participation factors 
as given by the Koopman mode and DMD. The proposed 
clustering method based on SVD and kmeans is able to 
reduce the dimension of the dataset and requires shorter 
time windows with respect to Koopman mode and DMD 
for capturing slow electromechanical modes (about 0.1 
Hz). In addition, the proposed method gives information 
about the slope of the signal. The mean shift spectral 
clustering from [22] is compared with FCMdd [34], 
PCA [39], ICA [42], DCD [37], and COI-based affinity 
propagation [21]. The comparison is conducted with main 
reference to the behaviour of the methods in intermittency 
cases due to renewable energy sources. In this case, the 
information needed for PCA, ICA and COI-based methods 
are difficult to be obtained or updated in the presence of 
intermittency, while for FCMdd and DCD the authors 
indicate the presence of incorrect groupings. 

In [6] the results of the proposed affinity propagation 
method are compared with the reimplemented DCD from 
[37], with tests carried out for a time interval of 86.6 s 
with multiple perturbations. The results are presented at 
different times, showing when the same coherent groups 
are found from the two methods, and discussing the 
higher adaptability of the proposed method. In [54] the 
comparison is conducted more on the modelling side, 
taking the slow coherency grouping algorithm [88] as the 
reference. Concerning the generator grouping into areas, 
some comparisons are carried out with the results shown 
in [20] and [89], providing some indications concerning 
the partitions in a small number of groups for a given 
disturbance.

VII. coNcludINg remarks

Slow coherency concepts and related applications 
implemented through clustering algorithms have been 
reviewed on the basis of historical contributions and recent 
developments. The topics addressed in this paper have been 
dedicated to the bulk power system, excluding distribution 
systems and microgrids, in which the context of dynamic 
analysis is evolving with the increasing presence of 
converter-interfaced generation, storage and participation 
of the demand-side. Different options have been followed 
by the authors concerning the choice of the features and the 
clustering algorithms. 

In general, the comparisons shown are still too limited 
to conclude that any clustering method can be more 
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appropriate than others. Only extended applications to 
consolidated benchmarks could provide more hints. In any 
case, it is not expected to find that one clustering algorithm 
could be consistently superior to others across all test 
systems and for many sets of disturbances. The definition 
of specific benchmarks agreed among the scientific 
community and the definition of shared test procedures 
are important directions for carrying out further activity, 
with the possible development of more refined algorithms. 
The benchmarks themselves need to be upgraded to 
follow the current evolution of the power systems, where 
the integration of generation from renewable energy 
(mainly wind systems) with fluctuating behaviour and the 
increasing presence of converter-interfaced generation 
and storage introduce new challenges to the interpretation 
of the operating conditions. In this respect, also classical 
model-based approaches need to be revised to incorporate 
further details in line the evolving context of power systems 
operations. Some methodological trends include the 
development of methods based on constrained clustering, 
correlation-based clustering, and probabilistic clustering.

An insightful direction for future research is to extend 
data-driven approaches based on real-time measurements, 
in which the nature of the connections among the data 
can be constructed by the solver. The efficiency of these 
approaches will be satisfactory if sufficiently accurate 
results will be provided with a computational burden 
consistent with online applications.
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“Probabilistic framework for online identification of 
dynamic behavior of power systems with renewable 
generation,” IEEE Transactions on Power Systems, 
vol. 33, no. 1, pp. 45–54, Jan. 2018.
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